
The BeagleBone Application in Engineering Education

Dr Derek Molloy, School of Electronic Engineering, Dublin City University, Ireland

EDERC 2014

Overview The BeagleBone: Application in Engineering Education

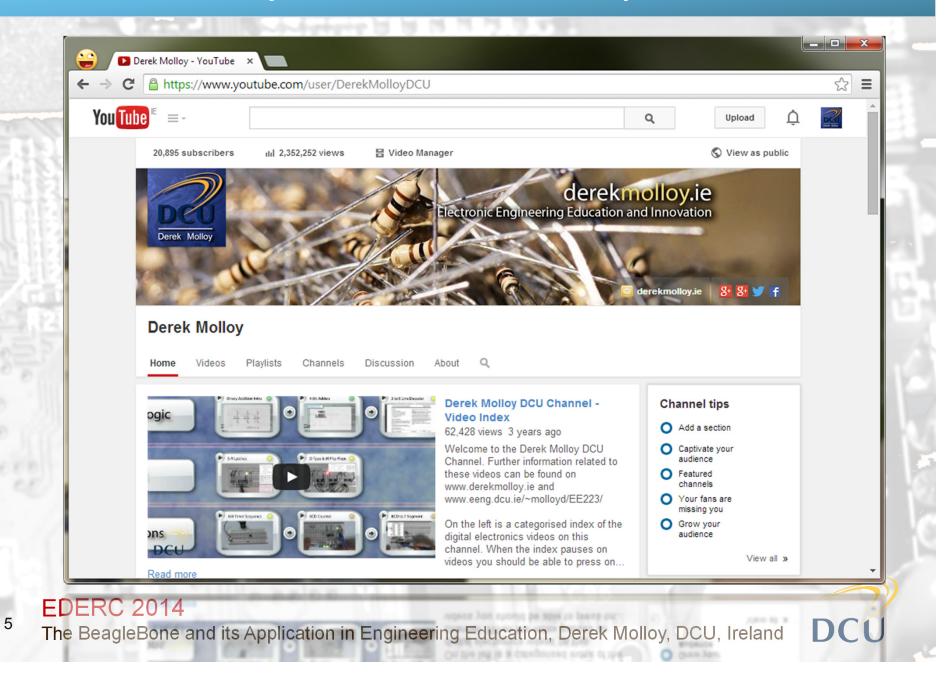
Introduction Who am I?

- Dublin City University
 - 12,000 registered students
- Faculty of Engineering & Computing
- Research
 - Computer Vision, 3D Graphics
- Teaching
 - Electronics, 3D Graphics,
 - OOP & Embedded
- User of the Beaglebone!

EDERC 2014

Teaching Innovations EE223 – Digital & Analogue Electronics (5 ECTS)

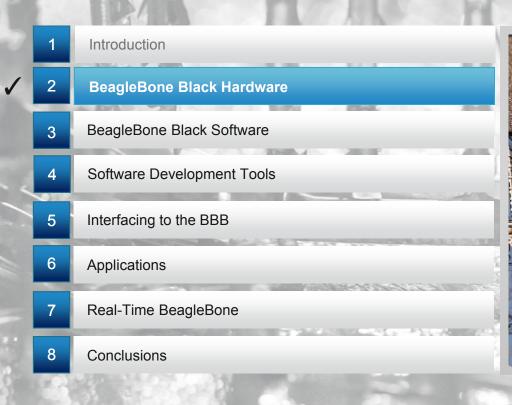
- 140 students p.a.
- Flipped labs
 - Borrow kit of components for a semester
 - Replace components free of charge (assume consumption)
 - Built in to summative assignments
- Encourage learning-by-discovery
- Supported by a YouTube channel
- Also deployed to fully on-line modality (DCU Connected)

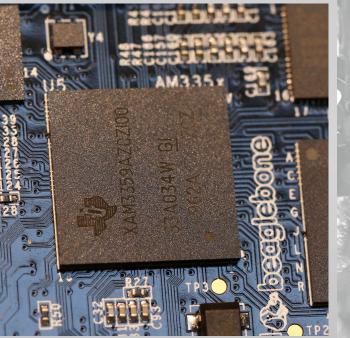

EDERC 2014

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

DCU

www.youtube.com/DerekMolloyDCU

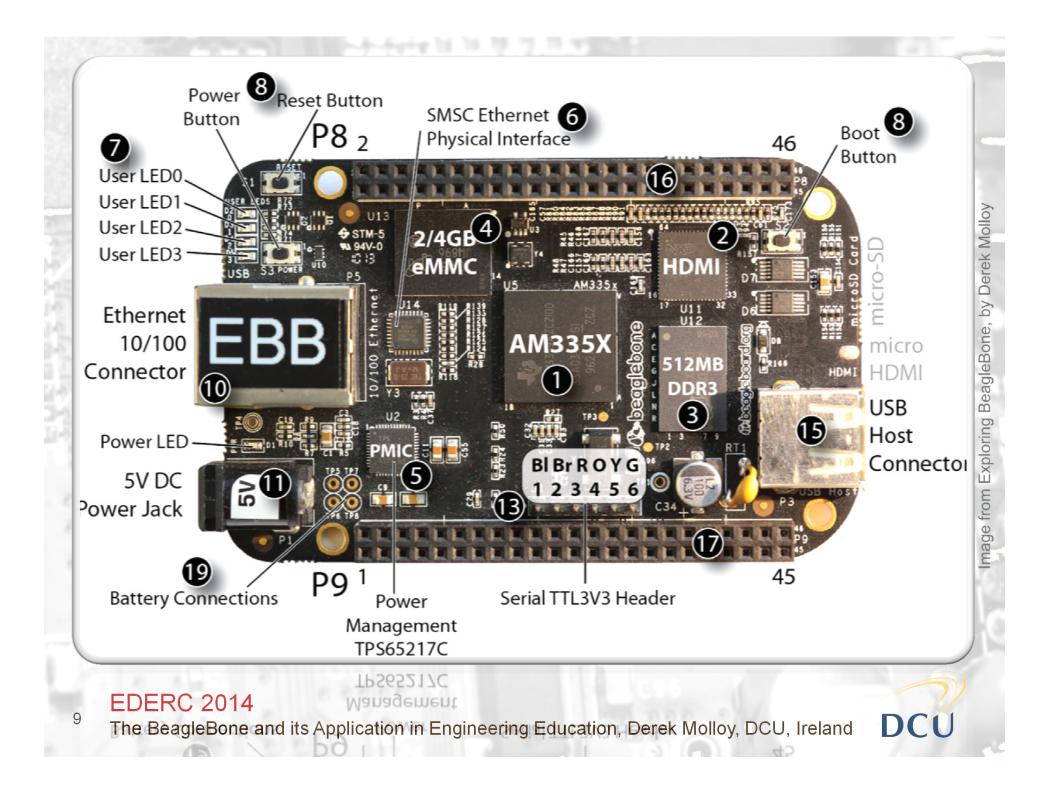

Teaching Innovations EE402 – OOP with Embedded Systems (7.5 ECTS)

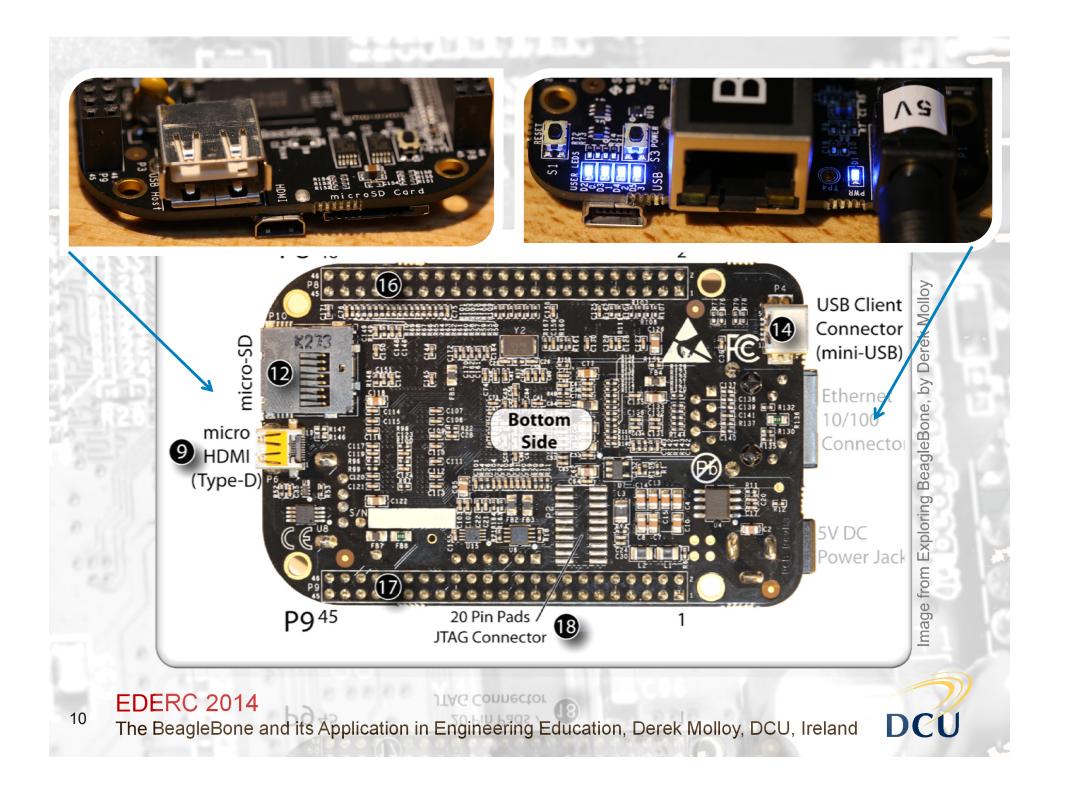

- 90-100 Students p.a.
- Object-oriented Programming
- C++, Qt, Java, embedded Linux
- Assignments, computer-based exam
 - Beaglebone-based wrap low-level hardware
 - TCP Client/Server assignment (IoT-like)
 - Supported by videos (screencast & YouTube)

EDERC 2014

Overview The BeagleBone: Application in Engineering Education

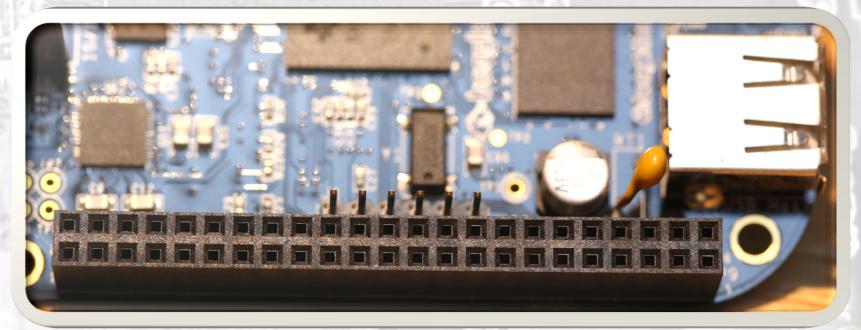
BeagleBone Black Hardware Summary specification


- AM335x 1GHz ARM A8 (2,000 MIPS)
- 512 MB DDR3 RAM
- 4 GB eMMC (rev.C) (plus SD card)
- HDMI Video output (3D graphics engine)
- 10/100 Ethernet (Wi-Fi, Bluetooth via USB)
- Huge range of interfaces (GPIOs, buses, USB)
- Low power (1W to 2.3W)


EDERC 2014

P8 and P9 Headers

Buses

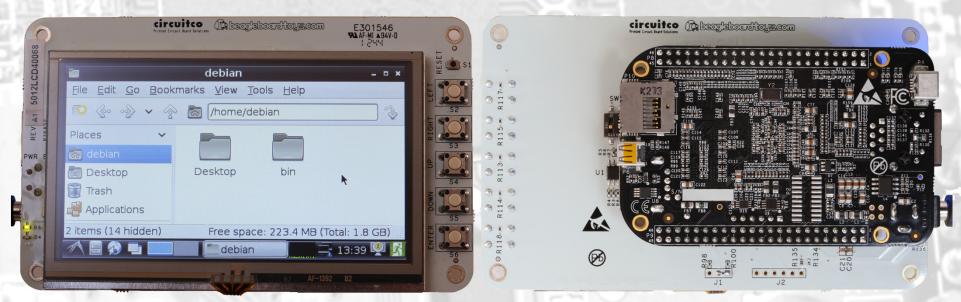

GPIOs (x65) PWM (x8) Analogue Inputs (x7) Timers (x4) Supplies (5V, 3.3V, 1.8V)

 I²C (x2)
 MMC (x2)

 UART (x4)
 LCD

 CAN Bus (x2)
 McASP (x2)

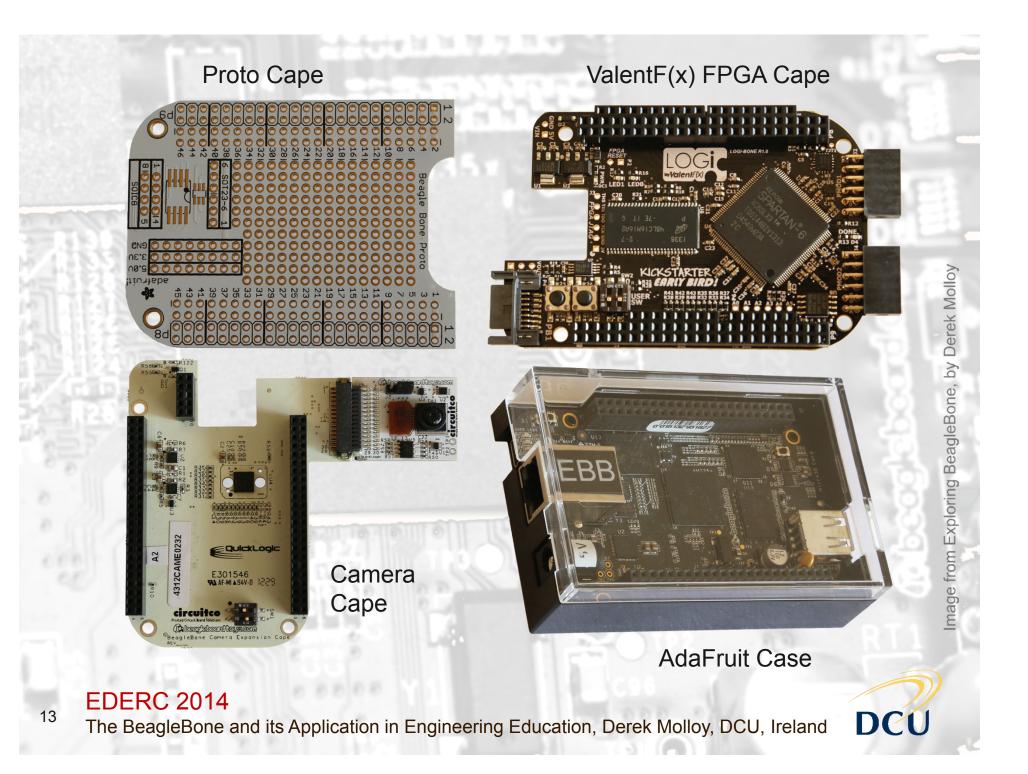
 SPI (x2)
 GPMC


EDERC 2014

11

EDERC 2014 BeagleBone Black Hardware Capes • Daughter boards

- Attach to P8/P9 headers (stackable)



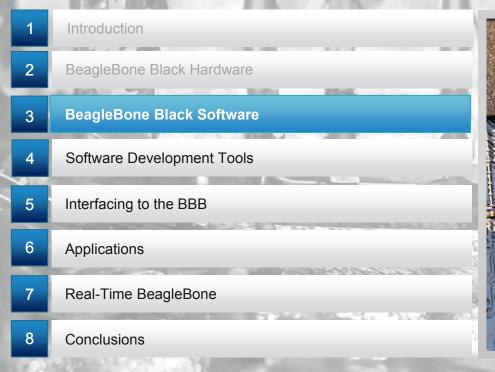
CircuitCo LCD4 Cape

EDERC 2014

12

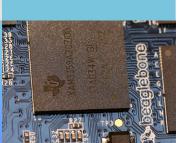
Peripherals

Hardware Comparison BeagleBone Black versus Raspberry PI B+, Intel Galileo


igleBone Black	Raspberry PI B+	Intel Galileo
ARM A8 1 GHz 🖌	2 ARM A11 700 MHz	3 32-bit 400 MHz Quark
512MB RAM	512MB RAM	256MB RAM
\$45-55	\$40 🗸	\$80
HDMI Video (not full HD)	HDMI Video Full HD 🗸	No video
Ethernet 100	Ethernet 100	Ethernet 100
Key Features:	Key Features:	Key Features:
 eMMC 2GB/4GB Micro SD 2 x Programmable real- time units 7 x ADC inputs 86 x GPIOs, many buses 3D Graphics Accelerator 	 4 x USB slots H264 h/w decoder Micro SD Audio jack output 40 GPIOs Camera and DSI display connector 3D Graphics Accelerator 	 Arduino Compatible 6 x ADC inputs Mini-PCI Express Slot RS-232 Serial Port 14 x GPIOs 8MB NOR Flash 12-bit PWM available

EDERC 2014

15



Overview The BeagleBone: Application in Engineering Education

EDERC 2014

- No such thing!
 - mainline "Linux on an embedded system"
- Embedded Linux:
 - Linux is efficient and scalable
 - Huge number of open-source programs and tools
 - Excellent support for peripherals and devices
 - Downside for real-time non-preemptive by default
- Are non-Linux solutions:
 - TI StarterWare for ARM-based Sitara Processors
 - QNX Neutrino RTOS on OMAP and Sitara

EDERC 2014

BeagleBone Black (BBB) Linux on the BBB

Linux Distributions for BBB:

- Debian specifically packaged.
- Ångström

•

- Ubuntu, Arch etc.
- Boot from eMMC
- Boot from SD using boot image
- Flash eMMC
 - Use flasher image from SD card
- See <u>www.beagleboard.org</u>

EDERC 2014

18

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

Power is applied or the CPU invokes the reset vector to start the program counter at a defined location in the boot ROM.

Texas Instruments Boot ROM (inside AM335x) Internal/First Stage Bootloader

(enough knowledge to access the SD card/eMMC/UART to find the MLO) Fixed at manufacture by Texas Instruments. Performs minimal peripheral configuration, finds boot image, loads x-loader. Derek Molloy

by

one,

m

Be

Exploring

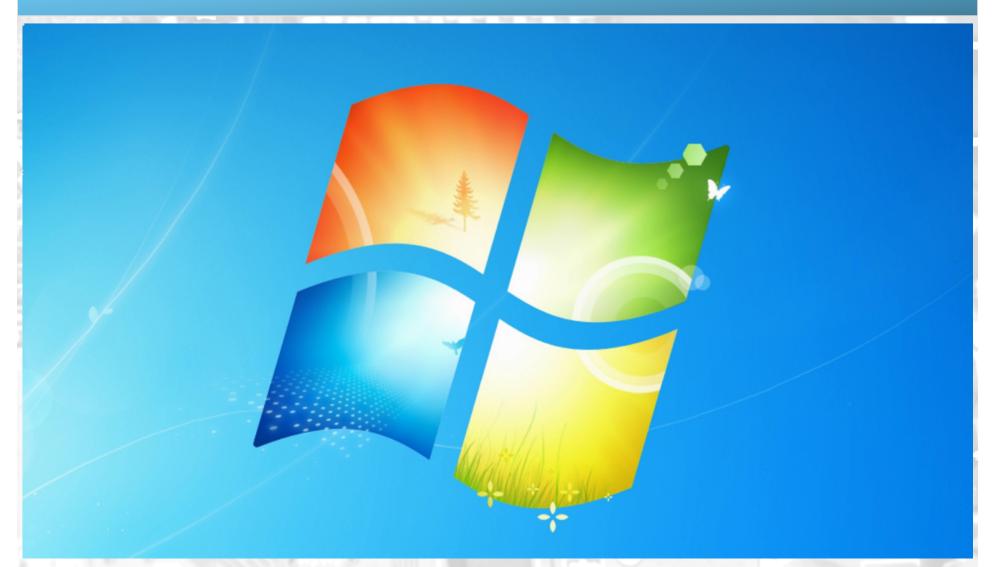
mage from

DCU

The X-Loader (MLO on the FAT partition)

Second Stage Bootloader Provided by Texas Instruments. Sets up the pin muxing, initializes clocks & memory, and loads U-Boot.

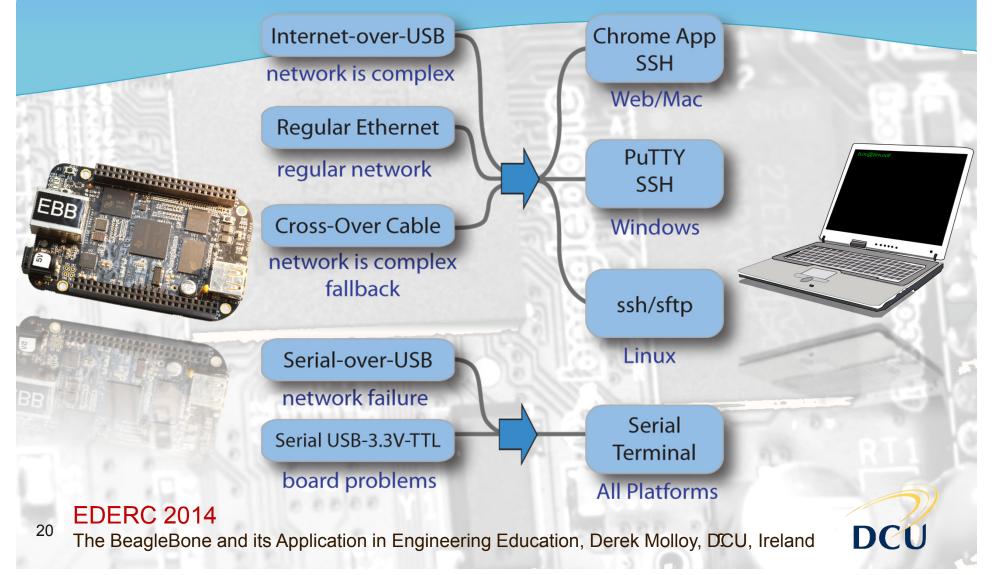
U-Boot (u-boot.img on the FAT partition) Third Stage Bootloader


Specifies the root file system. Uses uEnv.txt configuration. Performs additional initialization. Loads and passes control to the Linux kernel.

Linux Kernel (Ext4 partition on SD card/eMMC)

Decompresses the kernel into memory, sets up peripherals USB, I²C, HDMI etc. Mounts the file system that contains all of the Linux applications.

Calls the first user-space process - init. Moves from kernel context to user context.


Connecting to the BeagleBone (Windows):

19

Connecting to the BBB Physical Connections

BeagleBone Black A First Circuit Example

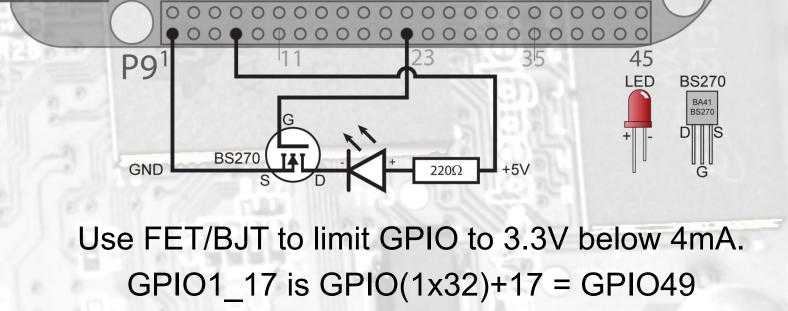
PMI

GND

-

2

S


Power LED

5V Power

EDERC 2014

21

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

GPIO

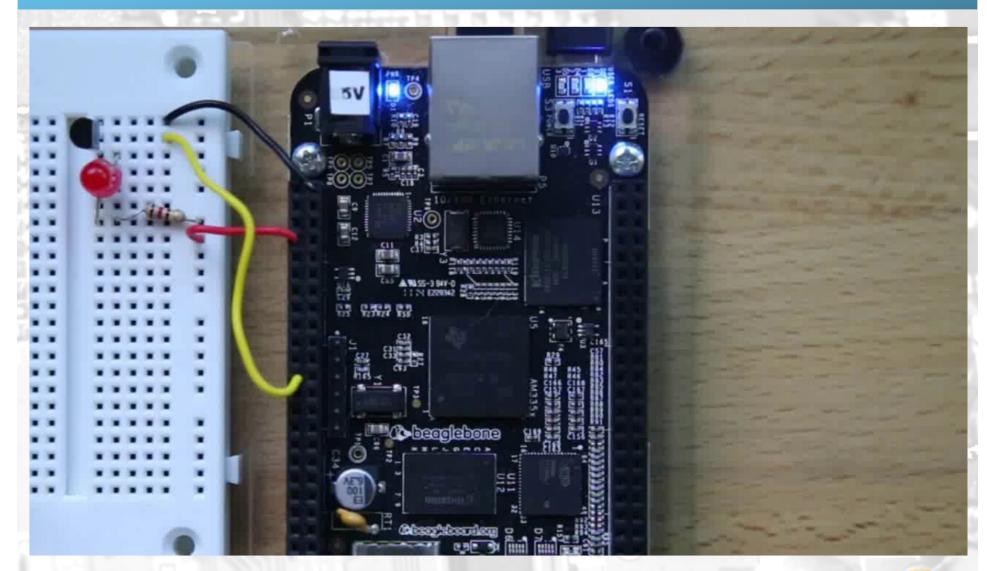
000 300

6.3

BeagleBone Black

USB

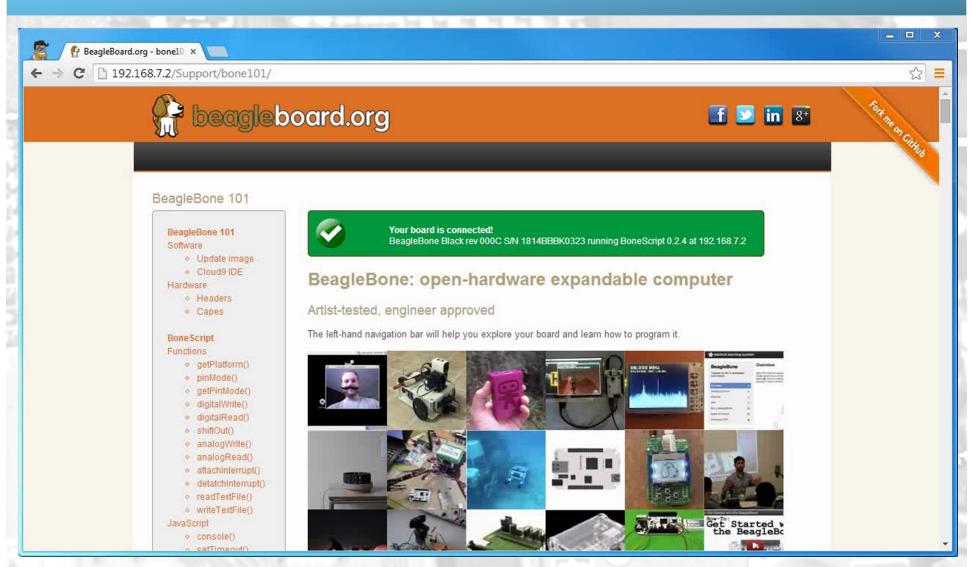
Host


46

age from Exploring BeagleBone, by Derek Molloy

EDERC 2014

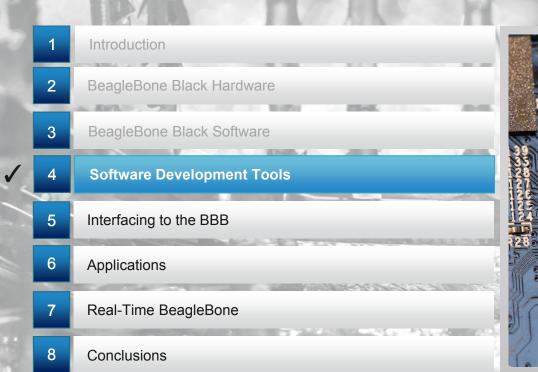
Connecting to the BeagleBone (Windows):



EDERC 2014

22

Cloud9 IDE, nodejs and BoneScript Example:



EDERC 2014

23

Overview The BeagleBone: Application in Engineering Education

EDERC 2014

Software Development Tools Building C/C++ on the BBB

🗗 molloyd@beaglebone: ~

molloyd@beaglebone:~\$ ls *.cpp

```
testEDERC.cpp
molloyd@beaglebone:~$ more testEDERC.cpp
#include <iostream>
using namespace std;
```

```
int main(){
    cout << "Hello EDERC 2014!" << endl;
    return 0;</pre>
```

```
molloyd@beaglebone:~$ g++ testEDERC.cpp -o testEDERC
molloyd@beaglebone:~$ ./testEDERC
Hello EDERC 2014!
molloyd@beaglebone:~$
```

²⁵ EDERC 2014 The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

Software Development Tools Cross-Platform Toolchain

- Difficult building large-scale projects on BBB
- Cross-development brings:
 - Typically faster build times
 - Single development point multiple BBB boards
 - Rich UI development environments
- Need a Toolchain
 - Tools (e.g., gcc, gdb) and libraries (e.g., glibc)

EDERC 2014

26

Cross-compile test running on desktop (64-bit x86) Linux:

```
molloyd@debian:~$ sudo apt-get install g++-4.7-arm-linux-gnueabihf
...
```

```
molloyd@debian:~$ nano testToolchain.cpp
molloyd@debian:~$ more testToolchain.cpp
```

```
#include<iostream>
```

```
using namespace std;
```

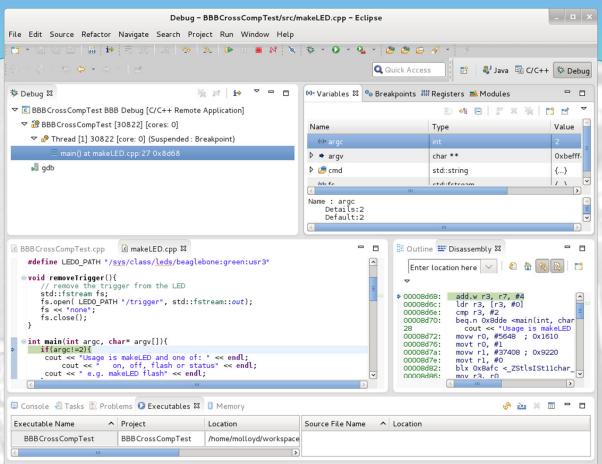
```
int main(){
    cout << "Testing Toolchain" << endl;
    return 0;</pre>
```

molloyd@debian:~\$ arm-linux-gnueabihf-g++ testToolchain.cpp -o testARM

- Transfer to BeagleBone (sftp, scp, rsync...) and execute on ARMHF
- Can install a chroot and QEMU to simulate ARM on the desktop Linux image
- Better to link to Integrated Development Environment (IDE) e.g., Eclipse, Qt Creator

EDERC 2014

27

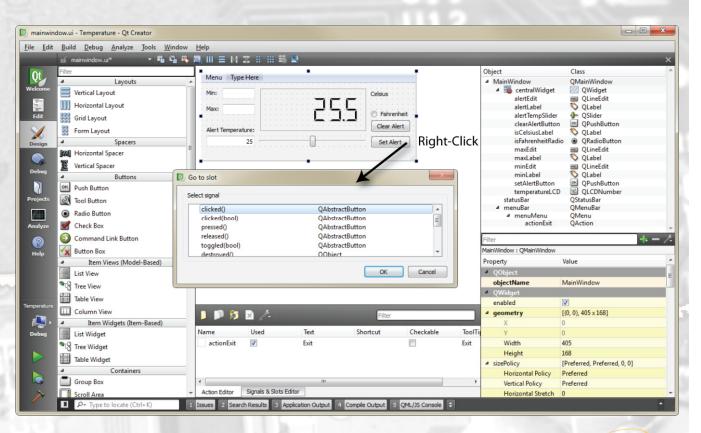

Software Development Tools Eclipse CDT

Supports:

۲

28

- Cross Platform
 Toolchains
- Multiple Languages
- Remote System
 Explorer (RSE)
- Remote Debug Git/GitHub Integration
- Doxygen Integration


EDERC 2014

Software Development Tools Qt Creator

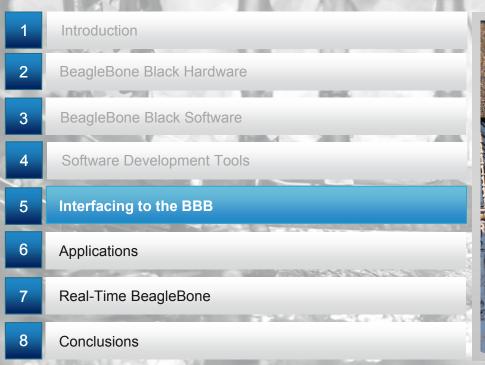
Supports:

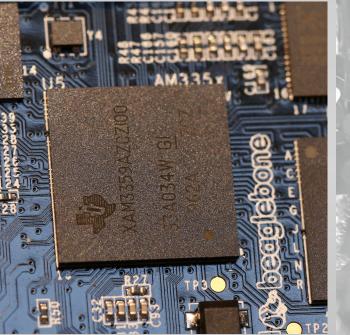
- Cross Platform Toolchains
- Qt GUI Tools
- Remote System Support
- Remote Deploy & Debug Support
- Sockets, Threads, Networking etc.

EDERC 2014

29

Example Qt Integration Project (display, sensors, UI ...)

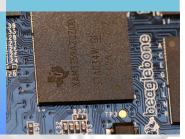

5012LCD40068	circuites Charpterente	
ZECD	Derek Molloy DCU QT Application	
	Pitch Level: Accelerome	eter Data:
A REAL PROVIDE A REAL PROVIDA REAL PROVIDE A REAL PROVIDE A REAL PROVIDE A REAL P	Roll Level:	Roll In Rotation Level:


EDERC 2014

30

Overview The BeagleBone: Application in Engineering Education

Interfacing to the BBB Common Interface Types


- GPIO Digital Output/Input
- Analog Input
- PWM Output
- Bus interfaces (e.g., I²C, SPI, UART)
- USB Devices
- The AM3358/9 has BGA with 324 pins
 - Only 2 x 46 pin headers on the BBB!
 - Need pin mux

EDERC 2014

32

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

EDERC 2014

Default P8 and P9 Pin assignments

									States in the	
Name	P9	\cup		Name	Name		\cup	P8	Name	HH
GND	P9_01	00	P9_02	GND	GND	P8_01	00	P8_02	GND	N.N.N.N
DC_3.3V	P9_03	00	P9_04	DC_3.3V	GPIO1_6	P8_03	00	P8_04	GPIO1_7	and a
VDD_5V	P9_05	00	P9_06	VDD_5V	GPIO1_2	P8_05	00	P8_06	GPIO1_3	
SYS_5V	P9_07	00	P9_08	SYS_5V	TIMER4	P8_07	00	P8_08	TIMER7	
PWR_BUT	P9_09	00	P9_10	SYS_RESETn	TIMER5	P8_09	00	P8_10	TIMER6	>
UART4_RXD	P9_11	00	P9_12	GPIO1_28	GPIO1_13	P8_11	00	P8_12	GPIO1_12	ollo
UART4_TXD	P9_13	00	P9_14	EHRPWM1A	EHRPWM2B	P8_13	00	P8_14	GPIO0_26	Derek Mollov
GPIO1_16	P9_15	00	P9_16	EHRPWM1B	GPIO1_15	P8_15	00	P8_16	GPIO1_14	A A
I2C1_SCL	P9_17	00	P9_18	I2C1_SDA	GPIO0_27	P8_17	00	P8_18	GPIO2_1	
I2C2_SCL	P9_19	00	P9_20	I2C2_SDA	EHRPWM2A	P8_19	00	P8_20	GPIO1_31	74
UART2_TXD	P9_21	00	P9_22	UART2_RXD	335GPIO1_30	P8_21	00	P8_22	GPIO1_5	
GPI01_17	P9_23	00	P9_24	UART1_TXD	GPIO1_4	P8_23	00	P8_24	GPIO1_1	
GPIO3_21	P9_25	00	P9_26	UART1_RXD	GPIO1_0	P8_25	00	P8_26	GPIO1_29	Exploring ReadleBone
GPIO3_19	P9_27	00	P9_28	SPI1_CS0	GPIO2_22	P8_27	00	P8_28	GPIO2_24	
SPI1_D0	P9_29	00	P9_30	SPI1_D1	GPIO2_23	P8_29	00	P8_30	GPIO2_25	ď
SPI1_SCLK	P9_31	00	P9_32	VADC	UART5_CTSN	P8_31	00	P8_32	UART5_RTSN	i.
AIN4	P9_33	00	P9_34	AGND	UART4_RTSN	P8_33	00	P8_34	UART3_RTSN	
AIN6	P9_35	00	P9_36	AIN5 DIZIVI	^B UART4_CTSN	P8_35	00	P8_36	UART3_CTSN) L
AIN2	P9_37	00	P9_38	AIN3 DDR	UART5_TXD	P8_37	00	P8_38	UART5_RXD	from
AINO	P9_39	00	P9_40	AIN1	GPIO2_12	P8_39	00	P8_40	GPIO2_13	fro
GPIO3_20	P9_41	00	P9_42	GPIO0_7	GPIO2_10	P8_41	00	P8_42	GPIO2_11	anada
GND	P9_43	00	P9_44	GND	GPIO2_8	P8_43	00	P8_44	GPIO2_9	8
GND	P9_45	00	P9_46	GND	GPIO2_6	P8_45	00	P8_46	GPIO2_7	

EDERC 2014

33

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

DCU

P8 Header Pin Allocations:

Pin	\$PINS	ADDR	GPIO	Name	Mode7	Mode6	Mode5	Mode4	Mode3	Mode2	Mode1	Mode0	CPU	Notes
P8_01		Offset from:		DGND										Ground
P8_02		44e10800		DGND										Ground
P8_03	6	0x818/018	38	GPIO1_6	gpio1[6]						mmc1_dat6	gpmc_ad6	R9	Allocated emmo
P8_04	7	0x81c/01c	39	GPI01_7	gpio1[7]						mmc1_dat7	gpmc_ad7	Т9	Allocated emm
P8_05	2	0x808/008	34	GPI01_2	gpio1[2]						mmc1_dat2	gpmc_ad2	R8	Allocated emm
P8_06	3	0x80c/00c	35	GPIO1_3	gpio1[3]						mmc1_dat3	gpmc_ad3	Т8	Allocated emme
P8_07	36	0x890/090	66	TIMER4	gpio2[2]					timer4		gpmc_advn_ale	R7	
P8_08	37	0x894/094	67	TIMER7	gpio2[3]					timer7		gpmc_oen_ren	T7	
P8_09	39	0x89c/09c	69	TIMER5	gpio2[5]					timer5		gpmc_be0n_cle	T6	
P8_10	38	0x898/098	68	TIMER6	gpio2[4]					timer6		gpmc_wen	U6	
P8_11	13	0x834/034	45	GPI01_13	gpio1[13]	pr1_pru0_pru_r30_15		eQEP2B_in	mmc2_dat1	mmc1_dat5	lcd_data18	gpmc_ad13	R12	
P8_12	12	0x830/030	44	GPI01_12	gpio1[12]	pr1_pru0_pru_r30_14		EQEP2A_IN	MMC2_DAT0	MMC1_DAT4	LCD_DATA19	GPMC_AD12	T12	
P8_13	9	0x824/024	23	EHRPWM2B	gpio0[23]			ehrpwm2B	mmc2_dat5	mmc1_dat1	lcd_data22	gpmc_ad9	T10	
P8_14	10	0x828/028	26	GPI00_26	gpio0[26]			ehrpwm2_tripzone_in	mmc2_dat6	mmc1_dat2	lcd_data21	gpmc_ad10	T11	
P8_15	15	0x83c/03c	47	GPI01_15	gpio1[15]	pr1_pru0_pru_r31_15		eQEP2_strobe	mmc2_dat3	mmc1_dat7	lcd_data16	gpmc_ad15	U13	
P8_16	14	0x838/038	46	GPI01_14	gpio1[14]	pr1_pru0_pru_r31_14		eQEP2_index	mmc2_dat2	mmc1_dat6	lcd_data17	gpmc_ad14	V13	
P8_17	11	0x82c/02c	27	GPI00_27	gpio0[27]			ehrpwm0_synco	mmc2_dat7	mmc1_dat3	lcd_data20	gpmc_ad11	U12	
P8_18	35	0x88c/08c	65	GPIO2_1	gpio2[1]	mcasp0_fsr			mmc2_clk	gpmc_wait1	lcd_memory_clk	gpmc_clk_mux0	V12	
P8_19	8	0x820/020	22	EHRPWM2A	gpio0[22]			ehrpwm2A	mmc2_dat4	mmc1_dat0	lcd_data23	gpmc_ad8	U10	
P8_20	33	0x884/084	63	GPI01_31	gpio1[31]	pr1_pru1_pru_r31_13	pr1_pru1_pru_r30_13			mmc1_cmd	gpmc_be1n	gpmc_csn2	V9	Allocated emm
P8_21	32	0x880/080	62	GPI01_30	gpio1[30]	pr1_pru1_pru_r31_12	pr1_pru1_pru_r30_12			mmc1_clk	gpmc_clk	gpmc_csn1	U9	Allocated emm
P8_22	5	0x814/014	37	GPIO1_5	gpio1[5]						mmc1_dat5	gpmc_ad5	V8	Allocated emm
P8_23	4	0x810/010	36	GPIO1_4	gpio1[4]						mmc1_dat4	gpmc_ad4	U8	Allocated emm
P8_24	1	0x804/004	33	GPIO1_1	gpio1[1]						mmc1_dat1	gpmc_ad1	V7	Allocated emm
P8_25	0	0x800/000	32	GPIO1_0	gpio1[0]						mmc1_dat0	gpmc_ad0	U7	Allocated emm
P8_26	31	0x87c/07c	61	GPIO1_29	gpio1[29]							gpmc_csn0	V6	
P8_27	56	0x8e0/0e0	86	GPI02_22	gpio2[22]	pr1_pru1_pru_r31_8	pr1_pru1_pru_r30_8				gpmc_a8	lcd_vsync	U5	Allocated HD
P8_28	58	0x8e8/0e8	88	GPI02_24	gpio2[24]	pr1_pru1_pru_r31_10	pr1_pru1_pru_r30_10				gpmc_a10	lcd_pclk	V5	Allocated HDM
P8_29	57	0x8e4/0e4	87	GPI02_23	gpio2[23]	pr1_pru1_pru_r31_9	pr1_pru1_pru_r30_9				gpmc_a9	lcd_hsync	R5	Allocated HD
P8_30	59	0x8ec/0ec	89	GPI02_25	gpio2[25]						gpmc_a11	lod_ac_bias_en	R6	Allocated HDM
P8_31	54	0x8d8/0d8	10	UART5_CTSN	gpio0[10]	uart5 ctsn		uart5_rxd	mcasp0 axr1	eQEP1_index	gpmc_a18	lcd data14	V4	Allocated HDI
P8_32	55	0x8dc/0dc	11	UART5_RTSN	gpio0[11]	uart5_rtsn		mcasp0_axr3	mcasp0_ahdkx	eQEP1_strobe	gpmc_a19	lcd_data15	T5	Allocated HDI
P8_33	53	0x8d4/0d4	9	UART4_RTSN	gpio0[9]	uart4_rtsn		mcasp0_axr3	mcasp0_fsr	eQEP1B_in	gpmc_a17	lcd_data13	V3	Allocated HDN
P8_34	51	0x8cc/0cc	81	UART3_RTSN	gpio2[17]	uart3_rtsn		mcasp0_axr2	mcasp0_ahclkr	ehrpwm1B	gpmc_a15	lcd_data11	U4	Allocated HDN
P8_35	52	0x8d0/0d0	8	UART4_CTSN	gpio0[8]	uart4_ctsn		mcasp0_axr2	mcasp0_aclkr	eQEP1A_in	gpmc_a16	lcd_data12	V2	Allocated HDI
P8_36	50	0x8c8/0c8	80	UART3_CTSN	gpio2[16]	uart3_ctsn			mcasp0_axr0	ehrpwm1A	gpmc_a14	lcd_data10	U3	Allocated HDN
P8_37	48	0x8c0/0c0	78	UART5_TXD	gpio2[14]	uart2_ctsn		uart5_txd	mcasp0_aclkx	ehrpwm1_tripzone_in	gpmc_a12	lcd_data8	U1	Allocated HDM
P8 38	49	0x8c4/0c4	79	UART5_RXD	gpio2[15]	uart2_rtsn		uart5_rxd	mcasp0_fsx	ehrpwm0_synco	gpmc_a13	lod data9	U2	Allocated HDI
P8_39	46	0x8b8/0b8	76	GPI02_12	gpio2[12]	pr1_pru1_pru_r31_6	pr1_pru1_pru_r30_6		eQEP2_index		gpmc_a6	lod data6	T3	Allocated HDI
P8 40	47	0x8bc/0bc	77	GPI02_13	gpio2[12]	pr1_pru1_pru_r31_7	pr1_pru1_pru_r30_7	pr1_edio_data_out7	eQEP2_strobe		gpmc_a7	lod data7	T4	Allocated HDI
P8_41	44	0x8b0/0b0	74	GPI02_10	gpio2[10]	pr1_pru1_pru_r31_4	pr1_pru1_pru_r30_4	p	eQEP2A_in		gpmc_a4	lcd_data4	T1	Allocated HDM
P8_42	45	0x8b4/0b4	75	GPI02_10 GPI02_11	gpio2[10] gpio2[11]	pr1_pru1_pru_r31_5	pr1_pru1_pru_r30_5		eQEP28_in		gpmc_a4	lcd_data5	T2	Allocated HDM
P8_43	42	0x8a8/0a8	72	GPI02_11 GPI02_8	gpio2[11] gpio2[8]	pr1_pru1_pru_r31_2	pr1_pru1_pru_r30_2		ehrpwm2 tripzone in		gpmc_a3	lcd_data3	R3	Allocated HD/
P8_44	42	0x8ac/0ac	72	GPI02_8 GPI02_9	gpio2[9]				ehrpwm0_synco			lcd_data2	R4	Allocated HDM
P8_45	40	0x8a0/0a0	70	GPI02_9 GPI02_6	gpio2[9] gpio2[6]	pr1_pru1_pru_r31_3	pr1_pru1_pru_r30_3				gpmc_a3	lcd_data0	R1	Allocated HDM
P8_45 P8_46	40	0x8a0/0a0	70	GPI02_6 GPI02_7		pr1_pru1_pru_r31_0	pr1_pru1_pru_r30_0		ehrpwm2A		gpmc_a0	-	R2	
		00034/034	/1	GMUZ /	gpio2[7]	pr1_pru1_pru_r31_1	pr1_pru1_pru_r30_1		ehrpwm2B		gpmc_a1	lcd data1	rc2	Allocated HDN

EDERC 2014

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

34

Interfacing to the BBB Device Tree Overlays

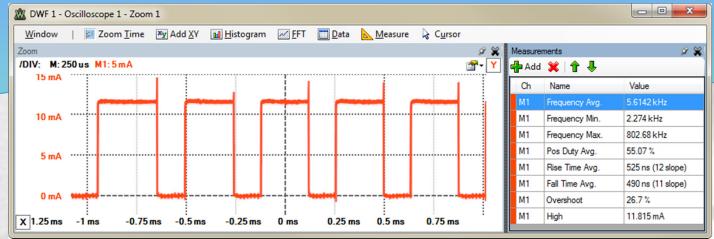
- 0x27 (0100111) Fast, Input, Pull-Down, Enabled and Mux Mode 7
- 0x37 (0110111) Fast, Input, Pull-Up, Enabled, Mux Mode 7
- 0x07 (0000111) Fast, Output, Pull-down, Enabled, Mux Mode 7
- 0x17 (0010111) Fast, Output, Pull-up, Enabled, Mux Mode 7

EDERC 2014

35

Interfacing to the BBB Cape Manager

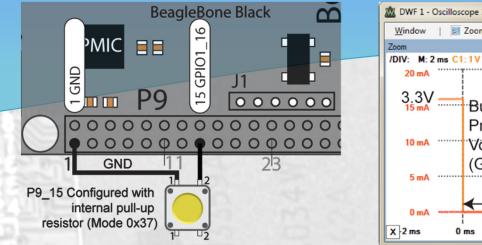
molloyd@beaglebone:/lib/firmware\$ sudo su
root@beaglebone:/lib/firmware# echo EBB-GPIO-Example > \$SLOTS
root@beaglebone:/lib/firmware# cat \$SLOTS

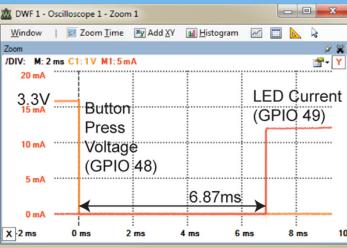

- 0: 54:PF---
- 1: 55:PF---
- 2: 56:PF---
- 3: 57:PF---
- 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
- 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
- 6: ff:P-O-L Override Board Name,00A0,Override Manuf, EBB-GPIO-Example
- Allows pins to be allocated for capes
- Virtual capes
 - Build overlays using the device tree compiler
 - Can add and remove dynamically or on boot

EDERC 2014

36

Interfacing to the BBB Digital Output

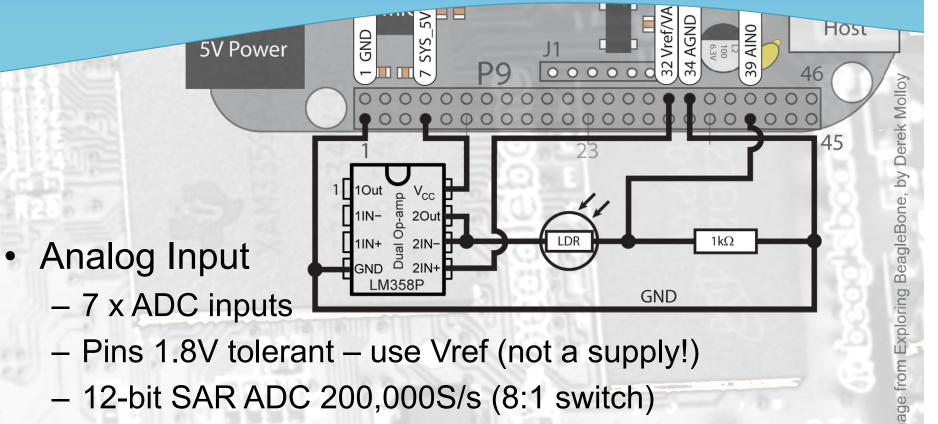

- C/C++ Linux userspace code available
 - Perfect for low-frequency switching
 - Limited switching frequency, suffers from jitter
 - Can directly memory switch (dangerous?)
 - Can use the PRU-ICSS


EDERC 2014

37

Interfacing to the BBB Digital Input

- C/C++ Linux userspace code available
 - Must configure internal resistor characteristics
 - Response latency as low as 324µS in Linux
 - GPIO-Keys allows for generalized interface
 - Can directly memory switch (dangerous?)
 - Can use the PRU-ICSS

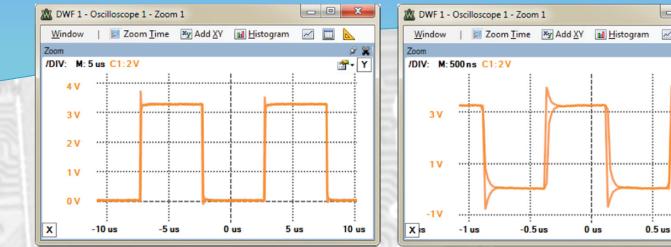

EDERC 2014

38

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

DCU

Interfacing to the BBB **Analogue Input**


- 12-bit SAR ADC 200,000S/s (8:1 switch)
- Load device tree overlay, C/C++ code available

EDERC 2014

39

Interfacing to the BBB PWM Output 50% @ 100 kHz

Pulse Width Modulation (PWM) Outputs
 – 14 x PWM (configurable from Linux userspace)

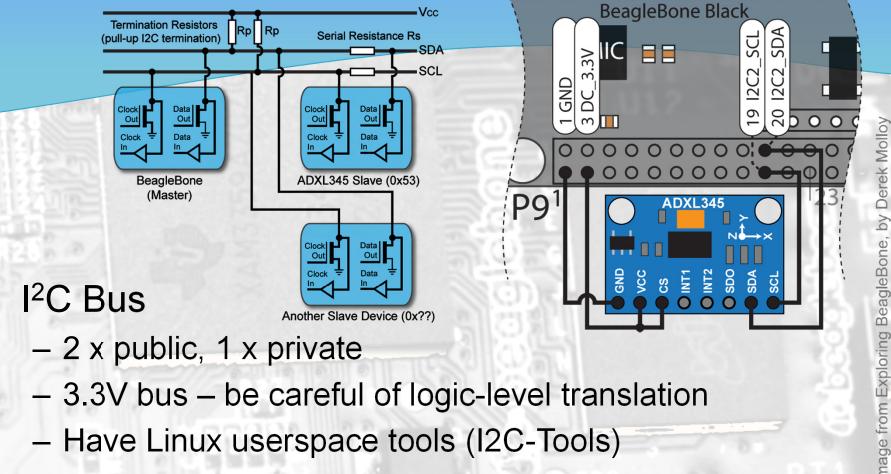
/sys/devices/ocp.3/pwm_test_P9_22.15\$ sudo su
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 5000 > duty
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 10000 > period
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 1 > run

EDERC 2014

40

The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland

50% @ 1 MHz

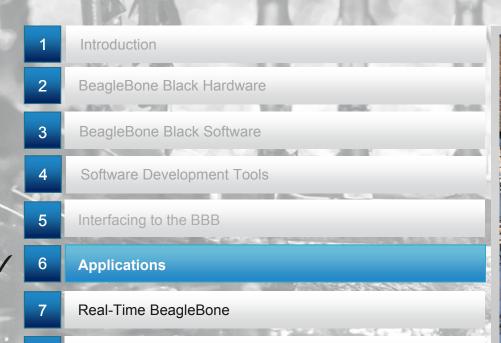

👚 - Y

1 us

DCU

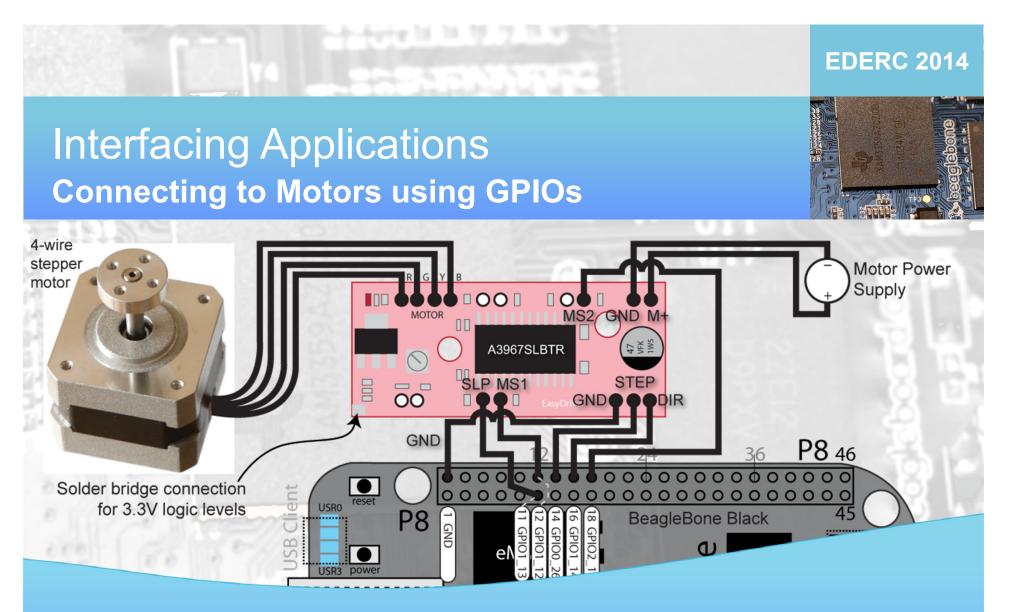
M 🔲 🔈

Interfacing to the BBB **I²C** Interface

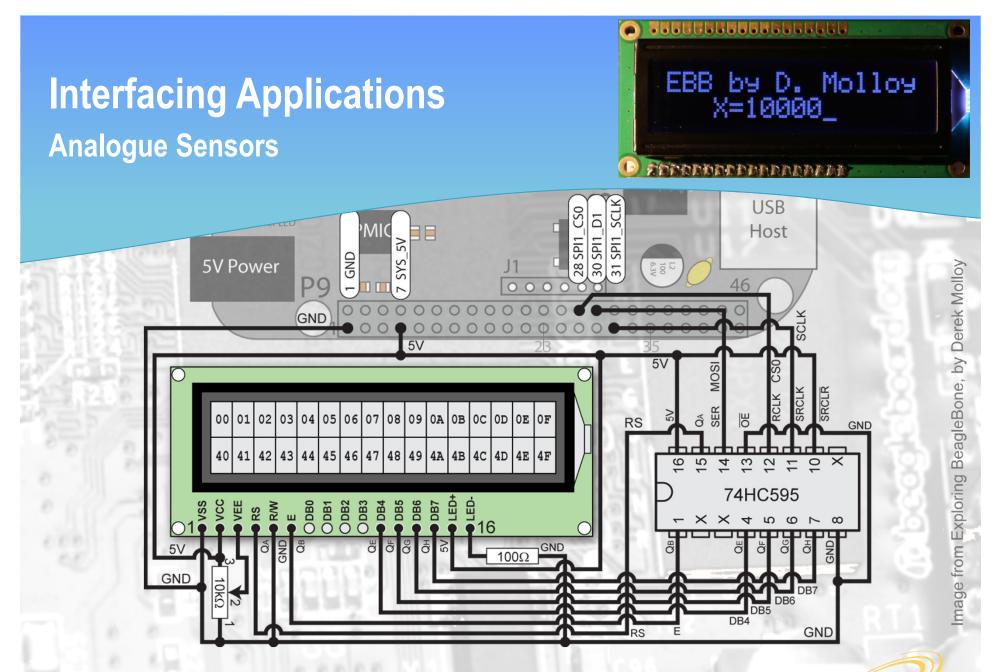


- 2 x public, 1 x private
- 3.3V bus be careful of logic-level translation
- Have Linux userspace tools (I2C-Tools)
- Can use Linux ioctl calls to control the bus in C/C++

EDERC 2014


41

Overview The BeagleBone: Application in Engineering Education



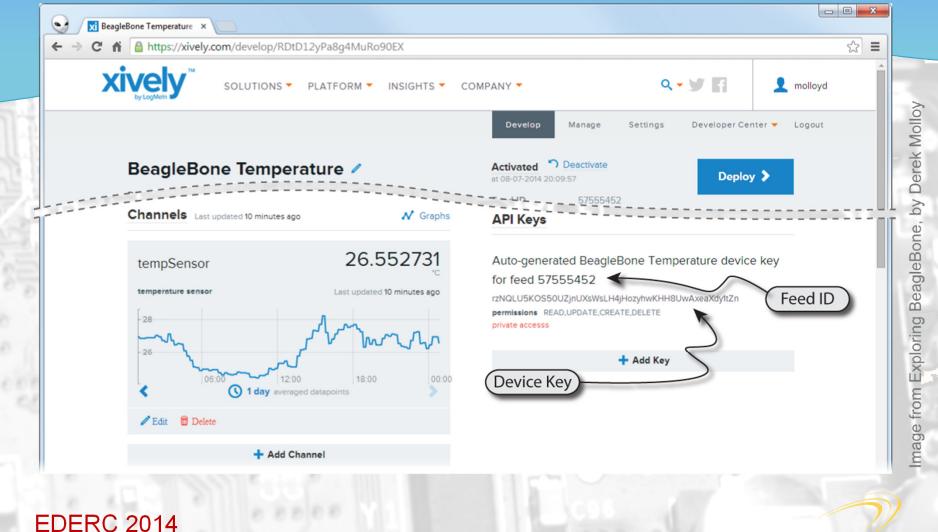
8 Conclusions

- Motor boards (e.g., TI DRV8835), stepper boards
- Interface to servo motors using PWM pins
- Can integrate Posix threads, wrap with classes

EDERC 2014

44

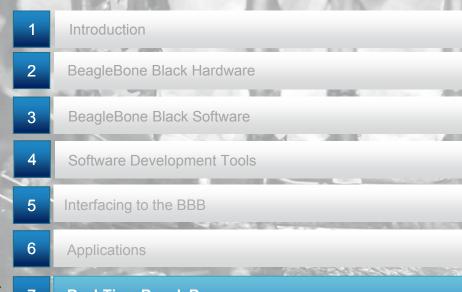
The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland


DCU

Interfacing Applications Analogue Sensors

Interfacing Applications Platform as a Service (PaaS)

46



Interfacing Applications Video, image processing, computer vision Audio input, output and streaming

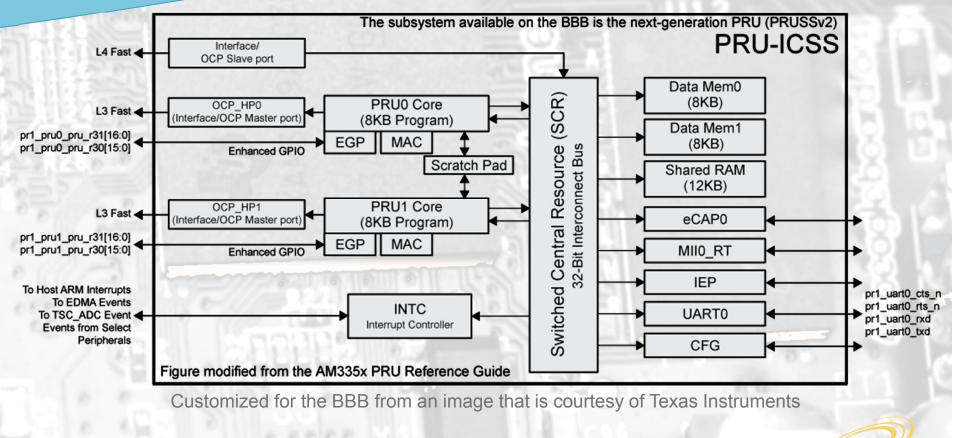
Overview The BeagleBone: Application in Engineering Education

Conclusions

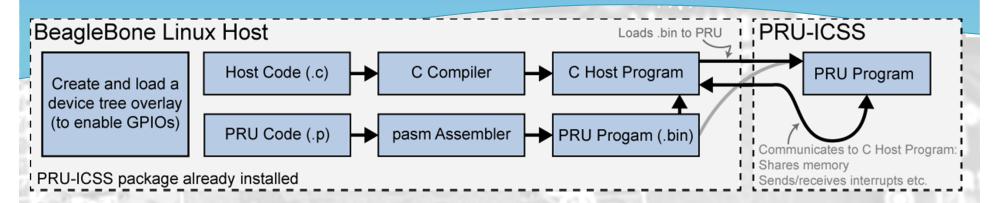
8

Real-time BeagleBone Real-time on the BBB

- Limitations of non-preemptive Linux...
- Real-Time Kernels (preemptive Linux)
 - RT-Preempt patch (PREEMPT_RT)
 - Xenomai co-kernel
- Interface BBB to Stellaris (e.g., using UART)
- Use the AM3358 PRU-ICSS
 - Programmable real-time units and industrial communication sub-system
 - 2 x PRUs @ 400 MHz, 5ns per instruction
 - small RISC ISA (~45 instructions)
 - 8KB instruction memory + 8KB data RAM for each PRU
 - 12KB shared memory and full access to Linux memory space


EDERC 2014

Real-time BeagleBone Architecture



DCU

EDERC 2014

50

Real-Time BeagleBone Deploying Program to one of the PRUs

- PRU has access to Enhanced GPIOs
 - Use device tree overlay to set up the PRU EGPIOs
 - Access to Linux memory slower than PRU local memory
- C Host program loads PRU binary into PRU
 - Shares memory with the host (PRU memory mapped to userspace)
 - Use interrupts to trigger events

EDERC 2014

51

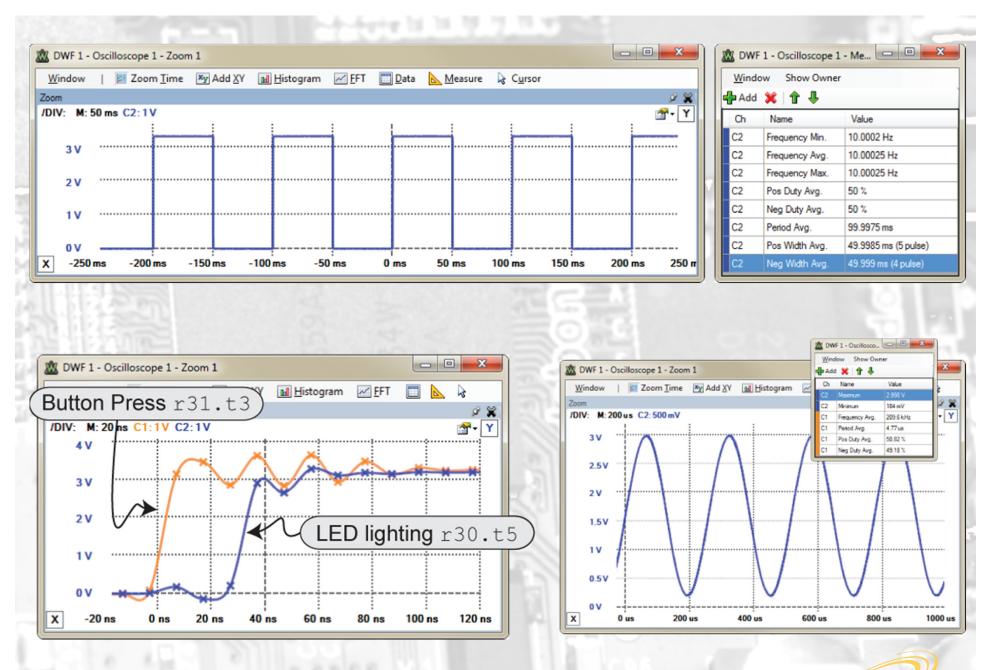
ledButton.p

.origin 0 .entrypoint ST	ART		start of program in PRU memory program entry point (for a debugger)		
#define INS_PE #define INS_PE	_	//	5ns per instruction two instructions per delay loop set up a 50ms delay		
#define PRU0_R	31_VEC_VALID 32	PER	US / INS_PER_DELAY_LOOP) allows notification of program completion the event number that is sent back		
START: SET MOV DELAYON:	r30.t5 r0, DELAY		turn on the output pin (LED on) store the length of the delay in REGO		
SUB QBNE LEDOFF:			Decrement REG0 by 1 Loop to DELAYON, unless REG0=0		
CLR MOV DELAYOFF:	r30.t5 r0, DELAY		clear the output bin (LED off) Reset REGO to the length of the delay		
SUB QBNE QBBC	DELAYOFF, r0, 0	11	decrement REG0 by 1 Loop to DELAYOFF, unless REG0=0 is the button pressed? If not, loop		
END : MOV HALT	r31.b0, PRU0_R31_	VE	notify the calling app that finished C_VALID PRU_EVTOUT_0 halt the pru program		
EDERC 2014 The BeagleBone and its Application in Engineering Education, Derek Molloy, DCU, Ireland DCU					

ledButton.c

#include <stdio.h>
#include <prussdrv.h>
#include <pruss_intc_mapping.h>
#define PRU_NUM 0 // using PRU0 for these examples

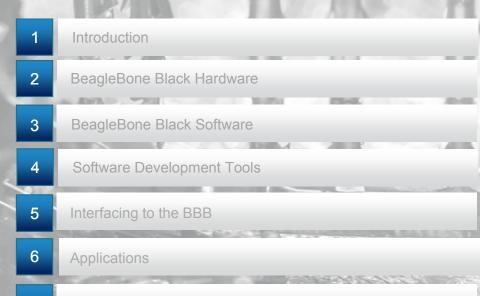
void main (void)


{

// Initialize structure used by prussdrv pruintc intc // PRUSS INTC INITDATA is found in pruss intc mapping.h tpruss intc initdata pruss intc initdata = PRUSS INTC INITDATA; // Allocate and initialize memory prussdrv init (); prussdrv open (PRU EVTOUT 0); // Map PRU's interrupts prussdrv pruintc init(&pruss intc initdata); // Load and execute the PRU program on the PRU prussdrv exec program (PRU NUM, "./ledButton.bin"); // Wait for event completion from PRU, returns the PRU EVTOUT 0 number int n = prussdrv pru wait event (PRU EVTOUT 0); printf("EBB PRU program completed, event number %d.\n", n); // Disable PRU and close memory mappings prussdrv pru disable(PRU NUM); prussdrv exit();

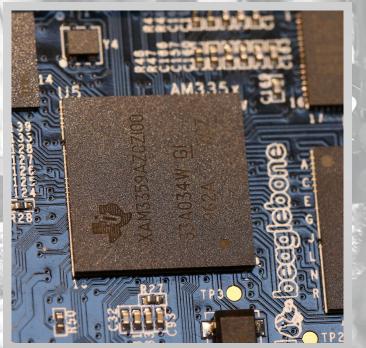
EDERC 2014

53



EDERC 2014

54



Overview The BeagleBone: Application in Engineering Education

Real-Time BeagleBone

8 Conclusions

Conclusions

Positives and Negatives of the BBB in Education

56

Positives

Low-cost per unit

Practical integration of electronics, software and Linux

Exposure to embedded Linux

USB-over-Internet on-campus

Easy to burn new image to eMMC

Great for project work

Negatives

Supply of boards constrained

Difficult to support range of software/hardware issues that can arise – especially corporate laptops!

Embedded Linux is a moving target

Device tree overlays complex

EDERC 2014

🔯 The Beaglebone for Embe 🗴

Electronic Engineering Education and Innov

derekmolloy.ie

The Beaglebone

derekmolloy.ie/beaglebone/

ekmolloy.ie 🕄 9 🗭 🕂 New Edit Page

C

Introduction

I have developed a full series of videos on the started. The Beadlebone original retailed for a videos will describe the Beaglebone Black, w cost of €45.

Getting Started

In the first video I introduce the Beaglebone DDR2 Memory. It has full support for 10/100 x 12-bit ADCs and support for canbus and the board. The Beaglebone boots using the M demonstrate the first steps with the board a values to the input/output pins and the 4

EDERC 2014

DEREK MOLLOY

DEREK MOLLOY

- O -X

☆ =

BEAGLEBONE

Google+: google.com/+DerekMolloy E-mail: derek.molloy@dcu.ie Blog/Website: www.derekmolloy.ie

~ 576 pages Describes everything in this presentation (properly!)

~ December 2014 Available for pre-order on Amazon:

- ~ \$24.92
- ~£20.68
- ~€25.84

EDERC 2014

DCU

57

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated