

Module 1
Lab 1: Running code on the LaunchPad using CCS

 Lab: Running code on the LaunchPad using CCS

 2 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

1.0 Objectives

The purpose of this lab is to prepare your workstation to write software that will
be loaded on the LaunchPad.

1. You will learn how to install the CCS IDE
2. You will load starter code on the MSP432 LaunchPad.
3. You will learn and practice the debug capability inside the CCS IDE

Good to Know: Using an IDE is an important tool in embedded systems design.

This is the crucial first step before interacting with the hardware.

1.1 Getting Started
1.1.1 Software Starter Projects

Look at these four projects:
SineFunction (a simple implementation of sine),
Input_Output (switch input LED output example)
TExaS (example use of logic analyzer and oscilloscope)
UART (serial output to Terminal program, implementing printf)

1.1.2 Student Resources

 MSP432P401R SimpleLink™ Microcontroller LaunchPad™ Development

 Kit (MSP‑EXP432P401R) User Guide (SLAU597)

 MSP-EXP432P401R Quick Start Guide (SLAU596)

 MSP432P4xx Technical Reference Manual (SLAU356)
 MSP432P401R Datasheet (SLAS826)
 TI Resource Explorer (MSP432 SimpleLink SDK)
 TI SimpleLink Academy (http://dev.ti.com/MSP432-Simplelink-Academy)
SimpleLink is a Texas Instruments’ umbrella term that includes much of its
embedded system produces, such as microcontrollers, wireless, TI RTOS, and
IoT.

1.1.3 Reading Materials

TI Resource Explorer, http://dev.ti.com/tirex/
 Development Tools-> Integrated Dev. Environ. -> Code Composer Studio

Volume 1 Chapter 1, Sections 2.1, 2.2, and 2.3
Embedded Systems: Introduction to the MSP432 Microcontroller",
or
Volume 2 Sections 1.1, 1.2, and 1.3
Embedded Systems: Real-Time Interfacing to the MSP432 Microcontroller"

1.1.4 Components needed for this lab

Quantity Description Manufacturer Mfg P/N

1
MSP-EXP432P401R
LaunchPad

TI MSP-EXP432P401R

1.1.5 Lab equipment needed (none)

1.2 System Design Requirements

Throughout the course you will acquire knowledge that will allow you to build a
system that includes mechanical and electrical subsystems. The goal of this first
lab is to set up our ability to write firmware for the robot and learn what
debugging options are available to troubleshoot the system. In this lab, you will

 Install Code Composer Studio 7.0 or above

 Download and unpack associated files for this course and import the
example projects into Code Composer Studio
1. Data sheet
2. Software documentation
3. TExaSdisplay application (scope, logic analyzer)
4. Example CCS and lab starter projects

 Install the Windows Drivers needed to debug the MSP432 LaunchPad

 Learn the basic steps for software development with CCS
1. Build (compile)
2. Debug (download and start debugger)
3. Run, step, step in, step over, step out
4. Breakpoint
5. Observe variables, ports, memory

Note: CCS provides a rich set of debugging tools. Because the robot is an
embedded system, we are not concerned with just the software, but rather, we
will debug the hardware and software together. As you progress in the course
you will continue to discover new features with CCS to help in development and
debugging. In general, we can group the techniques into two classifications:
control (making the software/hardware system do what you want), and

observability (visualizing what the software/hardware system did.)

http://dev.ti.com/tirex/

 Lab: Running code on the LaunchPad using CCS

 3 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

1.3 Experiment set-up

This lab uses the LaunchPad without any external input or output hardware. All
that is needed is your computer that you will use in the course, the MSP432
LaunchPad, and the included USB cable.

1.4 System Development Plan
1.4.1 Installing CCS

You will first need to download the latest CCS version from TI. It is recommended
to get at least CCS 7.0 or above to do the work in this course.

http://www.ti.com/tool/ccstudio

What is the difference between web installer and offline installer? The web
installer is a small installation program that you download and execute. You then
make your installation selections (device families and features desired) and the
installer then downloads and installs only those selected packages. The offline
installer is a large package that includes all packages (except for those only
available via the CCS App Center). The offline installer is generally only
recommended if you have issues with your firewall or anti-virus software blocking
the web installer. The offline installer is also useful if you need to install CCS on a
machine that does not have internet access. For this curriculum, you can use
either web or offline installer; we suggest using the web installer.

General tips for installing CCSv7

 It is necessary for you to select MSP432 support during installation.
MSP432 support includes the device drivers that allow CCS to program
and debug LaunchPad software.

 Clean out all prior failed or incomplete installations (by deleting the
install directory) before attempting a new one to the same directory. (On
the install directory in Windows, use Shift+Del and in Linux and MacOS
use rm -Rf <install directory>)

 If you plan to install two versions side-by-side, always use different

workspaces. Sharing a workspace between two versions may cause
severe impact in project building and debugging.

 Disable anti-virus (certain anti-virus software is known to cause
problems). If it cannot be disabled, try the offline installer instead of

web installer: Download CCS

 Ensure that your Username does not have any non-ASCII characters,

and that you are installing CCS to a directory that does not have any
non-ASCII characters. A temporary directory using the Username is

created during installation. Eclipse is unable to handle non-ASCII
characters. If your Username does have non-ASCII characters, please

create a temporary admin user for installing CCS.

1.4.2 Running the CCS installer

Begin the installation process after downloading the latest version of CCS. By
default it will ask you to install under a ti folder, which is recommended.

During the initial setup please make sure that you select processor support for
SimpleLink MSP432 MCUs. The processor support matches our MSP432P401R
LaunchPad development kit. Installing other processor support is optional but this
course will only use the MSP432.

Under Debug Probe support selection, make sure that the default “TI XDS Debug
Probe Support” is selected. This is the debugger used on the LaunchPad
development kit. The other options are for external debuggers, but these
debuggers will not be used in this course.

http://www.ti.com/tool/ccstudio
http://processors.wiki.ti.com/index.php/Download_CCS

 Lab: Running code on the LaunchPad using CCS

 4 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

Click finish and your installation should proceed to completion. When completed
you can open CCS and select your workspace. The default workspace is
recommended other projects but for this course you will create a custom
workspace called tirslk_maze, as described in the next section.

1.4.3 Import tirslk_maze

We are going to import all the curriculum project folders into CCS for our next
step, creating one workspace for the entire course.

tirslk_maze is a set of software components that includes many (40) CCS

example projects, html documentation, data sheets, and a Windows application
called TExaSdisplay. Some of the example projects run out of the box and are

intended to illustrate various functionalities of the MSP432. However, some of the
projects have names beginning with “Lab”, and these are starter projects for your
labs. You will be developing code in these projects as part of the lab assignments
in this curriculum. Furthermore, the folder inc has files you develop in one lab
that will be used in subsequent labs. The steps to install tirslk_maze are

Step 1: Download the zip file www.ti.com/lit/zip/SLAC768.

Step 2: Extract the zip to a file location you want the projects to reside.
Preferably, an easy to find location on your computer. Once unzipped and
compiled, the tirslk_maze_1_00_00 folder will expand to about 200 MB. In the

subsequent figures you can see I extracted it to E:\

Step 3: Open the software documentation by double-clicking on the file
 tirslk_maze_1_00_00_Software_Documentation.html

This documentation includes software provided to you as examples and software
you will write as part of the lab sequence.

Step 4: Open the datasheets folder. In this directory you will find descriptions of
the hardware components used in this curriculum. We suggest you begin with
these two reference manuals
 Meet the LaunchPad, slau596.pdf
 MSP432P4xx Technical Reference Manual, slau356f.pdf

Step 5: Start CCS. The simplest approach to setting up the software for this
course is to use the unzipped folder from step 2 as your workspace. You need to
switch to this workspace using File > Switch Workspace. Browse to the

unzipped folder from step 2 and select OK.

Step 6: Import all the projects into CCS. From the menu bar, click
File > Import…

Choose Code Composer Studio > CCS projects and click Next>

http://www.ti.com/lit/zip/SLAC768

 Lab: Running code on the LaunchPad using CCS

 5 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

Select search-directory and click the Browse… option, and find the unzipped
tirslk_maze_1_00_00 folder that you created in step 2.

CCS should discover many projects inside the tirslk_maze_1_00_00 folder.

Click Select All (do not check Automatic import or Copy projects options).

This will have CCS reference the project from the original location and preserve
the original directory structure required to build. Click Finish

Now your projects for the course are imported and visible in the project explorer.
We are now set up with CCS!

Step 7: Notice over 40 projects in the project explorer. All but one of the projects
will be used in this curriculum. Click on the inc folder within Project explorer and
notice the files within the folder. We will not be using the inc project for any code
development. The inc folder contains software that will be shared between
projects throughout the curriculum. The inc project was created for the sole

purpose of making it easy for you to open the files from the project explorer. The
inc files, listed in Table 1, are completely written and available as example code
for the MSP432. On the other hand, you are required to complete the inc files

that are listed in Table 2 as part of the lab assignments. For both sets of files the
software documentation explains what the functions are and how to use them.

 Lab: Running code on the LaunchPad using CCS

 6 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

Header Code Purpose

AP.h AP.c Application Processor, BLE

Clock.h Clock.c Sets bus clock to 48 MHz

CortexM.h Cortex.c Enable and disable interrupts

FlashProgram.h FlashProgram.c Erase and program flash

GPIO.h GPIO.c Digital I/O, CC2650 BLE

LaunchPad.h LaunchPad.c LaunchPad LEDs / switches

LPF.h LPF.c Low pass filters

SysTick.h SysTick.c 24-bit system timer

SysTickInt.h SysTickInt.c Periodic interrupt

TA0InputCapture.h TA0InputCapture.c Period measurement

TA2InputCapture.h TA2InputCapture.c Period measurement

Tachometer.h Tachometer.c Tachometer interface

TExaS.h TExaS.c Oscilloscope, logic analyzer

Timer32.h Timer32.c 32-bit periodic interrupt

TimerA0.h TimerA0.c 16-bit periodic interrupt

TimerA2.h TimerA2.c 16-bit periodic interrupt

UART.h UART.c Serial port

Ultrasound.h Ultrasound.c Ultrasonic sensor interface

Table 1. Shared files you can use. I.e., these files are complete and functional.

Header Code Purpose (Lab)

ADC14.h ADC14.c Analog to digital conv. (15)

Bump.h Bump.c Bump sensors (10)

BumpInt.h BumpInt.c Interrupting sensors (14)

 convert.asm Assembly functions (3)

IRDistance.h IRDistance.c Distance conversions (15)

Motor.h Motor.c Motor interface (13)

MotorSimple.h MotorSimple.c Simple motor interface (12)

Nokia5110.h Nokia5110.c LCD interface (11)

PWM.h PWM.c Pulse width modulation (13)

Reflectance.h Reflectance.c Line sensor (6 and 10)

TA3InputCapture.h TA3InputCapture.c Input capture, tachometer (16)

TimerA1.h TimerA1.c Periodic interrupt (13)

UART1.h UART1.c Interrupting serial port (18)

Table 2. Shared files you will need to complete. I.e., you need to complete the
functions in these files in order for them to operate properly.

1.4.4 Project structure

To better understand this course we need to explain the project structure inside
the tirslk_maze_1_00_00 folder. tirslk_maze_1_00_00 is an archive of the

course projects that a student can unpack, compile and build in CCS. There are
more than 40 projects with the same structure.

 CCS 7.x, C99 language, doxygen documentation

 Configured for the MSP432P401R LaunchPad

 No use of TI libraries or any external libraries

 Just C code (there is one Solution.obj in Lab4)

There is one folder with shared C code called “inc” that contains files used in
multiple projects. For example, bump.c and bump.h are in the inc folder.

Whenever a project wishes to use one of these shared files, the code file (e.g.,
bump.c) is added to the project (linked) and the header file is included using
#include (e.g., #include "..\inc\bump.h")

Note that projects with “Lab” in the name are intended as starter projects for each
lab. Other projects are examples. The projects that begin with “Competition” can
be used to develop high-level code without developing all the low-level I/O driver
code.

 “inc” folder

Project folder

 Lab: Running code on the LaunchPad using CCS

 7 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

1.4.5 Installing OS drivers for the LaunchPad

Drivers are OS software that allow CCS to communicate with the XDS110
debugger on the LaunchPad.

The first step to installing drivers is to plug the MSP432 LaunchPad into the PC
using the USB cable. Some LEDs on the LaunchPad should light up. When you
plug your LaunchPad into a USB port on your computer, the operating system
will attempt to load drivers. If you selected MSP432 support during CCS
installation, then the operating system should automatically find the drivers. On
Windows there will be four drivers in the device manager associated with the
LaunchPad.

Notice there are two COM ports. We will exclusively be using the first one (the
one with the lower number).

1.4.6 Run a simple example on the LaunchPad

Key Objectives

 Observe source code

 Edit-compile-link-download-debug cycle

 Step in, step over, step out

 Observing local and global variables

SineFunction is a very simple software project that performs no input/output. It
calculates a y=sin(x) using a cubic approximation and fixed-point math. It fills an

array with results. You can use the project to learn how to build (compile), debug
(download and start the debugger), run, halt, and observe the array. You should
also reset the processor, set a breakpoint, run until the breakpoint, and then
single step (step in, step out, and step over).

1) Click on the SineFunction project, and open the view of the files in that
project. Double click on SineFunction.c to see the source code.

Note: Make sure the desired project is in context (in bold) before building or

debugging. Notice in the above figure, the Project Explorer bolds the project and
specifies “[Active-Debug]”

 Lab: Running code on the LaunchPad using CCS

 8 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

2) With the SineFunction project selected [Active-Debug], click Build

There should be no errors.

3) With the SineFunction project selected [Active-Debug], click Debug

Note: When you debug on your LaunchPad for the first time it may prompt you to

update the firmware. This step is recommended.

The debug operation causes several actions to be done automatically

 Prompt to save source files

 Build the project (incrementally)

 Start the debugger (CCS will switch to the CCS Debug perspective)

 Connect CCS to the target

 Load (flash) the program on the target

 Run to main

4) Once the flash is erased, and the image of this project is loaded, you will see
the green triangle appear. That is the run icon, don’t click run yet, but seeing this
icon means the system is ready to debug

5) Single step the program by executing Step Over icon multiple times

6) Observe the local variables in the Variables window

7) Observe global variables in the Expressions window. Type Results in the

“Add new expression” field and hit <enter>

Expand the Results field to see its data.

Step over executes one line of C. If that line has a function, step over will
execute the entire function. You can also experiment with Step in (which

executes one line of C, and if that line has a function, it will step into that function.
If you have stepped into a function, Step return will complete that function and

stop at the spot the function was called.

You should also experiment the Resume, Suspend, and Reset commands.

8) To halt the debugger and terminate execution, click the Terminate icon

 Lab: Running code on the LaunchPad using CCS

 9 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

1.4.7 Run the Input_Output example on the LaunchPad

Key Objectives

 Observe I/O ports on the MSP432

 Interact with hardware on the LaunchPad

 Setting and clearing breakpoints

Input_Output is a simple project that showcases some the features of the

LaunchPad. For example, it will input from the two switches on the LaunchPad
and output to the LED. Follow the same steps 1, 2, 3, and 4 as you did to
compile and load this project onto MSP432 LaunchPad.

1) Run the project and interact with the two switches on the LaunchPad. You
should observe this simple behavior

No switches No LEDs on
Just SW1 Red LED is on, color LED is blue
Just SW2 Red LED is on, color LED is red
Both SW1,SW2 Red LED is on, color LED is blue+red=purple

2) Set a breakpoint at the line status = Port1_Input(); To place a breakpoint,

click on a line at which you want it to stop, right click and add hardware
breakpoint. When you start the program it will run to the breakpoint and stop. The
following figure shows the debugger halted at the breakpoint.

Remove all breakpoints by clicking the icon in the breakpoint window

3) Observe the I/O Port registers. First select the Registers tab, then select P1

(I/O Port 1). Activate the Continuously Refresh mode. Run the program and
touch the two switches on the LaunchPad. You will see the port input data in the
P1IN field.

1.4.8 Run the TExaSdisplay logic analyzer

Key Objectives

 Introduce TExaSdisplay in logic analyzer mode

 Observe digital signals on the LaunchPad

TExaSdisplay is a Windows application that does not require a separate
installation. You should see the TExaSdisplay.exe executable within the
tirslk_maze_1_00_00 folder. To start the application, you simply double-click
TExaSdisplay.exe executable file.

If you have access to a real logic analyzer, you should use it, and therefore can
skip this section. If you do not have access to a real logic analyzer, then TExaS
provides a no-cost, simple option. TExaS has these specifications:

 Up to 7 digital channels

 10 kHz sampling (you can adjust the display but sampling is fixed)

 Runs in background alongside your software

 Data streamed through USB cable from MSP432 to PC

The first step is to activate the TExaS project, and open the TExaSmain.c file.
There are three main programs in this project. Edit the LogicAnalyzerMain

function so it is called main, and edit the other main to be Lab2main. Notice the
MSP432 will be running at 48 MHz and the logic analyzer is configured to display
Port 1. When it is running the seven bits of P1.6 – P1.0 will be streamed to the
PC at 10 kHz. The logic analyzer works whether the pin is an input or output. In
this example, P1.0 is an output (to the red LED) and P1.1/P1.4 are inputs from

 Lab: Running code on the LaunchPad using CCS

 10 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

the two LaunchPad switches. We will talk about I/O in great detail in subsequent
chapters, but for now let’s focus on how the logic analyzer measures P1.4, P1.1,
P1.0 by sending the digital information from the MSP432 to the PC via the USB
cable.

int LogicAnalyzerMain(void){

uint32_t status,delay,data;

 Clock_Init48MHz(); // makes bus clock 48 MHz

 LaunchPad_Init(); // use buttons to step through frequencies

 TExaS_Init(LOGICANALYZER_P1);

 data = 0;

 while(1){

 status = LaunchPad_Input();

 switch(status){ // negative logic on P1.1 and P1.4

 case 0x00: delay=1000; break; // neither switch pressed

 case 0x01: delay=2000; break; // SW2 pressed

 case 0x02: delay=3000; break; // SW1 pressed

 case 0x03: delay=4000; break; // both switches pressed

 }

 Clock_Delay1us(delay);

 data = data ^0x01;

 LaunchPad_LED(data); // toggle red LED

 }

}

You can see the various options for the logic analyzer by looking in the TExaS.h

header file. These are the choices you have when configuring the TExaS.

enum TExaSmode{
 SCOPE, //8-bit oscilloscope on J3.26/P4.4/A9
 LOGICANALYZER, //7-bit logic analyzer
 LOGICANALYZER_P1, // 7-bit logic analyzer on P1.6-P1.0
 LOGICANALYZER_P2, // 7-bit logic analyzer on P2.6-P2.0
 LOGICANALYZER_P3, // 7-bit logic analyzer on P3.6-P3.0
 LOGICANALYZER_P4, // 7-bit logic analyzer on P4.6-P4.0
 LOGICANALYZER_P5, // 7-bit logic analyzer on P5.6-P5.0
 LOGICANALYZER_P6, // 7-bit logic analyzer on P6.6-P6.0
 LOGICANALYZER_P7, // 7-bit logic analyzer on P7.6-P7.0
 LOGICANALYZER_P8, // 7-bit logic analyzer on P8.6-P8.0
 LOGICANALYZER_P9, // 7-bit logic analyzer on P9.6-P9.0
 LOGICANALYZER_P10, // 7-bit logic analyzer on P10.6-P10.0
 LOGICANALYZER_P4_765432, // 6-bit logic analyzer on P4.7-P4.2
 LOGICANALYZER_P4_765320, // 6-bit logic analyzer on P4.7-5,3-2,0
 LOGICANALYZER_P2_7654 // 4-bit logic analyzer on P2.7-P2.4
};

Build (compile), debug (erase flash, program flash with object code), and run the
project. The red LED flashes, and you can change the rate of flashing by pushing
the two switches.

Start TExaSdisplay and execute COM->Settings. You can enter the COM port

number (which you can find from your device manager), or you can leave the
field at “0”, which means start at 1 and search for a COM port that will open. The
baud rate is always 115200 bits/sec in this class, but for other situations you
might need to set the baud rate. The other parameters in this dialog configure the
look and feel of the text window, when using TExaSdisplay as a terminal

application.

To connect TExaSdisplay with the MSP432 serial port, you click the Open tool
button or execute the command COM -> Open Port (F4). On this computer, the

MSP432 LaunchPad was found as COM7.

 Lab: Running code on the LaunchPad using CCS

 11 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

To run TExaSdisplay in logic analyzer mode, you click the Logic Analyzer tool
button, or execute View -> Logic Analyzer

The logic analyzer always sends 7 bits at 10 kHz, but you can choose which
ones to plot on the display. Execute View -> Logic Analyzer Configuration and

disable pins 6,5,3,2 (because they have no value in this example). Specify a
rising edge trigger in bit 0. The analyzer takes multiple readings and lines up the
traces using the trigger. Using a trigger means one of the traces will not jitter
around if the data are rapidly changing.

An edge trigger means the analyzer will search the incoming data stream for an

edge on that pin, plotting the edge at a fixed place on the screen. The analyzer
takes multiple readings. With a rising edge trigger active the rising edge is placed
at the same location of the display. Using a trigger means one of the traces will
not jitter around if the data are rapidly changing.

When your MSP432 program is running, you will be able to see digital data
versus time. There are four commands to control the display

 View->Slower F6 will increase the range of times displayed
 View->Faster F7 will decrease the range of times displayed
 View->Pause/Run F8 will stop/start the display
 View->Single F9 will display one sweep and stop

You will see the three pins (SW1, SW2, and LED) plotted versus time. Push the
two switches to observe the behavior that the switches affect the frequency of the
oscillations on P1.0.

 Lab: Running code on the LaunchPad using CCS

 12 Texas Instruments Robotics System Learning Kit: The Maze Edition
SWRP132

1.5 Troubleshooting

A project doesn’t compile:

• Try a different project. All the projects in tirslk_maze should compile. If
none of the tirslk_maze compile, then try reinstalling CCS and
tirslk_maze.

• If other projects in tirslk_maze compile, but a project you have edited

does not compile, it is possible you have introduced errors. Follow the
error codes in the problems window. Remember to start with a project

that compiles, make only a few changes, and then compile it. This way
when it doesn’t compile, there are only a few places to look for the error.

The debug command can’t erase/download/run:

• Make sure the build step occurred without error.
• Check the device manager to make sure the proper drivers are installed

for the LaunchPad board.
• Make sure the LaunchPad power is connected to the PC.
• Try another USB port.
• Try another micro USB cable

1.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.

• What are components of a project on CCS?
• What are the steps involved in software design/test?
• What are breakpoints? How do I set them up? How do I use breakpoints

to debug?
• What does it mean to step in, step over, and step out?
• What are some of the ways to observe intermediate results during

software debugging?
• What is a logic analyzer? What is an oscilloscope?

1.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. Additional challenges are not required to complete the
course.

• Run the UART example (Appendix A2)
• Run the TExaS oscilloscope example (Appendix A3)
• Load a project with resource explorer (Appendix A4)
• Run an energy trace on a system (Appendix A6)

1.8 Which modules are next?

Now that we have started, there are two paths forward. The hardware path
involves learning about electronics and building the robot:

Module 2 - Study voltage current power and the batteries
Module 5 - Robot construction, including battery and voltage regulation
Module 12 - Interfacing the motors and wheels

The software path involves developing programming and debugging skills:

Module 3 - Introduce the Cortex M processor
Module 4 - Introduce the process of software design
Module 6 - Learn how to input and output on the pins of the microcontroller
Module 7 - Study finite state machines as a method to control the robot

1.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Install CCS
• Import projects for the tirslk_maze curriculum

• Compile and run a program on the MSP432 LaunchPad
• Use of Debug mode in CCS

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

