Tel: (602) 746-1111 • Twx: 910-952-111 • Telex: 066-6491 • FAX (602) 889-1510 • Immediate Product Info: (800) 548-6132

DESIGNING ACTIVE FILTERS WITH THE DIAMOND TRANSISTOR OPA660 Part 1

By Christian Henn and Klaus Lehman, Burr-Brown International GmbH

Signal frequency bandwidth limitation, fast pulse shaping, separation between telecommunications signals, and suppression of unwanted carrier and disturbance frequencies are among the most important jobs of filter circuits. While active filters with operational amplifiers and switched capacitor filters are used for lower frequency applications, passive filter versions dominate the application spectrum at frequencies above 5 MHz . Now, however, a new active filter design has been developed that makes use of the open loop pole and delay time of an operational amplifier. The filter circuits consist of OPA660s, which provide the necessary bandwidth and allow access to the first open-loop pole and internal amplifier delay time. After presenting an overview of conventional filter circuits using 2nd, 3rd, and 5th order active filters with Tschebyscheff approximation, this Application Note will discuss the new filter structure in detail.

The filter circuits presented in Part One are optimized for the minimum possible number of components, while the filter circuits that will be analyzed in Part Two require more components, and board space, but are optimized for easy adjustment of the important filter parameters.

1.0
 2ND ORDER LOW-PASS FILTER USING OPERATIONAL AMPLIFIERS

1.1

2nd Order Low-Pass Filter With An Ideal Op Amp

Figure 1 shows a classical example of an active 2 nd order low-pass filter designed using an op amp. In this example, the op amp, IOPA, is assumed to be ideal.

FIGURE 1. 2nd Order Low-Pass Filter Using an Ideal Op Amp.

Equation 1 can be derived from Figure 1 and describes the filter transfer function. In the following analyses, all parameters are assumed to be normalized to the -3 dB frequency, ω_{g}, at which the amplitude $\left|\mathrm{A}_{\mathrm{I}}\right|$ is reduced to -3 dB . When normalized to the -3 dB frequency, Equation 1 becomes Equation 2. Technical literature about passive filters commonly uses the coefficients a_{1} and b_{I} (or a_{1} or b_{1}). Equation 3 is the result of comparing these coefficients and shows their relation to the circuit parameters τ_{1} and τ_{2}. The coefficients $\omega_{0 \mathrm{i}}$ (or ω_{01}) and Q_{i} (or Q_{1}) are easier to calculate and explain using circuit elements. Equation 4 shows these coefficients and those of a_{I} and b_{I} (or a_{1} and b_{1}).

$$
\begin{gather*}
A_{I}=\left[1+j \omega \cdot\left(2 \tau_{1}\right)+(j \omega)^{2} \cdot\left(\tau_{1} \tau_{2}\right)\right]^{-1} \tag{1}\\
A_{I}=\left[1+j \frac{\omega}{\omega_{g}} \cdot\left(2 \tau_{1} \omega_{g}\right)+\left(j \frac{\omega}{\omega_{g}}\right)^{2} \cdot\left(\tau_{1} \tau_{2} \omega_{g}^{2}\right)\right]^{-1} \tag{2}\\
A_{I}=\left[1+j \frac{\omega}{\omega_{g}} \cdot a_{1}+\left(j \frac{\omega}{\omega_{g}}\right)^{2} \cdot b_{1}\right]^{-1} \tag{3}\\
A_{I}=\left[1+j \frac{\omega}{\omega_{g}} \cdot \frac{1}{Q_{1}\left(\omega_{01} / \omega_{g}\right)}+\left(j \frac{\omega}{\omega_{g}}\right)^{2} \cdot \frac{1}{\left(\omega_{01} / \omega_{g}\right)^{2}}\right] \tag{4}
\end{gather*}
$$

These equations can be rearranged, resulting in:

$$
\begin{equation*}
\mathrm{a}_{1}=2 \tau_{1} \omega_{\mathrm{g}}=\frac{1}{\mathrm{Q}_{1}\left(\omega_{01} / \omega_{\mathrm{g}}\right)} ; \mathrm{b}_{1}=\tau_{1} \tau_{2} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)^{2}} \tag{5}
\end{equation*}
$$

Rearranging Equation 5 gives dimensioning rules for the active filter circuit shown in Figure 1:

$$
\begin{equation*}
\tau_{1}=\frac{1}{2 \mathrm{Q}_{1}\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \tau_{2}=\frac{2 \mathrm{Q}_{1}}{\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} \tag{6}
\end{equation*}
$$

The values for Q_{i} and $\omega_{01} / \omega_{g}=f_{01} / f_{g}$ can be found in Tables I to V for the various passband ripple specs and for filter orders from 1 to 4 .

