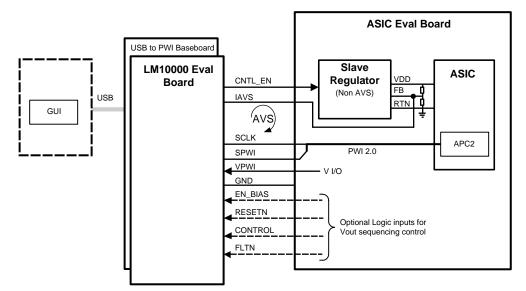


AN-2054 Evaluation Board for LM10000 - PowerWise™ AVS System Controller

1 LM10000 Overview

The LM10000 is used to enable Adaptive Voltage Scaling (AVS) to non-AVS regulators. It includes a complete Slave Power Controller (SPC 2.0) to communicate to the PowerWise[™] Interface (PWI 2.0), and a programmable current output DAC that allows voltage control to any regulator utilizing a feedback node/resistors to set the output voltage.

In addition to enabling AVS, the LM10000 allows the system to control power states such as sleep and shutdown and to configure the voltage step slew rate from the PWI.

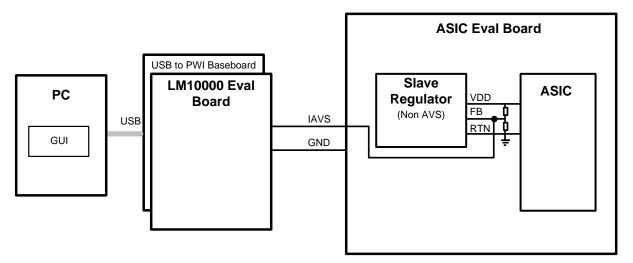

2 Evaluation Board Overview

The LM10000 evaluation board provides all the circuitry needed to conveniently demonstrate PowerWise AVS on non-AVS regulators.

It is configured to operate with the following conditions:

Parameter	Default Voltage	Programming Range
VDD	3.0 - 5.5	
VAVS ⁽¹⁾		0.6-1.2V (7-bit)

 $^{(1)}$ VAVS range assumes the slave regulator has a 0.6V feedback voltage, and 10 k Ω feedback resistors.


PowerWise is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

3 LM10000 Evaluation Board Quick Start

A typical set up using LM10000 requires an LM10000 evaluation board, a USB to PWI baseboard, a PC with USB port, and a slave regulator with external feedback resistors. The slave regulator should be specified for the needs of the load (output power, input voltage range, and so on).

3.1 Basic Setup (Open Loop Voltage Scaling)

- 1. Install the LM10000 GUI on a PC in close proximity to the LM10000 set up.
- 2. Insure that LM10000 eval board is connected to USB to PWI base board.
- 3. Connect a wire from IAVS to the center of the feedback resistor divider on the slave regulator board.
- Connect a wire from the LM10000 evaluation board ground to the slave regulator board ground.
- 5. Connect a USB cable from a PC to the LM10000 Evaluation board. See Note.
- 6. Apply power to the input of the slave regulator.

- 7. Use the GUI to program IAVS and observe slave regulator voltage scaling on a scope or DMM.
 - NOTE: The LM10000 evaluation board can be powered by the USB to PWI baseboard or externally. See Section 5. Once power is applied, the LM10000 enable and logic input pins are pulled up by on-board pull-up resistors, except the FLT_N and CONTROL pin. If the GUI is used, please press the two buttons for FLT_N and CONTROL down (set to 1) and the device is active. If the 20-pin connector is used, please make sure these two pins are high (push-pull connection on the board).

3.2 Advanced (Enable Power Management and Voltage Scaling)

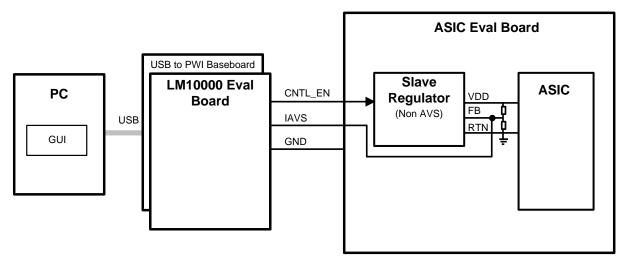


Figure 3. Advanced Setup

- 1. Install the LM10000 GUI on a PC in close proximity to the LM10000 set up.
- 2. Insure that LM10000 eval board is connected to USB to PWI base board.
- 3. Connect a wire from IAVS to the center of the feedback resistor divider on the slave regulator board.
- 4. Connect a wire from CNTL_EN to the enable input of the slave regulator (requires the slave regulator to have a logic enable input).
- 5. Connect a wire from the LM10000 evaluation board ground to the slave regulator board ground.
- 6. Connect a USB cable from a PC to the LM10000 Evaluation board. See Note.
- 7. Apply power to the input of the slave regulator.
- 8. Use the GUI to program IAVS and power states (active, sleep, shutdown); observe slave regulator voltage on a scope or DMM.
 - **NOTE:** The LM10000 evaluation board can be powered by the USB to PWI baseboard or externally. See Section 5. Once power is applied, the LM10000 enable and logic input pins are pulled up by on-board pull-up resistors except the FLT_N and CONTROL. If the GUI is used, please press the two buttons for FLT_N and CONTROL down (set to 1) and the device is active. If the 20-pin connector is used, please make sure these two pins are high (push-pull connection on the board).

In Situ PowerWise® AVS Evaluation Using LM10000 Evaluation Board

www.ti.com

4 In Situ PowerWise® AVS Evaluation Using LM10000 Evaluation Board

The LM10000 evaluation board can be used to facilitate AVS evaluation of a non-AVS application. In many cases, it is desired to understand how much power savings can be achieved by lowering the voltage of an ASIC or FPGA. With a couple connections from the LM10000 evaluation board to the system board, power savings analysis can be done without disrupting the power layout of the system board.

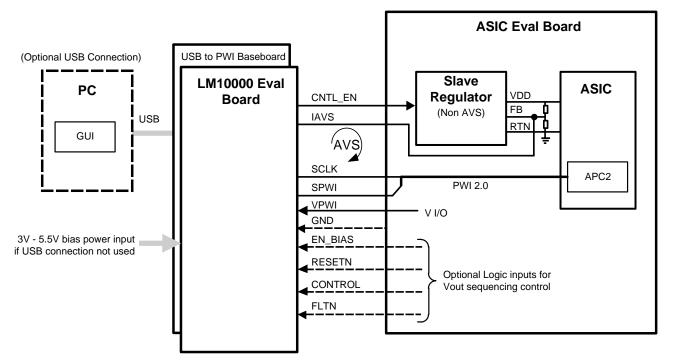


Figure 4. In Situ PowerWise® AVS Setup (Closed Loop Voltage Scaling)

5 **Jumper Settings**

4

Table 1. Jumper Settings

Jumper	Connection	Description
P1		VPWI external input
P2		VDD external input
P3		20-pin header to connect all necessary signals to application board for closed-loop AVS evalution
P4	VDD to VBAT	VDD powered by USB to PWI baseboard (3.6V)
	VDD to VDD_EXT	VDD powered externally
P5		IAVS_MIR measurement
P6	VPWI to VBAT	VPWI powered by USB to PWI baseboard
	VPWI to VPWI_EXT	VPWI powered externally

6 Bill of Materials

Designator	Comp. Type	Value	Package Reference	Description	Manufacturer	Part Number
C1	Capacitor	0.1uF	0603	Ceramic, Y5V, 16V, 80%	TDK	C1608Y5V1C104Z
C2	Capacitor	1uF	0603	Ceramic, X5R, 6.3V, 10%	TDK	C1608X5R0J105K
C3	Capacitor	0.1uF	0603	Ceramic, X7R, 16V, 10%	TDK	C1608X7R1C104K
R1	Resistor	1.50k	0805	1%, 0.125W	Vishay-Dale	CRCW08051K50FKEA
R2	Resistor	1.50k	0603	1%, 0.1W	Vishay-Dale	CRCW06031K50FKEA
R3, R4, R5, R6	Resistor	1.00k	0603	1%, 0.1W	Vishay-Dale	CRCW06031K00FKEA
R7, R9, R12, R13	Resistor	10.0k	0603	1%, 0.1W	Vishay-Dale	CRCW060310K0FKEA
R8	Resistor	27	0603	5%, 0.1W	Vishay-Dale	CRCW060327R0JNEA
R10	Resistor	40.2k	0805	1%, 0.125W	Vishay-Dale	CRCW080540K2FKEA
R11	Resistor	1.00	0603	1%, 0.1W	Vishay-Dale	CRCW06031R00FNEA
R14	Resistor	54.9k	0805	1%, 0.125W	Vishay-Dale	CRCW080554K9FKEA
U1	IC		LLP 14		Texas Instruments	LM10000SDE NOPB

Table 2. Bill of Materials

Bill of Materials

Layout Artwork

7 Layout Artwork

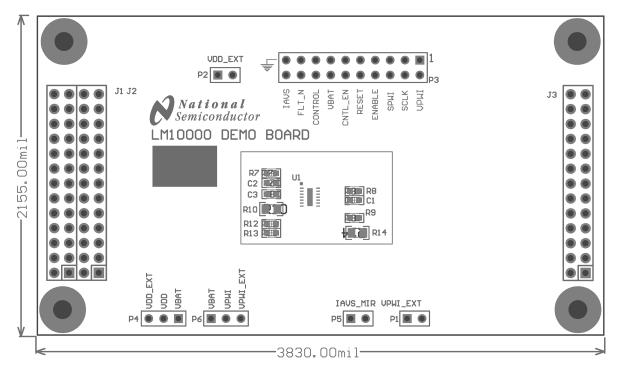
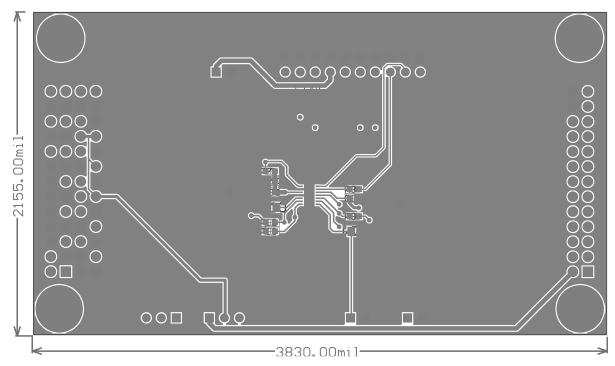



Figure 5. Evaluation Board (Top View)

Layout Artwork

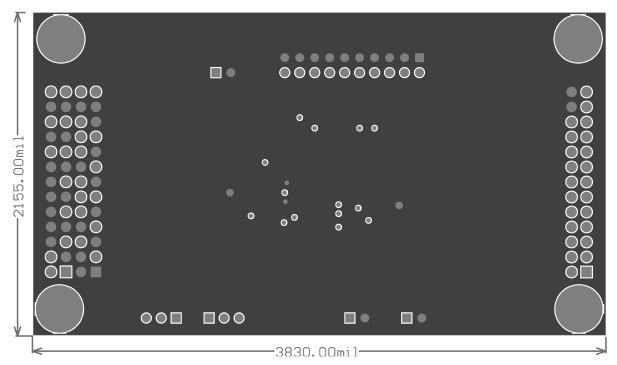
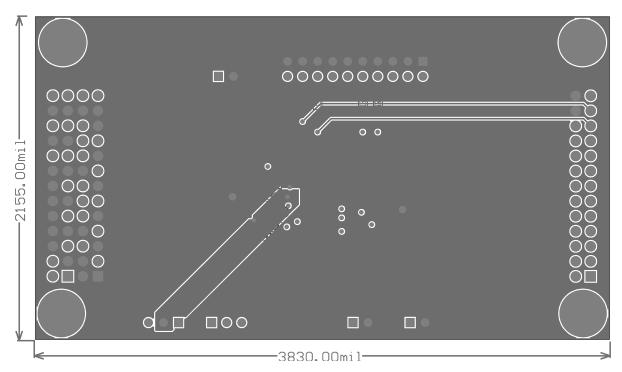
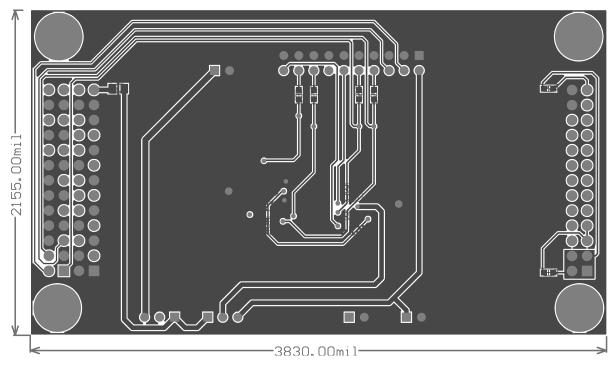
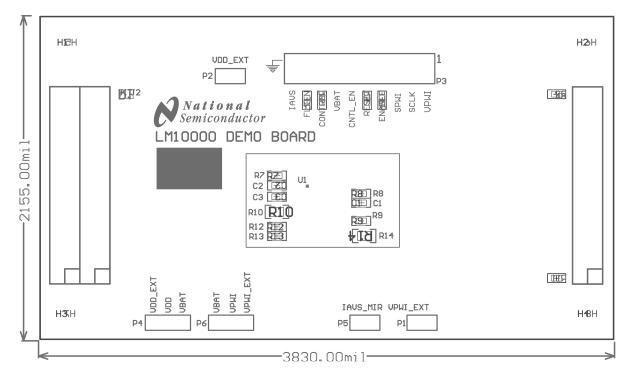




Figure 7. Mid-Layer 1



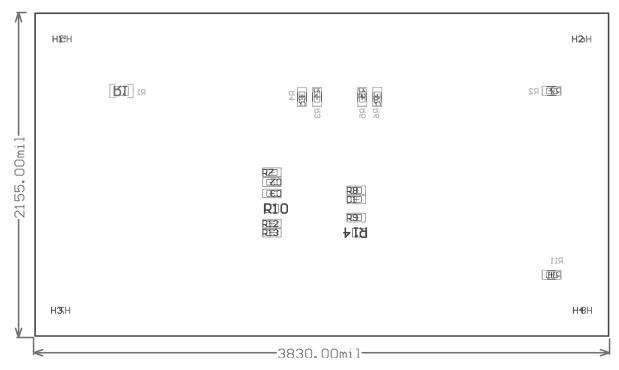


Figure 11. Bottom Silk Screen

8 Schematic

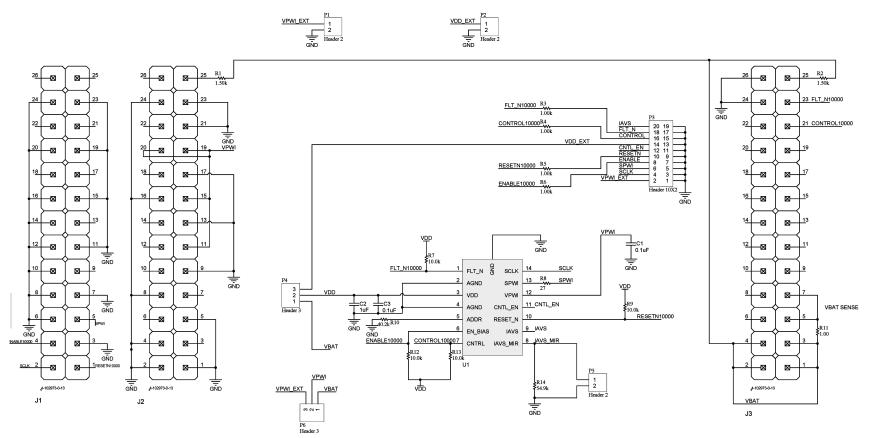


Figure 12. LM1000 AVS System Controller Schematic

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated