

Module 17

Introduction: Control Systems

Introduction: Control Systems

Educational Objectives:

UNDERSTAND Basic concepts of a control system INTERFACE The tachometer and a DC motor CREATE An integral control system using feedback DESIGN A differential drive robot that will move in a straight line

Prerequisites (Modules 10, 12, 13, 15)

- Periodic interrupts using SysTick (Module 10)
- Mechanical and electrical interfaces of motors (Module 12)
- Timer_A PWM output (Module 13)
- Timer_A input capture period measurement (Module 15)

Recommended reading materials for students:

- Volume 1 Sections 4.1, 9.4, and 9.7
 Embedded Systems: Introduction to the MSP432 Microcontroller, ISBN: 978-1512185676, Jonathan Valvano, copyright (c) 2017
- or
- Volume 2 Chapter 6
 Embedded Systems: Real-Time Interfacing to the MSP432
 Microcontroller, ISBN: 978-1514676585, Jonathan Valvano, copyright (c) 2017

A **control system** is a collection of mechanical and electrical devices connected for the purpose of commanding, directing, or regulating a physical plant. The **state variables** are the properties of the physical plant that are to be controlled. In this module, we wish to spin the two motors at a prescribed speed. Thus, the state variable in this case will be motor speed. The **sensor** and **state estimator** comprise a data acquisition system. The goal of this data acquisition system is to estimate the state variables. We will attach tachometers to the motors so the system can measure speed of both motors. The estimated state variables, X'(t), in this system will be the two measured speeds. The **actuator** is a transducer that converts the control system commands, U(t), into driving forces, V(t), that are applied the physical plant. We define the actuator command, U(t), as the duty cycles for the PWM outputs to the two motors.

In general, the goal of the control system is to drive the real state variables to be equal to the desired state variables. In actuality though, the controller attempts to drive the estimated state variables to be equal the desired state variables. It is important to have an accurate state estimator, because any differences between the estimated state variables and the real state variables will translate directly into controller errors. We define the **error** as the difference between the desired and estimated state variables:

$$e(t) = X^*(t) - X'(t)$$

A closed-loop control system uses the output of the state estimator in a feedback loop to drive the errors to zero. The control system compares X'(t), to the desired state variables, $X^*(t)$, in order to decide appropriate action, U(t). See Figure 1.

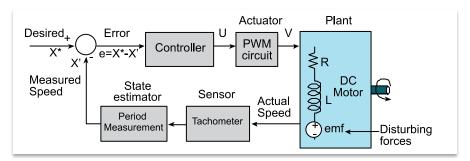


Figure 1. Block diagram of a MSP432-based closed-loop control system.

We can combine the period measurement from Module 15, the PWM output of Module 13, and the DC motor interface of Module 12 to build a motor controller. One effective yet simple control algorithm is an integral controller. We specify the actuator output as the integral of the accumulated errors.

$$U(t) = \int_{0}^{t} K_{i} E(\tau) d\tau$$

where K_i is a controller constant. For this controller, if the error is zero the actuator command remains constant. If the motor is spinning too slowly, the controller will increase power. If the motor is spinning too quickly, it will decrease power. For an integral controller, the amount of increase or decrease is linearly related to the error. So if the error is large it adds (or subtracts) a lot, and if the error is small it adds (or subtracts) a little.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated