
TI-RSLK
Texas Instruments Robotics System Learning Kit

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

Module 4
Lecture: Software Design using MSP432 - Design

1

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

Software Design using MSP432

2

You will learn in this module

 Software Design

• Call graph

• Data Flow Graph

• Successive refinement

• Abstraction (functions)

• Modular design (header/code files)

SwitchMain

Switch LaunchPad

Call Graph

SwitchMain Switch LaunchPad

Data Flow Graph

Switch LED

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

Multi-threading

3

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

System Design

4

What does being in a state mean?

• List state parameters

What is the starting state of the system?

• Define the initial state

What information do we need to collect?

• List the input data

What information do we need to generate?

• List the output data

How do we move from one state to another?

• Actions we could do

What is the desired ending state?

• Define the ultimate goal

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

Successive Refinement

5

 Start with a task

• Clear and unambiguous description: requirements, specifications

 Decompose the task into a set of simpler subtasks (components)

• Subtasks are decomposed into even simpler sub-subtasks

• Each subtask is simpler than the task itself

 Make design decisions

• Document decisions and subtask requirements

 Ultimately, subtask is so simple, it can be implemented

• Implementation

• Testing

• Documentation

 Combine components to build system

• Interfaces are key

Three similar terms:

• Successive Refinement

• Stepwise Refinement

• Systematic Decomposition

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

 Why do we have header/code files?

• Complexity abstraction

• Separate what it does (header) from how it works

• Automatic documentation (doxygen)

 What is in a header file?

• Prototypes for public functions

• Comments on what it does/how to use it

• Code to make it load once

• Shared structure

 What is not in a header file?

• Function definitions

• Variables

• Anything private

Header files

6

/**

 * @file Switch.h

/**

 * Input from positive logic switch

 * interfaced to GPIO Port 1 bit 5.

 *

 * @param none

 * @return 0x20 if pressed; 0x00 if not pressed

 * @brief Switch input

 */

uint32_t Switch_Input(void);

SwitchMain

Switch LaunchPad

Call Graph

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

 What is in a code file?

• Implementations for public functions

• Variables

• Private functions

• Comments how it works

• Comments on how it was tested

• Comments on how it can be changed

 What is not in a code file?

• References to private data/functions in other files

Code files

7

//------------Switch_Input-------

// Read and return P1.5

// Input: none

// Output: 0x20 if P1.5 is high

// 0x00 if P1.5 is low

uint32_t Switch_Input(void){

// read P1.5 input

 return (P1->IN&0x20);

// return 0x20(if pressed)

// or 0(if not pressed)

}

#include <stdint.h>

#include "Switch.h"

#include "../inc/LaunchPad.h" SwitchMain

Switch LaunchPad

Call Graph

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Design

z

Software Design using MSP432

8

Summary

 Software design

• Successive refinement

• doxygen

• Header/code files

• Abstraction

SwitchMain Switch LaunchPad Switch LED

SwitchMain

Switch LaunchPad

Call Graph

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Module 4
Lecture: Software Design using MSP432 - C Programming

1

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

C Programming on the MSP432

2

You will learn in this module

 Basics of C programming

• Logic/shift operations

• Arithmetic calculations

• Conditionals

• Loops

• Functions

• Variables

• Constants

 Algorithm development (lab)

• GP2Y0A21YK0F IR distance sensor

• Where in the world am I?

0

200

400

600

800

1000

0 5000 10000 15000

D
is

ta
n

c
e

 (
m

m
)

14-bit ADC

GP2Y0A21YK0F IR Distance
Sensor

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Flowcharts

3

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Logic Operations

4

AND

• Select bits (AND with 1)

• Clear bits (AND with 0)

OR

• Combine

• Set bits (OR with 1)

EOR

• Toggle bits (EOR with 1)

y = P1->IN&0x03; // select bits 1,0

x = x&(~0x08); // clear bit 3

x &= ~0x08; // clear bit 3

z = x|y; // combine x,y

x = x|0x08; // set bit 3

x |= 0x08; // set bit 3

P1->OUT ^= 0x08; // toggle bit 3

A ~A

0 1

1 0

A B A&B A|B A^B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

z

Shift Operations

5

Unsigned (logical) shift right

• Divide by 2n

• Align bits

Signed (arithmetic) shift right

• Divide by 2n

Shift left (logical/arithmetic)

• Multiply by 2n

• Align bits

y = x>>3; // divide by 8

x = P1->IN&0x01; // P1.0 (0,1)

y = P2->IN&0x08; // P2.3 (0,8)

z = (x<<1)|(y>>3); // combine

y = x<<8; // multiply by 256

int32_t

uint32_t

uint32_t or int32_t

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Arithmetic Operations

6

 Addition/subtraction

• Two n-bit → n+1 bits

 Multiplication

• Two n-bit → 2n bits

 Division

• Avoid divide by 0

• Watch for dropout

 Avoid overflow

• Restrict input values

• Promote to higher, perform, check,

demote

 Signed versus unsigned

• Either signed or unsigned, not both

• Be careful about converting types

uint8_t int8_t

uint16_t int16_t

uint32_t int32_t

uint8_t Add(uint8_t A, uint8_t B){

uint32_t A32,B32,R32;

 A32 = A; B32=B; // promotion

 R32 = A+B; // 32-bit addition

 if(R32>255){

 R32 = 255; // ceiling

 }

 return R32; // demotion

}

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Conditionals

7

 Boolean

• Zero is false

• Nonzero is true

• && || ! are operators

 Relational

• Compare similar types

• Returns a Boolean

• > >= < <= == !=

 Conditional

• if-then

• if-then-else

z

if((G1<=G2)&&(G3!=G4)){

 Yes();

}else{

 No();

}

if(P1->IN&0x80){

 Something(); // if P1.7 is high

};

These are different & &&

These are different | ||

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

z

z

z

while loops

8

while loop

• Test first

do-while loop

• Test last

for loop

• Test first

while(G2>G1){

 Body();

}

do{

 Body();

} while(G2>G1);

for(i=10; i!=0; i--){

 Body();

}

for(i=0; i<10;

i++){

 Body();

}

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

 What it does

• Prototype

• Header file

 How it works

• Implementation

• Code file

 Invocation

• Calling sequence

• Inputs: call by value/reference

• Output: return value

Functions

9

// random.c

uint32_t static M;

void Seed(uint32_t x){

 M = x;

}

uint8_t Rand(void){

 M=1664525*M+1013904223;

 return M>>24;

}

// random.h

void Seed(uint32_t x);

uint8_t Rand(void);

// main.c

uint8_t n;

void main(void){

 Seed(1);

 while(1){

 n = Rand();

 }

}

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Examples of variables

10

 Global

• Public scope

• Permanent allocation

• Bad style

 Static

• Private scope to file

• Permanent allocation

• Sharing: ISR ↔ Functions

 Local - Automatic

• Private scope,

• Dynamic allocation

 Static local

• Private scope to function

• Permanent allocation

uint32_t static M;

void Seed(uint32_t x){

 M = x;

}

uint8_t Rand(void){

uint32_t n;

uint32_t static count=0;

 count++;

 M=1664525*M+1013904223;

 n = M>>24;

 return (uint8_t)n;

}

uint8_t global;

void main(void){

uint8_t n;

 Seed(1);

 while(1){

 n = Rand();

 }

}

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Variables

11

Scope => from where can it be accessed

 Private means restricted, need to know basis

• More protection, simpler systems

 Public means any software can access it

• Difficult to debug, hidden complexity

Allocation => when is it created & destroyed

 Dynamic allocation using registers or stack

 Permanent allocation assigned a block of memory

Type

 Signed/unsigned

 Precision: 8, 16, 32 bits

Can you convert between types?

uint8_t → uint16_t, int16_t, uint32_t, int32_t

int8_t → int16_t, int32_t

uint16_t → uint32_t, int32_t

int16_t → int32_t

How does one classify I/O port registers?

• Formally: Global = public permanent

• Practically: private permanent

Can access

Does access

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Examples of constants

12

Symbol

• #define

ROM

• const

Enumerated types

• enum

int32_t const ADCBuffer[16]=

{2000, 2733, 3466, 4199, 4932,

5665, 6398, 7131, 7864, 8597,

9330, 10063, 10796, 11529,

12262, 12995};

enum scenario {

 Error = 0,

 LeftTooClose = 1,

 RightTooClose = 2,

 CenterTooClose = 4,

};

typedef enum scenario scenario_t;

#define IRSlope 1195172

#define IROffset -1058

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

Software design, building blocks

13

• “do A then do B” → sequential

• “do A and B in either order” → sequential (parallel)

• “if A, then do B” → conditional

• “for each A, do B” → iterative

• “do A until B” → iterative

• “repeat A over & over forever” → iterative (condition always true)

• “on external event do B” → interrupt

• “every t msec do B” → interrupt

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 – C Programming

z

z

C Programming using MSP432

14

Summary

 Review C programming

• Logic/shift operations

• Arithmetic calculations

• Functions

• Conditionals

• Variables

• Constants

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Debugging

Module 4
Lecture: Software Design using MSP432- Debugging

1

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Debugging

Debugging on the MSP432

2

You will learn in this module

 Debugging

• Control (step, breakpoints)

• Observing variables

• Functional debugging

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

D
is

ta
n

c
e

 (
m

m
)

14-bit ADC

Expected Results

z

Your Function

Input

Output

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Debugging

Debugging

3

 Functional Debugging

• Known inputs

• Expected outputs

 Stabilization

• Fix input values, fix timing of input

• Repeated testing shows changes in software

 Test cases

• Near the extremes and in the middle

• Most typical of how clients will properly use the system

• Most typical of how clients will improperly use the system

• That differ by one

• You know your system will find difficult (corner cases)

• Using a random number generator

Important aspects:

• Control

• Observability

// Program 4_1 used to test the Convert function

int32_t const ADCBuffer[16]={2000,2733,3466,4199,4932,

 5665, 6398, 7131, 7864, 8597, 9330, 10063, 10796,

 11529, 12262, 12995};

int32_t const DistanceBuffer[16]={800,713,496,380,

 308,259,223,196,175,158,144,132,122,114,106,100};

void Program4_1(void){int i;

int32_t adc,distance,errors,diff;

 errors = 0;

 for(i=0; i<16; i++){

 adc = ADCBuffer[i];

 distance = Convert(adc); // call to your function

 diff = distance-DistanceBuffer[i];

 if((diff<-1)||(diff>1)){

 errors++;

 }

 }

 while(1){};

}

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Debugging

Debugging (Control)

4

 Test cases

• Get data from arrays (rather than actual inputs

devices)

 Single step

• Step, step over, step in, step out

 Breakpoints

• Set using debugger

 Special test main

• Establish exact scenario you wish to test

• Stabilization

Important aspects:

• Control

• Observability

int32_t errors;

void Program4_2(void){

 scenario_t result,truth;

 int i,j,k;

 int32_t left, right, center; // sensor readings

 errors = 0;

 for(i=0; i<18; i++){

 left = CornerCases[i];

 for(j=0; j<18; j++){

 center = CornerCases[j];

 for(k=0; k<18; k++){

 right = CornerCases[k];

 result = Classify(left,center,right);

 truth = Solution(left,center,right);

 if(result != truth){

 errors++;

 }

 }

 }

 }

 while(1){

 }

}

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Debugging

Debugging (Observability)

5

 Debugger monitor windows

• Globals

• Locals

• I/O registers

 Dump

• Save results in RAM or ROM

 Output to UART

• Observe with terminal program like PuTTY or TExaSdisplay

 Hardware Monitors

• Lights, sounds

• Nokia 5110 LCD display

Important aspects:

• Control

• Observability

Texas Instruments Robotics System Learning Kit: The Maze Edition

SWRP146 | Software Design using MSP432 - Debugging

z

Debugging on the MSP432

6

Summary

 Debugging

• Control

• Observability

• Functional debugging Convert

Input

Output

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	TI-RSLK_cover_cover
	4_SoftwareDesign_Lecture using MSP432_Design__Cprogramming_Debugging.pdf
	4_SoftwareDesign_Lecture_Software Design using MSP432 C Programming_2