Status		DESIGN				TEST AND ADJUST			
I	$\mathrm{f}_{\mathrm{p}} / \mathrm{f}_{\mathrm{g}}$	AI	BI	$\mathrm{f}_{\mathrm{ol}} / \mathrm{f}_{\mathrm{g}}$	\mathbf{Q}_{i}	$\mathrm{f}_{\mathrm{g} /} / \mathrm{f}_{\mathrm{g}}$	$\mathrm{f}_{\mathrm{x} 1} / \mathrm{f}_{\mathrm{g}}$	\|HXI	
1	0.152620	1.000000	0.000000	1.000000	-	1.000000	-	-	
1	0.509545	1.404882	1.162191	0.927601	0.767360	1.000000	0.360303	0.100000	
1	0.719945	1.432831	0.000000	0.697919	-	0.697919	-	-	
2	-	0.796864	1.141772	0.935859	1.340928	1.308626	0.795164	3.198263	
1	0.821643	2.402002	2.377929	0.648486	0.618801	0.557823	-	-	
2	-	0.483444	1.113711	0.947575	2.182931	1.417296	0.896485	7.014844	
1	0.881276	2.105565	0.000000	0.474932	-	0.474932	-	-	
2	-	1.555941	2.024763	0.702769	0.914522	0.854957	0.445671	0.766191	
3	-	0.316283	1.077536	0.963350	3.282011	1.472181	0.940726	10.42479	
1	0.913549	3.558215	4.549720	0.468822	0.599460	0.387303	-	-	
2	-	0.985106	1.720656	0.762347	1.331570	1.064307	0.645976	3.147338	
3	-	0.222328	1.060948	0.970852	4.632900	1.496039	0.959477	13.36794	
1	0.936329	2.834566	0.000000	0.352788	-	0.352788	-	-	
2	-	2.195827	3.454179	0.538056	0.846397	0.624395	0.295713	0.415494	
3	-	0.666183	1.514331	0.812624	1.847213	1.196561	0.750728	5.660789	
4	-	0.163930	1.044104	0.978652	6.233234	1.513678	0.972334	15.92230	

TABLE I. Passband Ripple, $\mathrm{P}=0.1 \mathrm{~dB}$.

Status		DESIGN				TEST AND ADJUST			
I	$\mathrm{f}_{\mathrm{p}} / \mathrm{f}_{\mathrm{g}}$	AI	BI	$\mathrm{f}_{\mathrm{oi}} / \mathrm{f}_{\mathrm{g}}$	Q ${ }_{\text {i }}$	$\mathbf{f}_{\mathbf{g} i} / \mathbf{f}_{\mathbf{g}}$	$\mathrm{f}_{\mathrm{x} \text { / } / \mathrm{f}_{\mathrm{g}}}$	\|HXI	
1	0.327091	1.000000	0.000000	1.000000	-	1.000000	-	-	
1	0.586283	1.394652	1.234406	0.900059	0.796642	1.000000	0.414565	0.200000	
1	0.779147	1.575499	0.000000	0.634720	-	0.634720	-	-	
2	-	0.739619	1.165269	0.926375	1.459503	1.318092	0.810393	3.826278	
1	0.859762	2.568461	2.752149	0.602787	0.645897	0.546179	-	-	
2	-	0.436287	1.128618	0.941297	2.435013	1.418697	0.900734	7.917111	
1	0.909791	2.382160	0.000000	0.419787	-	0.419787	-	-	
2	-	1.469586	2.163607	0.679846	1.000908	0.865129	0.481160	1.254646	
3	-	0.280509	1.081198	0.961717	3.706857	1.475016	0.944058	11.45986	
1	0.933323	3.718489	5.417686	0.429629	0.625951	0.374863	-	-	
2	-	0.894401	1.780075	0.749516	1.491718	1.070693	0.659959	3.991311	
3	-	0.195864	1.065000	0.969003	5.268903	1.496012	0.960237	14.47369	
1	0.952210	3.238203	0.000000	0.308813	-	0.308813	-	-	
2	-	2.091516	3.758594	0.515807	0.926940	0.632143	0.333514	0.834338	
3	-	0.592804	1.539416	0.805976	2.092989	1.201365	0.758586	6.670542	
4	-	0.143584	1.044744	0.978352	7.118671	1.514831	0.973513	17.06946	

