©

TMS320C67x FastRTS Library

Programmer’s Reference

SPRU100A
October 2002

b TEXAS

INSTRUMENTS

a»

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections,
modifications, enhancements, improvements, and other changes to its products and services at
any time and to discontinue any product or service without notice. Customers should obtain the
latest relevant information before placing orders and should verify that such information is current
and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the
time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of
sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
used to the extent T| deems necessary to support this warranty. Except where mandated by
government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are
responsible for their products and applications using Tl components. To minimize the risks
associated with customer products and applications, customers should provide adequate design
and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any
Tl patent right, copyright, mask work right, or other Tl intellectual property right relating to any
combination, machine, or process in which Tl products or services are used. Information
published by Tl regarding third party products or services does not constitute a license from Tl
to use such products or services or a warranty or endorsement thereof. Use of such information
may require a license from a third party under the patents or other intellectual property of that third
party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations, and
notices. Reproduction of this information with alteration is an unfair and deceptive business
practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated
by TI for that product or service voids all express and any implied warranties for the associated
Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or
liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

About This Manual

Preface

Read This First

Welcome to the TMS320C67x Fast Run-Time-Support Library, or FastRTS li-
brary for short. The FastRTS library is a collection of 26 optimized floating-
point math functions for the TMS320C67x device. This source code library
includes C-callable (ANSI-C-language compatible) optimized versions of the
floating-point math functions included in previous run-time-support libraries.

How to Use This Manual

The information in this document describes the contents of the TMS320C67x
FastRTS library in several different ways.

U

Chapter 1 provides a brief introduction to the C67x FastRTS library, shows
the organization of the routines contained in the library, and lists the fea-
tures and benefits of the library.

Chapter 2 provides information on how to install, use, and rebuild the C67x
FastRTS library.

Chapter 3 provides a quick overview of all FastRTS functions for easy ref-
erence. The information shown for each function includes the name, a
brief description, and a page reference for obtaining more detailed infor-
mation.

Chapter 4 provides a list of the routines within the FastRTS library orga-
nized into functional categories. The functions are listed in alphabetical or-
der and include syntax, file defined in, description, functions called, and
special cases.

Appendix A provides information about warranty issues, software up-
dates, and customer support.

Notational Conventions / Related Documentation From Texas Instruments

Notational Conventions

This document uses the following conventions:

(4 Program listings, program examples, and interactive displays are shown
ina special typeface.

1 In syntax descriptions, the function appears in a bold typeface and the
parameters appear in plainface.

[The TMS320C67x is also referred to in this reference guide as the C67x.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x devices and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
can be found on the Internet at http://www.ti.com.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the TMS320C62x™ and TMS320C67x™ digital signal
processors, development tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the TMS320C6000™ CPU architecture,
instruction set, pipeline, and interrupts for these digital signal proces-
sors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201 and TMS320C6701 digital signal processors. This book
includes information on the internal data and program memories, the
external memory interface (EMIF), the host port interface (HPI), multi-
channel buffered serial ports (McBSPs), direct memory access (DMA),
enhanced DMA (EDMA), expansion bus, clocking and phase-locked
loop (PLL), and the power-down modes.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C6000™ DSPs and includes application program examples.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the TMS320C6000™ generation of devices.

Trademarks

Related Documentation From Texas Instruments / Trademarks

TMS320C6000 Optimizing Compiler User’s Guide (literature number
SPRU187) describes the TMS320C6000™ C compiler and the assembly
optimizer. This C compiler accepts ANSI standard C source code and
produces assembly language source code for the TMS320C6000 gen-
eration of devices. The assembly optimizer helps you optimize your
assembly code.

TMS320C6000 Chip Support Library (literature number SPRU401) de-
scribes a set of application programming interfaces (APIs) used to con-
figure and control all on-chip peripherals.

The Texas Instruments logo and Texas Instruments are registered trademarks
of Texas Instruments Incorporated. Trademarks of Texas Instruments include:
Tl, Code Composer Studio, TMS320, TMS320C6000, and TMS320C67x.

Read This First \%

Contents

Introduction
Provides an introduction to the C67x FastRTS, shows the organization of the routines con-
tained in the library, and explains the features and benefits of the library

1.1 Introduction to the C67x FastRTS Library i, 1-2
1.2 Featuresand Benefits i 1-3
Installing and UsSing FaStRTSouieeeeeeeeeeeennnnnnnnniaaaaaaaeeaeeaaaenens [2-1]
Provides information on how to install and rebuild the FastRTS library
2.1 FastRTS Library CONtENtSouineit ettt e e et
2.2 Howtolnstallthe FastRTS Library 2-3
2.3 Usingthe FastRTS Library e 2-4
2.3.1 FastRTS Library Argumentsand Data Typescoiinn... 2-4
2.3.2 CallingaFastRTS Function From C i .. 2-5
2.3.3 Calling a FastRTS Function From Assembly, 2-5
2.4 Howto Rebuildthe FastRTS Librarycc i 2-6

FastRTS Library Functions Tables
Provides tables containing all IMGLIB functions, a brief description of each, and a page refer-
ence for more detailed information.

3.1 Arguments and Conventions Used

3-2

3.2 FastRTS Functions

3-3

FastRTS Reference
Provides a list of the functions in the Fast Run-Time-Support (FastRTS) Library organized al-
phabetically in two functional categories.

4.1
4.2

General FastRTS FUNCLIONS oot e e e e

Divide and Square Root Routines

42
419

Performance Considerations

Describes performance considerations related to the C67x FastRTS and provides information
about software updates and customer support issues.

A1 Performance Considerations i A-2
A2 FastRTS Software Updates i A-3
A3 FastRTS Customer SUPPOrto e A-3
GloSSaNY ... i et r e a e

Defines terms and acronyms used in this book

Vii

Tables

viii

FastRTS Library FUNCiONS e
FastRTS Data TyYpes . ..ottt e e e e
Argument Conventionsttt
FastRTS Function Names Comparisonuuiiiiiiiiiiie ..
Divide and Square Root Floating-Point Functions
Sample Performancet e

Notes, Cautions, and Warnings

Adding FastRTS in Code Composer Studio

recip Function,
recipf Function

4-15

4-15

Contents

Chapter 1

Introduction

This chapter provides a brief introduction to the C67x Fast Run-Time-Support
(FastRTS) Library, shows the organization of the routines contained in the
FastRTS library, and lists the features and benefits of the FastRTS library.

Topic

1.1 Introduction to the C67x FastRTS Library
1.2 Features and Benefits

1-1

Introduction to the C67x FastRTS Library

1.1

Introduction to the C67x FastRTS Library

The C67x FastRTS library is an optimized floating-point math function library
for C programmers using TMS320C67x devices. These routines are typically
used in computationally intensive real-time applications where optimal execu-
tion speed is critical. By using these routines instead of the routines found in
the existing run-time-support libraries, you can achieve execution speeds con-
siderably faster without rewriting existing code.

The FastRTS library includes all floating-point math routines currently pro-
vided in existing run-time-support libraries for C6000. These new functions
can be called with the current run-time-support library names or the new
names included in the FastRTS library.

Single-precision and double-precision versions of the routines are available:

Table 1-1. FastRTS Library Functions

Single Precision Double Precision

atanf atan
atan2f atan2
cosf cos
expf exp
exp2f exp2
exp10f exp10
logf log
log2f log2
log10f log10
powf pow
recipf recip
rsqrtf rsqrt
sinf sin

Features and Benefits

1.2 Features and Benefits
The FastRTS library provides the following features and benefits:
(1 Hand-coded assembly-optimized routines

[C-callable routines, which are fully compatible with the TMS320C6000
compiler

[Provided functions are tested against C model and existing run-time-sup-
port functions

Introduction 1-3

Chapter 2

Installing and Using FastRTS

This chapter provides information on the contents of the FastRTS archive, and
how to install, use, and rebuild the C67x FastRTS library.

Topic Page
2.1 FastRTS LibraryContentsciiiiiiiiiiiiinnnnnnn 2-2
2.2 How toInstall the FastRTS Libraryccciiiian.n. 2-3
23 UsingtheFastRTS Libraryc.coiiiiiiiiiiiiinnnn 2-4
2.4 How to Rebuild the FastRTS Librarycooiuu.t, 2-6

2-1

FastRTS Library Contents

2.1 FastRTS Library Contents

The C67xFastRTS.exe installs the following file structure:

lib
fastrts67x.1ib
fastrts67xe.lib
fastrts67x.src

include
fastrts67x.h
recip.h

doc
spru100.pdf

License.doc

Directory containing the following library files:
Little-endian library file

Big-endian library file

Source archive file

Directory containing the following include files:
Alternative entry header file

Header file for reciprocal functions

Directory containing the following document files:
PDF document of API

License agreement

How to Install the FastRTS Library

2.2 How to Install the FastRTS Library

To install the FastRTS libary, follow these steps:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Step 6:

Step 7:
Step 8:

Step 9:

Open the file C67xFastRTS.exe.
Click Yes to install the library.
Click Next to continue with the Install Shield Wizard.

Read the Software Licenses and choose either “| accept” or “I don’t
accept.”

Click Next to continue.

If you selected “I accept,” the installation will continue.
If you selected “I don’t accept,” the installation cancels.

Choose the location where you would like to install the library. The
wizard will install the header files in the include directory, documen-
tation in the doc directory, and the library and source files in the lib
directory.

The default install location is c:\ti. Libraries will be installed in
c:\ti\c6700\mthlib, and documentation will be in c:\ti\docs\pdf.

Click Next.

If the library has already been installed, you will be prompted to de-
cide whether to replace the files or not. Click Yes to update the library.

The Install Shield will complete the installation. When the installation
is complete, click Finish.

Installing and Using FastRTS 2-3

Using the FastRTS Library

2.3 Using the FastRTS Library

Before using the FastRTS library functions, you need to update your linker
command file. If you want to use the FastRTS functions in place of the existing
versions of these functions, the FastRTS library must be linked in before the
existing run-time-support library.

Ensure that you link with the correct run-time-support library and the FastRTS
library for little-endian code by adding the following line in your linker command
file before the line linking the current run-time-support library:

-lfastrtsé67x.1ib

For big-endian code, add the following line in your linker command file before
the line linking the current run-time-support library:

-1lfastrts67xe.lib
2.3.1 FastRTS Library Arguments and Data Types

FastRTS Types

Table 2-1 shows the data types handled by the FastRTS.

Table 2-1. FastRTS Data Types

Name Size Type Minimum Maximum
(bits)
IEEE float 32 floating point 1.17549435e-38 3.40282347¢e+38
IEEE double 64 floating point 2.2250738585072014e-308 1.7976931348623157e+308
FastRTS Arguments

The C67x FastRTS functions operate on single value arguments. The single-
precision versions operate on IEEE float arguments and the double-precision
versions operate on IEEE double arguments. The functions atan2 and pow
require two arguments.

Using the FastRTS Library

2.3.2 Calling a FastRTS Function From C

In addition to correctly installing the FastRTS software, you must follow these
steps to include a FastRTS function in your code:

d Include the function header file corresponding to the FastRTS function:

B The fastrts67x.h header file must be included if you use the special
FastRTS function names.

B The recip.h header file must be included if the recip, recipdp, recipf, or
recipsp function is called.

B The math.h header file must be included if you are using the standard
run-time-support function names.

(4 Link your code with fastrts67x.lib for little-endian code or fastrts67xe.lib for
big-endian code.

(1 Use the correct linker command file for the platform you use. Remember,
the FastRTS library replaces only a subset of the functions in the current
run-time-support libraries. Therefore, fastrts67x.lib or fastrts67xe.lib must
be linked in before rts6700.lib or rts6700e.lib.

For example, if you call the cos FastRTS function, you would add:
#include <math.hs>
in your C file and compile and link using

cl6x main.c -z -o drv.out -lfastrtsé67x.lib -rts6701.1lib

Note: Adding FastRTS in Code Composer Studio

If you set up a project under Code Composer Studio, you can add the
FastRTS library to your project by selecting Project—Add Files to Project and
choosing fastrts67x.lib or fastrts67xe.lib.

2.3.3 Calling a FastRTS Function From Assembly

The C67x FastRTS functions were written to be used from C. Calling the func-
tions from assembly language source code is possible as long as the calling
function conforms to the Texas Instruments C67x C compiler calling conven-
tions. For more information, refer to the Run-Time Environment chapter of the
TMS320C6000 Optimizing C/C++ Compiler User’s Guide.

Installing and Using FastRTS 2-5

How to Rebuild the FastRTS Library

2.4 How to Rebuild the FastRTS Library

If you want to rebuild the FastRTS library (for example, because you modified
the source file contained in the archive), you must use the mk6x utility as fol-
lows for little endian and big endian versions:

mkéx fastrtsé67x.src -1 fastrts67x.lib

mkéx -me fastrtsé7x.src -1 fastrts67xe.lib

Chapter 3

FastRTS Library Functions Tables

This chapter provides tables containing all FastRTS functions, a brief descrip-
tion of each, and a page reference for more detailed information.

Topic

Page
3.1 Arguments and ConventionsUsedc00uune 3-2
32 FastRTSFunctions................cciiiiiiiiiiiiiinninnnnnnns 3-3

3-1

Arguments and Conventions Used

3.1 Arguments and Conventions Used

The following conventions have been followed when describing the arguments
for each individual function:

Table 3-1. Argument Conventions

Argument Description

XYz Argument reflecting input data

r Argument reflecting output data

FastRTS Functions

3.2 FastRTS Functions

The routines included in the FastRTS library are provided as both single- and
double-precision versions. SP is used in the following tables to identify the
single-precision functions. DP is used to identify the double-precision func-
tions. Listed in the table below are current run-time-support library function
names and the alternate function names for the Fast RTS library. Either name
can be used to call the FastRTS version of the function.

Table 3-2. FastRTS Function Names Comparison

Current Name Alternate Name
Description SP DP SP DP Page
arc tangent of one argument atanf atan atansp atandp 4-2
arc tangent of two arguments atan2f atan2 atan2sp atan2dp
cosine of a radian argument cosf cos cossp cosdp 4-4
exponential base e expf exp expsp expdp 4-5
exponential base 10 exp10f exp10 exp10sp exp10dp 4-6,|4-7
exponential base 2 exp2f exp2 exp2sp exp2dp
logarithm base e logf log logsp logdp
logarithm base 10 log10f log10 log10sp log10dp 4-10
logarithm base 2 log2f log2 log2sp log2dp 4-11,[l4-12 |
power = X raised to power Y powf pow powsp powdp 4-13[4-14
reciprocal = 1/argument recipft recipt recipsp recipdp
reciprocal of square root rsqrtf rsqrt rsqrtsp rsqrtdp
sine of a radian argument sinf sin sinsp sindp 4-17,/14-18

T The FastRTS functions recipf and recip are not defined in the corresponding rts67xx.lib

Some of the RTS functions call the routines listed in Table 3-3 for improved
performance. These functions are described in TMS32067xx Divide and
Square Root Floating-Point Functions (literature number SPRA516).

FastRTS Library Functions Tables 3-3

FastRTS Functions

Table 3-3. Divide and Square Root Floating-Point Functions

Run-Time-Support Name Alternate Name
Description SP DP SP DP Page
division of two arguments _divf _divd divsp divdp
square root sqrif sqrt sqrtsp sqrtdp

FastRTS Reference

This chapter provides a list of the functions within the FastRTS library.
The functions are listed in alphabetical order and include syntax, file
defined in, description, functions called, and special cases.

Topic Page
41 General FastRTSFunctionscoiiiiiinnns, 4-2]
4.2 Divide and Square Root Routines 4-19]

4-1

atan/atandp

4.1 General FastRTS Functions

atan/atandp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

atanf/atansp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

Double-Precision Polar Arc Tangent

#include <math.h>

double atan(double z);

#include <fastrts67x.h>

double atan(double z); or double atandp(double z)
atan2dp.asm

The atan and atandp functions return the arc tangent of a floating-point argu-
ment z. The return value is an angle in the range [-Tt/2, Tt/2] radians.

none

If | z| < 1.49e-8 = 2-26, then the return value is z for small angles.

Single-Precision Polar Arc Tangent

#include <math.h>

float atanf(float z);

#include <fastrts67x.h>

float atanf(float z); or float atansp(float z);
atan2sp.asm

The atanf and atansp functions return the arc tangent of a floating-point argu-
ment z. The return value is an angle in the range [-Tt/2, T/2] radians.

none

If | z| < 2.44e-4 = 212, then the return value is z for small angles.

atan2/atan2dp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

atan2f/atan2sp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

atan2f/atan2sp

Double-Precision Cartesian Arc Tangent

#include <math.h>

double atan2(double y, double x) ;

#include <fastrts67x.h>

double atan2f(double y, double x); or double atan2dp(double y, double x);
atan2dp.asm

The atan2 and atan2dp functions return the arc tangent of the floating-point
arguments y/x. The return value is an angle in the range of [-T, 7] radians.

none
If | y/x | < 1.49e-8 = 2-26, then the return value is y/x for small angles.
If y = 0, then the return value is 0 independent of the value of x (including 0).

If x = 0, then the return value is +/-1t/2 as determined by the sign of a non-zero
y.

Single-Precision Cartesian Arc Tangent

#include <math.h>

float atan2(float y, float x) ;

#include <fastrts67x.h>

float atan2f(float y, float x); or float atan2sp(float y, float x);
atan2sp.asm

The atan2f and atan2sp functions return the arc tangent of the floating-point
arguments y/x. The return value is an angle in the range of [-T, Tt] radians.

none

If | y/x | < 2.44e-4 = 2-12, then the return value is y/x for small angles.

If y = 0, then the return value is 0 independent of the value of x (including 0).
If x = 0, then the return value is +/- /2 as determined by the sign of a non-zero

Y.

FastRTS Reference 4-3

cos/cosdp

Syntax--Standard
Syntax--FastRTS

Defined in

Description

Functions

Special Cases

Syntax--Standard
Syntax--FastRTS

Defined in

Description

Functions

Special Cases

Double-Precision Cosine

#include <math.h>

double cos(double z) ;

#include <fastrts67x.h>

double cosf(double z); or double cosdp(double z);
sindp.asm

The cos and cosdp functions return the cosine of a floating-point argument z.
The angle z is expressed in radians. The return value is in the range of [-1.0
and +1.0]. An argument with a large magnitude may produce a result with little
or no significance.

sin (or sindp) using the identity:
cos(z)=sin(|z|+m/2) =sin(W)

where W = | z | + m/2. The cos routine continues into the sin routine without
making a call.

If | W | < 9.536743e-7 = 2-20, then the return value is W for small angles.

If | W | > 1.0737e+9 = 2+30, then the return value is zero for large angles.

Single-Precision Cosine

#include <math.h>

float cosf(floatz) ;

#include <fastrts67x.h>

float cosf(float z); or float cossp(float z);
sinsp.asm

The cosf and cosp functions return the cosine of a floating-point argument z.
The angle z is expressed in radians. The return value is in the range of [-1.0
and +1.0]. An argument with a large magnitude may produce a result with little
or no significance.

sinf (or sinsp) using the identity:
cosf(z) =sinf(|z| + ©/2) = sinf(W)

where W = | z | + m/2. The cosf routine continues into the sinf routine without
making a call.

If | W | < 2.44e-4 = 2- 12, then the return value is W for small angles.

If | W | > 1.04858e+6 = 2+20, then the return value is zero for large angles.

exp/expdp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

expf/expsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

expf/expsp

Double-Precision Exponential Base e

#include <math.h>

double exp(double z) ;

#include <fastrts67x.h>

double expf(double z); or double expdp(double z);
expdp.asm

The exp and expdp functions return the exponential function of a real floating-
point argument z. The return value is the number e raised to power z. If the
magnitude of z is too large, the maximum double-precision floating-point num-
ber (1.797693e+308 = 2+1024) js returned.

none
If| z| < 1.11e-16 = 2-53, then the return value is 1.0 for small arguments.

If z < -708.3964 = minimum log ¢ (2.225e-308 =2 1022) then the return value
is 0.0.

If z > +709.7827 = maximum log ¢ (1.797693e+308 = 2+1024) 'then the return
value is 1.797693e+308 = 2+1024 (maximum double-precision floating-point
number).

Single-Precision Exponential Base e

#include <math.h>

float expf(floatz) ;

#include <fastrts67x.h>

float expf(float z); or float expsp(float z);
expsp.asm

The expf and expsp functions return the exponential function of a real floating-
point argument z. The return value is the number e raised to power z. If the
magnitude of z is too large, the maximum single-precision floating-point num-
ber (3.402823e+38 = 2+128) js returned.

none

FastRTS Reference 4-5

exp10/exp10dp

Special Cases

exp10/exp10dp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

4-6

If | z| < 9.313e-10 = 2-30, then the return value is 1.0.

If z < -87.3365 = minimum log ¢ (1.175e-38 = 2-126), then the return value is
0.0.

If z > +88.7228 = maximum log , (3.402823e+38 = 2+128), then the return val-
ue is 3.402823e+38 = 2+128 (maximum single-precision floating-point num-
ber).

Double-Precision Exponential Base 10

#define _TI ENHANCED MATH H 1
#include <math.h>

double exp10(double z) ;

#include <fastrts67x.h>

double exp10f(double z); or double exp10dp(double z);
expdp.asm

The exp10 and exp10dp functions return the exponential function of a real
floating-point argument z. The return value is the number 10 raised to power
z. If the magnitude of z is too large, the maximum double-precision floating-
point number (1.797693e+308 = 2+1024) js returned.

_divd (or DIVDP) using the large memory model (32-bit addresses)
The shared exp kernel is used (without making a call) in the following identity:

expl10(z) = exp(z*2.302585093 ...) = exp(W) where W = z * 2.302585093
... and 2.302585093 ... = log ¢ (10).

If | W] < 1.11e-16 = 2-53, then the return value is 1.0 for small arguments.

If W < -708.3964 = minimum log ¢ (2.225e-308 = 2 1022) then the return
value is 0.0.

If W > +709.7827 = maximum log ¢ (1.797693e+308 = 2+1024) then the return
value is 1.797693e+308 = 21024 (maximum double-precision floating-point
number).

exp10f/exp10sp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

exp2/exp2dp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

exp2/exp2dp

Single-Precision Exponential Base 10

#define _TI_ ENHANCED_MATH_H 1
#include <math.h>

float exp10f(floatz) ;

#include <fastrts67x.h>

float exp10f(float z); or float exp10sp(float z);
expsp.asm

The exp10f and exp10sp functions return the exponential function of a real
floating-point argument z. The return value is the number 10 raised to power
z. If the magnitude of z is too large, the maximum single-precision floating-
point number (3.4028323e+38 = 2+128) s returned.

none
If | W] <9.31e-10 = 2-30, then the return value is 1.0 for small arguments.

If W < -87.3365 = minimum log ¢ (1.175e-38 = 2-126), then the return value
is 0.0.

If W > +88.7228 = maximum log . (3.402823e+38 = 2+128), then the return
value is 3.402823e+38 = 2128 (maximum single-precision floating-point num-
ber).

Double-Precision Exponential Base 2

#define _TI ENHANCED MATH H 1
#include <math.h>

double exp2(double z) ;

#include <fastrts67x.h>

double exp2f(double z); or double exp2dp(double z);
expdp.asm

The exp2 and exp2dp functions return the exponential function of a real float-
ing-point argument z. The return value is the number 2 raised to power z. If the
magnitude of z is too large, the maximum double-precision floating-point num-
ber(1.797693e+308 = 2+1024) js returned.

FastRTS Reference 4-7

exp2f/exp2sp

Functions

Special Cases

exp2f/exp2sp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

log/logdp

Syntax--Standard

none
If | W] < 1.11e-16 = 2-53, then the return value is 1.0 for small arguments.

If W < -708.3964 = minimum log ¢ (2.225e-308 = 2 1022) then the return
value is 0.0.

If W > +709.7827 = maximum log ¢ (1.797693e+308 = 2+1024) then the return
value is 1.797693e+308 = 21024 (maximum double-precision floating-point
number).

Single-Precision Exponential Base 2

#define _TI ENHANCED_ MATH H 1
#include <math.h>

float exp2f(float z) ;

#include <fastrts67x.h>

float exp2f(float z); or float exp2sp(float z);
expsp.asm

The exp2f and exp2sp functions return the exponential function of a real float-
ing-point argument z. The return value is the number 2 raised to power z. If the
magnitude of z is too large, the maximum single-precision floating-point num-
ber (3.402823e+38 = 2+128) js returned.

none
If | W | < 9.3e-10 = 2-30, then the return value is 1.0 for small arguments.

If W < -87.3365 = minimum log ¢ (1.175e-38 = 2" 126), then the return value
is 0.0.

If W > +88.7228 = maximum log ¢ (3.402823e+38 = 2+128), then the return val-
ue is 3.402823e+38 = 2+128 (maximum single-precision floating-point num-
ber).

Double-Precision Natural Logarithm

#include <math.h>

double log(double z) ;

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

logf/logsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

logf/logsp

#include <fastrts67x.h>
double logf(double z); or double logdp(double z);
logdp.asm

The log and logdp functions return the natural logarithmg of a real floating-point
argument z. If z is not positive, the negative maximum double-precision float-
ing-point number (-1.797693e+308 = -1*2+1024) js returned.

none

If z < = 0, then the return value is -1.797693e+308 = -1*2+1024 (largest double-
precision floating-point number with a negative sign).

If z < 2.225e-308 = 2- 1022 then the return value is -708.3964 = minimum loge
(+2.225¢-308 = 2-1022),

If z > 8.9885e+307 = 2+1023 then the return value is +709.7827 = maximum
loge (+1.797693e+308 = 2+1024),

Single-Precision Natural Logarithm

#include <math.h>

float logf(float z);

#include <fastrts67x.h>

float logf(float z); or float logsp(float z);
logsp.asm

The logf and logsp functions return the natural logarithm of a real floating-point
argument z. If z is not positive, the negative maximum single-precision float-
ing-point number (-3.402823e+38 = -1*2+128) is returned.

none

If z < = 0, then the return value is -3.402823e+38 = -1*2+128 (largest single-
precision floating-point number with a negative sign).

If z < 1.175e-38 = 2° 126, then the return value is —87.3365 = minimum loge
(+1.175e-38 = 2-126),

If z > 1.7014e+38 = 2+127 then the return value is +88.7228 = maximum loge
(+3.402823e+38 = 2+128),

FastRTS Reference 4-9

log10/log10dp

log10/log10dp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

log10f/log10sp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

4-10

Double-Precision Common Logarithm Base 10

#include <math.h>

double log10(double z) ;

#include <fastrts67x.h>

double log10f(double z); or double log10dp(double z);
logdp.asm

The log10 and log10dp functions return the common logarithmg of a real float-
ing-point argument z. If z is not positive, the negative maximum double-preci-
sion floating-point number (-1.797693e+308 = -1*2+1024) js returned.

none

If z < = 0, then the return value is -1.797693e+308 = -1*2+1024 (jlargest double-
precision floating-point number with a negative sign).

If z < 2.225e-308 = 21022, then the return value is -708.3964 = minimum loge
(+2.225e-308 = 2 1022) and scaled by logyq (e) = -307.65265.

Single-Precision Common Logarithm Base 10

#include <math.h>

float log10f(float z) ;

#include <fastrts67x.h>

float log10f(float z); or float log10sp(float z);
logsp.asm

The log10f and log10sp functions return the common logarithmg of a real
floating-point argument z. If z is not positive, the negative maximum single-
precision floating-point number (-3.402823e+38 = -1*2+128) js returned.

none

If z < = 0, then the return value is -3.402823e+38 = -1*2+128 (largest single-
precision floating-point number with a negative sign).

If z < 1.1755e-38 = 2- 126, then the return value is —87.3365 = minimum logfe
(+1.175e-38 = 2-126) and scaled by logfyq (e) = -37.92978.

log2/log2dp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

log2/log2dp

If z> 1.70e+38 = 2+127 then the return value is +88.7228 = maximum logfe
(+3.402823e+38 = 2+128) and scaled by logfq (€) = +38.53184.

Double-Precision Binary Logarithm Base 2

#define _TI ENHANCED_ MATH H 1
#include <math.h>

double log2(double z) ;

#include <fastrts67x.h>

double log2f(double z); or double log2dp(double z);
logdp.asm

The log2 and log2dp functions return the binary logarithm, of a real floating-
point argument z. If z is not positive, the negative maximum double-precision
floating-point number (-1.797693e+308 = -1*2+1024) js returned.

none

If z < = 0, then the return value is -1.797693e+308 = -1*2+1024 (largest double-
precision floating-point number with a negative sign).

If z < 2.225e-308 = 2" 1022 then the return value is -708.3964 = minimum loge
(+2.225e-308 = 2 1022) gnd scaled by log, (e) = -1022.

If z > 8.9885e+307 = 2+1023 then the return value is +709.7827 = maximum
loge (+1.797693e+308 = 2+1024) and scaled by log, (€) = +1024.

FastRTS Reference 4-11

log2f/log2sp

log2f/log2sp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

4-12

Single-Precision Binary Logarithm Base 2

#define _TI_ ENHANCED_ MATH H 1
#include <math.h>

float log2f(floatz) ;

#include <fastrts67x.h>

float log2f(float z); or float log2sp(float z) ;
logsp.asm

The log2f and log2sp functions return the binary logarithm, of a real floating-
point argument z. If z is not positive, the negative maximum single-precision
floating-point number (-3.402823e+38 = -1*2+128) is returned.

none

If z < = 0, then the return value is -3.402823e+38 = -1*2+128 (largest single-
precision floating-point number with a negative sign).

If z < 1.175e-38 = 2126, then the return value is —87.3365 = minimum logfe
(+1.175e-38 = 2" 126) and scaled by logf; (e) = -126.

If z> 1.70e+38 = 2+127 then the return value is +88.7228 = maximum logfe
(+3.402823e+38 = 2+128) and scaled by logf, (e) = +128.

pow/powdp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

pow/powdp

Double-Precision Raise to a Power

#include <math.h>

double pow(double x double y) ;

#include <fastrts67x.h>

double powf(double x double y); or double powdp(double x double y);
powdp.asm

The pow and powdp functions return x raised to the power y. The functions are
equivalent to:

pow(X,y) = expe (Y *loge (X)) = expe (W) where W =y * loge (x)

If X < 0, then y must have an integer value, else NaN is returned. The com-
pound restrictions of loge and exp, apply to the returned answer.

log ¢, €Xp ¢, and _divd (or divdp) using the large memory model (32-bit ad-
dresses)

The following order of tests are observed:

If y =0, return 1.0 (x is ignored).

If | x | > 8.9885e+307 = 21023 the return value is Infinity (y is ignored).
If | x | < 2.225e-308 = 2- 1022 then the return value is O (y is ignored).
If x < 0, and y is not an integer value, then NaN is returned.

If x < 0, and y is a 32-bit integer value, -1¥* |x| Y is formed.

Form W =y *log ¢ (|X|)-
If W > 709.089 = maximum log ¢ (+8.988e+307 = 2+1023) |nfinity is returned.

If W < -708.396 = minimum log ¢ (+2.225e-307 = 2-1022) then 0 is returned.

Otherwise, exp ¢ (W) =exp e (Y *10g ¢ (X)) = xVYis returned.

FastRTS Reference 4-13

powf/powsp

powf/powsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

Single-Precision Raise to a Power

#include <math.h>

float powf(float x, floaty) ;

#include <fastrts67x.h>

float powf(float x, float y); or float powsp(float x, float y);
powsp.asm

The powf and powsp functions return x raised to the power y. This is equivalent
to:

powf(x,y) = expfe (y *logf e (x)) = expfe (W)

where W =y *logf ¢ (X). If x < 0, then y must have an integer value, else NaN
is returned. The compound restrictions of logfe and expfe apply to the re-
turned answer.

logf ¢, expf ¢, and _divf (or DIVSP) using the large memory model (32-bit ad-
dresses)

The following order of tests are observed:
Ify =0, return 1.0 (x is ignored).
If | x | >1.701e+38 = 2+127 the return value is Infinity (y is ignored).
If | x | < 1.175e-38 = 27126, then the return value is O (y is ignored).
If x < 0, and y is not an integer value, then NaN is returned.
If x < 0, and y is a 32-bit integer value, -1¥* |x| Y is formed.
Form W =y * logf ¢ (|x|).
If W > 88.02969 = maximum logf ¢ (+1.701e+38 = 2+127) Infinity is returned.

If W < —87.3365 = minimum logf ¢ (+1.175e-38 = 2-126), then 0 is returned.

Otherwise, expf ¢ (W) = expf ¢ (y *logf ¢ (x)) = xVYis returned.

recip/recipdp

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

recipf/recipsp

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

recipf/recipsp

Double-Precision Reciprocal

#include <fastrts67x.h>
#include <recip.h>

double recipf(double z); or double recipdp(double z);

Note: recip Function
The recip function is not defined in the rts6700.lib or rts6700e.lib file.

recipdp.asm

The recip and recipdp functions return the reciprocal of a floating-point argu-
ment z.

none

If | z | < 2.225e-308 = 2- 1022, then the return value for small arguments is NaN
= Not-a-Number (exponent and mantissa are all ones) > maximum double-
precision floating point value +/- 1.797693e+308 = +/-1* 2+1024,

If | z| > 1.797693e+308 = 21024 then the return value is zero for large argu-
ments.

Single-Precision Reciprocal

#include <fastrts67x.h>
#include <recip.h>

float recipf(float z); or float recipsp(float z);

Note: recipf Function
The recipf function is not defined in the rts6700.lib or rts6700e.lib file.

recipsp.asm

The recipf and recipsp functions return the reciprocal of a floating-point argu-
ment z.

none

If | z| < 1.1755e-38 = 2- 126, then the return value for small arguments is NaN
= Not-a-Number (exponent and mantissa are all ones) > the maximum single-
precision floating point value +/- 3.402823e+38 = +/-1 * 2+128,

If | z| > 3.402823e+38 = 2*128, then the return value is zero for large argu-
ments.

FastRTS Reference 4-15

rsqrt/rsqrtdp

rsqrt/rsqrtdp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

4-16

Double-Precision Reciprocal Square Root

#define _TI_ ENHANCED_ MATH H 1
#include <math.h>

double rsqrt(double z) ;

#define _TI ENHANCED MATH H 1
#include <fastrts67x.h>

double rsqf(double z); or double rsqrt(double z);
double rsqrtf(double z); or double rsqrtdp(double z);

rsqgrtdp.asm

The rsgrt and rsqgrtdp functions return the reciprocal square root of a real float-
ing-point argument z. The absolute value of z is used.

none

If | z | < 2.225e-308 = 2- 1022, then the return value for small arguments is NaN
= Not-a-Number (exponent and mantissa are all ones) > the maximum
double-precision floating point value 1.797693e+308 = 2+1024,

If | z| > 1.797693e+308 = 2+1024_ then the return value is zero for large argu-
ments.

rsqrtf/rsqrtsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

sin/sindp

Single-Precision Reciprocal Square Root

#define _TI ENHANCED MATH H 1
#include <math.h>

float rsqrif(floatz) ;

#define _TI ENHANCED_ MATH H 1
#include <fastrts67x.h>

float rsqrtf(float z); or float rsqrtsp(float z);
rsqrtsp.asm

The rsqrtf and rsqrtsp functions return the reciprocal square root of a real float-
ing-point argument z. The absolute value of z is used.

none

If | z| < 1.1755e-38 = 2" 126, then the return value for small arguments is NaN
= Not-a-Number (exponent and mantissa are all ones) > maximum single-
precision floating point value 3.402823e+38 = 2+128,

If | z| > 3.402823e+38 = 2+128, then the return value is zero for large argu-
ments.

Double-Precision Sine

#include <math.h>

double sin(double z) ;

#include <fastrts67x.h>

double sinf(double z); or double sindp(double z);
sindp.asm

The sin and sindp functions return the sine of a floating-point argument z. The
angle z is expressed in radians. The return value is in the range of [-1.0 and
+1.0]. An argument with a large magnitude may produce a result with little or
no significance.

none
If | z | < 9.54e-7 = 2-20, then the return value is z for small angles.

If | z| > 3.402823e+38 = 2*128, then the return value is zero for large argu-
ments.

FastRTS Reference 4-17

sinf/sinsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

Single-Precision Sine

#include <math.h>

float sinf(float x) ;

#include <fastrts67x.h>

float sinf(float x); or float sinsp(float x);
sinsp.asm

The sinf and sinsp functions return the sine of a floating-point argument z. The
angle z is expressed in radians. The return value is in the range of [-1.0 and
+1.0]. An argument with a large magnitude may produce a result with little or
no significance.

none
If | z | < 2.44e-4 = 2-12, then the return value is z for small angles.

If | z| > 1.048576e+6 = 2+20, then the return value is zero for large angles.

_divf/divsp

4.2 Divide and Square Root Routines

_divd/divdp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

_divf/divsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

The following routines are found in TMS32067xx Divide and Square Root
Floating-point Functions (literature number SPRA516) and are included as
references.

Double-Precision Division

#include <ieeed.h>

double _divd(double x, double y) ;

#include <fastrts67x.h>

double _divd(double x, double y); or double divdp(double x, double y);
divdp.asm

The _divd and divdp functions return the quotient of two real floating-point
arguments x and y. The return value is x / y.

none

If | y | < 2.225e-308 = 271022 then the return value is NaN = Not-a-Number
(exponent and mantissa are all ones) > +/- 1.797693e+308 = +/-1 * 2+1024
(largest double-precision floating-point number) with the sign of x.

Single-Precision Division

#include <ieeef.h>

float _divf(float x, floaty) ;

#include <fastrts67x.h>

float _divf(float x, float y); or float divsp(float x, float y);
divsp.asm

The _divf and divsp functions return the quotient of two real floating-point argu-
ments x and y. The return value is x / y.

none

If | y| < 1.1755e-38 = 2- 126, then the return value is NaN = Not-a-Number (ex-
ponent and mantissa are all ones) > +/- 3.402823e+38 = +/- 1 * 2128 (largest
single-precision floating-point number) with the sign of x.

FastRTS Reference 4-19

sqrt/sqrtdp

sqrt/sqrtdp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

sqrtf/sqrtsp

Syntax--Standard

Syntax--FastRTS

Defined in

Description

Functions

Special Cases

4-20

Double-Precision Square Root

#include <math.h>

double sqrt(double z) ;

#include <fastrts67x.h>

double sqrt(double z); or double sqrtdp(double z);
sgrtdp.asm

The sqgrt and sqrtdp functions return the square root of a real floating-point ar-
gument z. The absolute value of z is used.

none

If | z| < 2.225e-308 = 2- 1022, then the return value for small arguments is zero.

Single-Precision Square Root

#include <math.h>

float sqrtf(floatz) ;

#include <fastrts67x.h>

float sqrtf(float z); or float sqrtsp(float z);
sqgrtsp.asm

The sqrtf and sqrtsp functions return the square root of a real floating-point ar-
gument z. The absolute value of z is used.

none

If | z| < 1.1755e-38 = 2- 126, then the return value for small arguments is zero.

Appendix A

Performance Considerations

This appendix describes the sample performance of the C67x FastRTS. It also
provides information about software updates and customer support issues.

Topic

A.1 Performance Considerations

A.2 FastRTS SoftwareUpdatesccoiiiinnnnnn, A-3

A.3 FastRTS Customer Supportcoiiiiiiiiiiiiininnnnnnns A-3

A-1

Performance Considerations

A.1 Performance Considerations

Table A-1 gives samples of execution clock cycles. Times include the call and
return overhead. The cycle counts were found with the following arguments:
func1(3.15) or func2(3.15, 0.625)

Table A-1. Sample Performance

Function Data rts6701 FastRTS rts/FastRTS ratio
atan 64 FP 1001 382 2.62
atanf 32 FP 282 89 2.83
atan2 64 FP 1119 415 2.70

atan2f 32 FP 551 87 6.33
cos 64 FP 371 154 2.4
cosf 32 FP 200 76 2.63
exp 64 FP 656 217 3.02
expf 32 FP 229 79 2.90

exp10 64 FP 681 230 2.96

exp10f 32 FP 235 80 2.94
exp2 64 FP 681 230 2.96

exp2f 32 FP 235 80 2.94
log 64 FP 937 288 3.25
logf 32 FP 152 73 2.08

log10 64 FP 957 289 3.31

log10f 32 FP 169 74 2.28
log2 64 FP 957 289 3.31
log2f 32 FP 169 74 2.28
pow 64 FP 1256 539 2.33
powf 32 FP 679 224 3.03
recip 64 FP 397 81 4.90

recipf 32 FP 182 32 5.69
rsqrt 64 FP 356 111 3.21
rsqrtf 32 FP 186 42 4.43
sin 64 FP 350 150 2.33
sinf 32 FP 189 73 2.59

A-2

FastRTS Software Updates

A.2 FastRTS Software Updates

C67x FastRTS Software updates may be periodically released incorporating
product enhancements and fixes as they become available. You should read
the spru100.pdf available in the root directory of every release.

A.3 FastRTS Customer Support

If you have questions or want to report problems or suggestions regarding the
C67x FastRTS, contact Texas Instruments at dsph@ti.com.

Performance Considerations A-3

Appendix B

Glossary

address: The location of program code or data stored; an individually acces-
sible memory location.

API: See application programming interface.

application programming reference (API): Used for proprietary applica-
tion programs to interact with communications software or to conform to
protocols from another vendor’s product.

bit: A binary digit, eithera 0 or 1.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also little endian.

clock cycle: A periodic or sequence of events based on the input from the
external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

compiler: A computer program that translates programs in a high-level lan-
guage into their assembly-language equivalents.

digital signal processor (DSP: A semiconductor that turns analog sig-
nals—such as sound or light—into digital signals, which are discrete or
discontinuous electrical impulses, so that they can be manipulated.

B-1

FastRTS: TMS320C67x Fast Run-Time-Support

least significant bit (LSB): The lowest-order bit in a word.

linker: A software tool that combines object files to form an object module,
which can be loaded into memory and executed.

little endian: An addressing protocol in which bytes are numbered from right
to left within a word. More significant bytes in a word have higher-num-
bered addresses. Endian ordering is specific to hardware and is deter-
mined at reset. See also big endian.

Index

m cosdp function
cosf function |4-4

address, defined cosine functions

API, defined double-precision [4-4

single-precision

application programming interface, defined [B-1 |
cossp function

arc, tangent

double-precision [4-2 customer support |A-3

single-precision
arguments E

conventions |3-2

FastRTS data types, FastRTS
atan function digital signal processor (DSP), defined
atan2 function _divd function
atan2dp function divdp function
atan2f function _divf function
atan2sp function division functions
atandp function double-precision
atanf function single-precision
atansp function divsp function

double-precision functions

big endian
defined
library file |2-4

bit, defined |B-1

cartesian arc tangent
double-precision [4-3
single-precision
clock cycle, defined
code, defined
compiler, defined
cos function

Index-1

Index

log2dp |4-11

double-precision routines, table listing

exp function
exp10 function
exp10dp function
exp10f function
exp10sp function
exp2 function
exp2f function
exp2sp function
expdp function
expf function
exponential base 10 functions
double-precision
single-precision
exponential base 2 functions
double-precision
single-precision |4-8
exponential base e functions

double-precision
single-precision
expsp function

FastRTS
archive contents |2-2
argument conventions |3-2
arguments
arguments and data types [2-4
calling a function from assembly
calling a function from C
customer support
data types, table |2-4

Index-2

defined

features and benefit

function, reference |4-1

function names comparison table |3-3

how to install m
how to rebuild FastRTS

introduction

performance

software updates
fastrts67x.h header file |2-5
features and benefits [1-3
function

calling a FastRTS function from assembly

calling a FastRTS function from C
names comparison table |3-3

include directory |[2-5
installing FastRTS |2-3

least significant bit (LSB), defined
linker, defined

little endian
defined
library file

log function |[4-9
log10 function |4-10
log10dp function |4-1
log10f function |4-10
log10sp function [4-1
log2 function |4-11
log2dp function
log2f function |4-12
log2sp function |4-12
logarithm functions
double-precision
single-precision
logarithm base 10 functions

double-precision
single-precision |4-10

logarithm base 2 functions
double-precision [4-11
single-precision |[4-12

o

o

-
o

logdp function [4-9
logf function |[4-9
logsp function |4-9

math.h header file [2-5

notational conventions E/I

performance

pow function

powdp function

power functions
double-precision
single-precision

powf function

powsp function

raise to a power functions
double-precision
single-precision

rebuilding FastRTS

recip.h header file |2-5

recipdp function

reciprocal square root
double-precision
single-precision

recipsp function

related documentation from Texas Instruments @

routines, FastRTS
rsqrt function
rsqrtdp function
rsqrtf function
rsqrtsp function

sin function

sindp function

sine functions
double-precision
single-precision

sinf function

single-precision functions
atan2

atan2s
atanf |

exp2s
expf

expsp |
log10f |

single-precision routines, table listing

sinsp function
software updates
sqrdp function
sqrsp function
sqrt function
sqrtf function
square root functions
double-precision
single-precision

Index

Index-3

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Tables
	Notes, Cautions, and Warnings
	Introduction
	Introduction to the C67x FastRTS Library
	Features and Benefits

	Installing and Using FastRTS
	FastRTS Library Contents
	How to Install the FastRTS Library
	Using the FastRTS Library
	FastRTS Library Arguments and Data Types
	FastRTS Types
	FastRTS Arguments

	Calling a FastRTS Function From C
	Calling a FastRTS Function From Assembly

	How to Rebuild the FastRTS Library

	FastRTS Library Functions Tables
	Arguments and Conventions Used
	FastRTS Functions

	FastRTS Reference
	General FastRTS Functions
	atan/atandp
	atanf/atansp
	atan2/atan2dp
	atan2f/atan2sp
	cos/cosdp
	cosf/cossp
	exp/expdp
	expf/expsp
	exp10/exp10dp
	exp10f/exp10sp
	exp2/exp2dp
	exp2f/exp2sp
	log/logdp
	logf/logsp
	log10/log10dp
	log10f/log10sp
	log2/log2dp
	logsf/log2sp
	pow/powdp
	powf/powsp
	recip/recipdp
	recipf/recipsp
	rsqrt/rsqrtdp
	rsqrtf/rsqrtsp
	sin/sindp
	sinf/sinsp

	Divide and Square Root Routines
	_divd/divdp
	_divf/divsp
	sqrt/sqrtdp
	sqrtf/sqrtsp

	Performance Considerations
	Performance Considerations
	FastRTS Software Updates
	FastRTS Customer Support

	Glossary
	Index