TABLE II. Passband Ripple, $\mathrm{P}=0.2 \mathrm{~dB}$.

STATUS		DESIGN				TEST AND ADJUST			
I	$\mathrm{f}_{\mathrm{p}} / \mathrm{f}_{\mathrm{g}}$	AI	BI	$\mathrm{f}_{\mathrm{ol}} / \mathrm{f}_{\mathrm{g}}$	Q_{i}	$\mathrm{f}_{\mathrm{g} i} / \mathrm{f}_{\mathrm{g}}$	$\mathrm{f}_{\mathrm{x} 1} / \mathrm{f}_{\mathrm{g}}$	\|HXI	
1	0.267431	1.000000	0.000000	1.000000	-	1.000000	-	-	
1	0.632596	1.383913	1.291188	0.880046	0.821081	1.000000	0.447312	0.300000	
1	0.813628	1.685318	0.000000	0.593360	-	0.593360	-	-	
2	-	0.699249	1.178457	0.921177	1.552476	1.324872	0.820079	4.296095	
1	0.880317	2.604074	3.023945	0.575060	0.667780	0.541312	-	-	
2	-	0.405955	1.138083	0.937374	2.627901	1.418992	0.902803	8.552317	
1	0.925452	2.590454	0.000000	0.386033	-	0.386033	-	-	
2	-	1.403876	2.247589	0.667024	1.067898	0.871851	0.499850	1.645308	
3	-	0.258290	1.082606	0.961092	4.028354	1.477015	0.946169	12.16998	
1	0.943675	3.797733	6.042962	0.406794	0.647292	0.369527	-	-	
2	-	0.834824	1.814592	0.742353	1.613595	1.074126	0.667278	4.594292	
3	-	0.179775	1.067584	0.967830	5.747404	1.495732	0.960477	15.22243	
1	0.960769	3.540230	0.000000	0.282468	-	0.282468	-	-	
2	-	2.007356	3.943811	0.503549	0.989313	0.637414	0.352175	1.187620	
3	-	0.546919	1.552727	0.802514	2.278372	1.204173	0.762886	7.366854	
4	-	0.131337	1.044759	0.978345	7.782533	1.515687	0.974298	17.84038	

TABLE III. Passband Ripple, $\mathrm{P}=0.3 \mathrm{~dB}$.

STATUS		DESIGN				TEST AND ADJUST			
I	f_{p} / f_{g}	AI	BI	$\mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{g}}$	Q_{i}	$\mathrm{f}_{\mathrm{gi}} / \mathrm{f}_{\mathrm{g}}$	$\mathrm{f}_{\mathrm{xi}} / \mathrm{f}_{\mathrm{g}}$	\|HXI	
1	0.310609	1.000000	0.000000	1.000000	-	1.000000	-	-	
1	0.665456	1.372811	1.339700	0.863965	0.843127	1.000000	0.470548	0.400000	
1	0.837887	1.779279	0.000000	0.562025	-	0.562025	-	-	
2	-	0.667162	1.187067	0.917830	1.633076	1.330380	0.827331	4.687601	
1	0.893939	2.621387	3.244945	0.555132	0.687183	0.539051	-	-	
2	-	0.383191	1.145162	0.934473	2.792661	1.418897	0.904021	9.061859	
1	0.936086	2.766593	0.000000	0.361455	-	0.361455	-	-	
2	-	1.349474	2.307395	0.658323	1.125632	0.876917	0.512217	1.982446	
3	-	0.241967	1.083152	0.960849	4.301189	1.478649	0.947776	12.73086	
1	0.950419	3.841285	6.548634	0.390773	0.666191	0.366864	-	-	
2	-	0.789577	1.838770	0.737456	1.717391	1.076372	0.672047	5.082044	
3	-	0.168103	1.069542	0.966943	6.152101	1.495388	0.960535	15.80925	
1	0.966515	3.794785	0.000000	0.263520	-	0.263520	-	-	
2	-	1.935768	4.076623	0.495279	1.043030	0.641397	0.364090	1.499892	
3	-	0.513081	1.561398	0.800282	2.435403	1.206176	0.765808	7.918443	
4	-	0.122504	1.044564	0.978436	8.342904	1.516405	0.974915	18.44197	

TABLE IV. Passband Ripple, $\mathrm{P}=0.4 \mathrm{~dB}$.

STATUS		DESIGN				TEST AND ADJUST			
I	$\mathrm{f}_{\mathrm{p}} / \mathrm{f}_{\mathrm{g}}$	AI	BI	$\mathrm{f}_{\mathrm{o} /} / \mathrm{f}_{\mathrm{g}}$	Q_{i}	$\mathrm{f}_{\mathrm{gi}} / \mathrm{f}_{\mathrm{g}}$	$\mathrm{f}_{\mathrm{xi}} / \mathrm{f}_{\mathrm{g}}$	\|HXI	
1	0.349311	1.000000	0.000000	1.000000	-	1.000000	-	-	
1	0.690638	1.361436	1.382743	0.850412	0.863721	1.000000	0.488355	0.500000	
1	0.856542	1.863635	0.000000	0.536586	-	0.536586	-	-	
2	-	0.640186	1.193074	0.915517	1.706190	1.335117	0.833192	5.030512	
1	0.903889	2.628161	3.434139	0.539624	0.705110	0.538096	-	-	
2	-	0.364824	1.150866	0.932154	2.940553	1.418624	0.904802	9.495995	
1	0.944056	2.923552	0.000000	0.342050	-	0.342050	-	-	
2	-	1.302495	2.353418	0.651854	1.177805	0.880993	0.521307	2.284474	
3	-	0.229001	1.083268	0.960798	4.544965	1.480065	0.949099	13.20349	
1	0.955298	3.864492	6.979727	0.378513	0.683639	0.365535	-	-	
2	-	0.752778	1.857255	0.733777	1.810376	1.077986	0.675491	5.499967	
3	-	0.158910	1.071138	0.966223	6.512856	1.495030	0.960511	16.30110	
1	0.970789	4.021119	0.000000	0.248687	-	0.248687	-	-	
2	-	1.872914	4.179506	0.489145	1.091553	0.644589	0.372636	1.783643	
3	-	0.486126	1.567604	0.798697	2.575546	1.207745	0.768006	8.384227	
4	-	0.115575	1.044265	0.978576	8.841816	1.517046	0.975442	18.94474	

TABLE V. Passband Ripple, $\mathrm{P}=0.5 \mathrm{~dB}$.

The following equations are helpful when observing the effects of component deviations and temperature changes upon the filter transfer curve and phase behavior:

$$
\begin{equation*}
\omega_{01}=\frac{1}{\sqrt{\tau_{1} \tau_{2}}}=\frac{1}{\sqrt{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}} ; \mathrm{Q}_{1}=\frac{1}{2} \sqrt{\frac{\tau_{2}}{\tau_{1}}}=\frac{1}{2} \sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}} \tag{7}
\end{equation*}
$$

The equation for the corner frequency, ω_{01}, describes the signal response over frequency, while Q_{1} denotes the peaking of the frequency response in the passband.
Equations 8-10 give values for the frequency response expressed in the same variables used in Equations 2, 3, and 4.

$$
\begin{align*}
& \left|\mathrm{A}_{\mathrm{I}}\right|=\left[1+2 \tau_{1}\left(2 \tau_{1}-\tau_{2}\right) \omega^{2}+\left(\tau_{1} \tau_{2}\right)^{2} \omega^{4}\right]^{-\frac{1}{2}} \tag{8}\\
& \left|\mathrm{~A}_{\mathrm{I}}\right|=\left[1+\left(\mathrm{a}_{1}-2 \mathrm{~b}_{1}\right)\left(\frac{\omega}{\omega_{\mathrm{g}}}\right)^{2}+\mathrm{b}_{1}{ }^{2}\left(\frac{\omega}{\omega_{\mathrm{g}}}\right)^{4}\right]^{-\frac{1}{2}} \tag{9}
\end{align*}
$$

$\left|A_{I}\right|=\left[1+\left(\frac{1}{\mathrm{Q}_{1}{ }^{2}}-2\right)\left(\frac{\omega / \omega_{\mathrm{g}}}{\omega_{01} / \omega_{\mathrm{g}}}\right)^{2}+\left(\frac{\omega / \omega_{\mathrm{g}}}{\omega_{01} / \omega_{\mathrm{g}}}\right)^{4}\right]^{-\frac{1}{2}}$

Figure 2 shows the theoretical frequency response curve of the second order filter using an ideal op amp. The definitions given here will be used later on for comparison with and optimation of the filter response.

FIGURE 2. Definitions for a 2nd Order Low-Pass Filter.

Example Calculation

For a Low-Pass Filter

$\mathrm{p}=+0.1 \mathrm{~dB} ; \mathrm{f}_{\mathrm{g}}=10 \mathrm{MHz} ; \mathrm{R}_{1}=\mathrm{R}_{2}=300 \Omega$
$Q_{1}=0.767360$
$\mathrm{f}_{01} / \mathrm{f}_{\mathrm{g}}=0.927601$
Q_{1} and f_{01} / f_{g} are derived from the filter table.

$$
\begin{aligned}
& \tau_{1}= \frac{1}{2 \mathrm{Q}_{1}\left(\mathrm{f}_{01} / \mathrm{f}_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}} \\
&=\frac{1}{2 \cdot 0.767360 \cdot 0.927601 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=11.18 \mathrm{~ns} \\
& \tau_{2}=\frac{2 \mathrm{Q}_{1}}{\left(f_{01} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}} \\
&=\frac{2 \cdot 0.767360}{0.927601 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=26.33 \mathrm{~ns} \\
& \mathrm{C}_{1}=\frac{\tau_{1}}{\mathrm{R}_{1}}=\frac{11.8 \mathrm{~ns}}{300}=37.27 \mathrm{pF} \\
& \mathrm{C}_{2}=\frac{\tau_{2}}{\mathrm{R}_{2}}=\frac{26.33 \mathrm{~ns}}{300}=87.77 \mathrm{pF}
\end{aligned}
$$

Figure 3 shows the frequency response $\left|\mathrm{A}_{\mathrm{t}}\right|$ of the filter circuit from Figure 1 using the filter component values calculated above.

1.2
 2ND ORDER LOW-PASS FILTER WITH AN OP AMP MODEL

Unlike the ideal op amp used for the analyses above, op amps used in real circuits do not always behave as one might wish. For this reason, the following analyses use the OPA660 in current-feedback configuration. Figure 4 shows the circuit schematic of the OPA660 using the PT_{2} model to describe the AC behavior.
These components values produce the following results with an optimally flat frequency response adjustment:
$\mathrm{f}_{\mathrm{g}}=357 \mathrm{MHz}$
$\mathrm{R}_{\text {OUT DC }}=45 \mathrm{~m} \Omega$
$\mathrm{G}_{\text {OPEN Loop dC }}=70 \mathrm{~dB}$
$\mathrm{R}_{\text {OUT 100MHz }}=2.9 \Omega$

If the ideal op amp shown in Figure 1 is replaced by the OPA660 PT_{2} model (MOPA660), the resulting circuit diagram looks like that shown in Figure 5.
Slight changes in the capacitors C_{1} and C_{2} are necessary to correct the frequency response to a -3 dB frequency of 10 MHz . At 100 MHz and above, the modeled frequency

FIGURE 3. Frequency Response of the 2nd Order Low-Pass Filter from Figure 1 with Ideal Op Amp.

FIGURE 4. PT_{2} Model Describing the OPA660 as Current-Feedback Amplifier.
response $\mathrm{V}_{\text {OUT m }}$ begins to deviate from the ideal frequency response $\mathrm{V}_{\text {OUT }}$, since in practice the open-loop gain of the OPA660 decreases with increasing frequency. For this reason, the output impedance $\mathrm{R}_{\text {out }}$ rises from $45 \mathrm{~m} \Omega$ at DC to 2.9Ω at 100 MHz .

1.3 TESTS WITH THE DEMO BOARD

As also shown in Figure 3, a demo board with the circuit shown in Figure 6 produces extremely poor stopband attenuation at the output $\mathrm{V}_{\text {out di }}$, primarily due to the package inductance in series to the resistor $\mathrm{R}_{\mathrm{gmB}}$. At 500 MHz , for example, the package inductance of the output buffer (IB), which is about 10 nH , causes $\mathrm{R}_{\mathrm{gmB}}$ to increase by approximately 31Ω.
Poor stopband attenuation can be avoided by inserting the buffer, BUF600, and generating the output voltage at the
capacitor, C_{1}. The BUF600 makes the original output $\mathrm{V}_{\text {Out D1 }}$ superfluous. The rise in frequency response at 300 MHz and above can be explained as a product of the direct crosstalk between input and output on the demo board.

2.0
 2nd ORDER LOW-PASS FILTER USING THE FIRST AND SECOND OPEN-LOOP POLE OF WIDE-BAND AMPLIFIERS
 2.1 Analyses Using The PT_{2} Model

Wide-band op amps behave quite similarly to 2 nd order low-pass filters. For this reason, their parameters can be determined by the equations used for the PT_{2} model (see Figure 7).

FIGURE 5. 2nd Order Low-Pass Filter Using the Modeled OPA660.

FIGURE 6. Demo Board Circuit Schematic for the 2nd Order Low-Pass Filter Using the OPA660.

FIGURE 7. PT_{2} Model for Wide-Band Op Amps.

The results are similar to the equations listed under point 1.1:

$$
\begin{gather*}
\mathrm{A}_{\mathrm{I}}=\left[1+j \omega \cdot\left(\tau_{\mathrm{C}}\right)+(j \omega)^{2} \cdot\left(\tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)\right]^{-1} \tag{11}\\
\mathrm{a}_{1}=\tau_{\mathrm{C}} \omega_{\mathrm{g}}=\frac{1}{\mathrm{Q}_{1}\left(\omega_{01} / \omega_{\mathrm{g}}\right)} ; \tag{12}\\
\mathrm{b}_{1}=\tau_{\mathrm{C}} \tau_{\mathrm{D}} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)^{2}} \\
\tau_{\mathrm{C}}=\frac{1}{\mathrm{Q}_{1}\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \tau_{\mathrm{D}}=\frac{\mathrm{Q}_{1}}{\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} \tag{13}\\
\omega_{01}=\frac{1}{\sqrt{\tau_{\mathrm{D}} \tau_{\mathrm{C}}}}=\frac{1}{\sqrt{\mathrm{R}_{\mathrm{D}} \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{D}}}} ; \tag{14}\\
\mathrm{Q}_{1}=\sqrt{\frac{\tau_{\mathrm{D}}}{\tau_{\mathrm{C}}}}=\sqrt{\frac{\mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{D}}}{\mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{C}}}} \\
\left|\mathrm{~A}_{\mathrm{I}}\right|=\left[1+\tau_{\mathrm{C}}\left(\tau_{\mathrm{C}}-2 \tau_{\mathrm{D}}\right) \omega^{2}+\left(\tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)^{2} \omega^{4}\right]^{-\frac{1}{2}} \tag{15}
\end{gather*}
$$

When the curves described in Equations 8 and 15 are compared to each other, the result is a transfer response as shown in Figure 2.

2.2 Modified PT_{2} Model

The customary PT_{2} model shown in Figure 7 can be modified to produce the circuit shown in Figure 8 without significantly changing the transfer response.

FIGURE 8. Modified PT_{2} Model.

$$
\begin{gather*}
\mathrm{A}_{\mathrm{I}}=\left[1+j \omega \cdot\left(\tau_{\mathrm{C}}+\tau_{\mathrm{D}}\right)+(\mathrm{j} \omega)^{2} \cdot\left(\tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)\right]^{-1} \tag{16}\\
\mathrm{a}_{1}=\left(\tau_{\mathrm{C}}+\tau_{\mathrm{CD}}\right) \omega_{\mathrm{g}}=\frac{1}{\mathrm{Q}_{1}\left(\omega_{01} / \omega_{\mathrm{g}}\right)} ; \tag{17}\\
\mathrm{b}_{1}=\tau_{\mathrm{C}} \tau_{\mathrm{D}} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)^{2}} \\
\tau_{\mathrm{C}}=\tau_{\mathrm{CD}}=\frac{1}{2 \mathrm{Q}_{1}\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \tau_{\mathrm{D}}=\frac{2 \mathrm{Q}_{1}}{\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} \tag{18}
\end{gather*}
$$

$$
\omega_{01}=\frac{1}{\sqrt{\tau_{\mathrm{D}} \tau_{\mathrm{D}}}}=\frac{1}{\sqrt{\mathrm{R}_{\mathrm{D}} \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{D}}}}
$$

$$
\begin{equation*}
\mathrm{Q}_{1}=\sqrt{\frac{\mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{D}}}{\mathrm{R}_{\mathrm{F}}\left(\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{D}}\right)^{2}}}=\frac{1}{2} \sqrt{\frac{\mathrm{R}_{\mathrm{D}}}{\mathrm{R}_{\mathrm{F}}}} \tag{19}
\end{equation*}
$$

$\left|\mathrm{A}_{\mathrm{I}}\right|=\left\{1+\left[\left(\tau_{\mathrm{C}}+\tau_{\mathrm{CD}}\right)^{2}-2 \tau_{\mathrm{C}} \tau_{\mathrm{D}}\right] \omega^{2}+\left(\tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)^{2} \omega^{4}\right\}^{-\frac{1}{2}}$

The modified version no longer requires a buffer, but the capacitor C_{C} must be equal to C_{D}. This condition is similar to Figure 1, in which R_{1} must be equal to R_{2}.

Example Calculation

For a Low-Pass Filter

$\mathrm{p}=+0.1 \mathrm{~dB} ; \mathrm{f}_{\mathrm{g}}=10 \mathrm{MHz} ; \mathrm{C}_{\mathrm{C}}=\mathrm{C}_{\mathrm{D}}=30 \mathrm{pF}$
$\mathrm{Q}_{1}=0.767360$
$\mathrm{f}_{01} / \mathrm{f}_{\mathrm{g}}=0.927601$
a_{1} and $\mathrm{f}_{01} / \mathrm{f}_{\mathrm{g}}$ can be derived from the filter table.

$$
\begin{aligned}
\tau_{\mathrm{C}} & =\tau_{\mathrm{CD}}=\frac{1}{2 \mathrm{Q}_{1}\left(f_{01} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}} \\
& =\frac{1}{2 \cdot 0.767360 \cdot 0.927601 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=11.18 \mathrm{~ns}
\end{aligned}
$$

$$
\tau_{\mathrm{D}}=\frac{2 \mathrm{Q}_{1}}{\left(f_{01} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}=\frac{2 \cdot 0.767360}{0.927601 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=26.33 \mathrm{~ns}
$$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{F}}=\frac{\tau_{\mathrm{C}}}{\mathrm{C}_{\mathrm{C}}}=\frac{11.18 \mathrm{~ns}}{30 \mathrm{pF}}=372.7 \Omega \\
& \mathrm{R}_{\mathrm{D}}=\frac{\tau_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}}}=\frac{26.33 \mathrm{~ns}}{30 \mathrm{pF}}=877.7 \Omega
\end{aligned}
$$

Figure 9 shows the frequency response $\left|\mathrm{A}_{\mathrm{I}}\right|$, which is identical to the frequency response shown in Figure 3.

2.3
 2nd Order Low-Pass Filter Based On Adjusted Open-Loop Poles

The circuit shown in Figure 10 combines the ideal circuit from Figure 8 with the OPA660 model.
The resistors R_{D} and R_{F} are used to fine-tune the frequency response $\left|A_{M}\right|$, resulting in the curve shown in Figure 9. The conditions listed in section 1.2 for signals at 100 MHz and above also apply here.

The 2nd order low-pass filter shown in Figure 5 contains 4 time constants: the dominating external time constants τ_{1} and τ_{2}, which determine the actual filter curve, and the two parasitic internal time constants τ_{C} and τ_{D}. The 2 nd order low-pass filter in Figure 10, however, contains only τ_{C} and τ_{D}. The unavoidable internal parasitic time constants $\tau_{\mathrm{C} \text { IN }}$ and $\tau_{\mathrm{D} \text { IN }}$ are included in the dominating external time constants $\tau_{\mathrm{C} \text { out }}$ and $\tau_{\mathrm{D} \text { out }}$.

2.4 Tests Using The Demo Board

The circuit shown in Figure 10 was used to construct the demo board shown in Figure 11. Figure 9 contains the frequency responses $\left|A_{D 1}\right|$ and $\left|A_{D 2}\right|$ measured at the outputs $\mathrm{V}_{\text {OUT D1 }}$ and $\mathrm{V}_{\text {OUT D2 }}$.

FIGURE 9. Frequency Responses of a 2nd Order Low-Pass Filter According to the Structure in Figure 8.

FIGURE 10. 2nd Order Low-Pass Filter Using the Modelled OPA660.

FIGURE 11. Demo Board with a 2nd Order Low-Pass Filter Using the OPA660.

As already explained in section 1.3, the output $\mathrm{V}_{\text {OUT D2 }}$ here also shows the improved frequency response $\left|\mathrm{A}_{\mathrm{D} 2}\right|$.

3.0
 3RD ORDER LOW-PASS FILTER BASED ON ADJUSTED OPEN-LOOP POLES

3.1
 Modified PT_{2} Model
 With Preceding Low-Pass Filter

The structure shown in Figure 8 does not contain a prefilter. Instead, the idealized Diamond Transistor IDT has to handle the full bandwidth of the input signal. In Figure 1, the lowpass filter in front of the op amp IOPA reduces the demands on its bandwidth. Consequently, the 2nd order filter structure in Figure 11 is extended by a passive RC filter at the input. This filter improves the overall filter performance, especially at frequencies above twice the -3 dB frequency, where the increase in output impedance begins to degrade the filter curve.

FIGURE 12. Modified PT_{2} Model with Preceding Low-Pass Filter τ_{1}.
$A_{I}=\left\{\left[1+j \omega \cdot\left(\tau_{1}\right)\right]\left[1+j \omega \cdot\left(\tau_{\mathrm{C}}+\tau_{\mathrm{CD}}\right)+(\mathrm{j} \omega)^{2} \cdot\left(\tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)\right]\right\}^{-1}$

$$
\begin{align*}
& \mathrm{a}_{1}=\tau_{1} \omega_{\mathrm{g}}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)} \tag{22}\\
& \mathrm{a}_{2}=\left(\tau_{\mathrm{C}}+\tau_{\mathrm{CD}}\right) \omega_{\mathrm{g}}=\frac{1}{\mathrm{Q}_{2}\left(\omega_{02} / \omega_{\mathrm{g}}\right)} \\
& \mathrm{b}_{2}=\tau_{\mathrm{C}} \tau_{\mathrm{D}} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)^{2}}
\end{align*}
$$

$$
\begin{gathered}
\mathrm{b}_{2}=\tau_{\mathrm{C}} \tau_{\mathrm{D}} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)^{2}} \\
\tau_{1}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \tau_{\mathrm{C}}=\tau_{\mathrm{CD}}=\frac{1}{2 \mathrm{Q}_{2}\left(\omega_{02} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} \\
\tau_{\mathrm{D}}=\frac{2 \mathrm{Q}_{2}}{\left(\omega_{02} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}}
\end{gathered}
$$

$$
\begin{gather*}
\omega_{01}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} ; \omega_{02}=\frac{1}{\sqrt{\mathrm{R}_{\mathrm{D}} \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{D}}}} ; \tag{25}\\
\mathrm{Q}_{2}=\sqrt{\frac{\mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{D}}}{\mathrm{R}_{\mathrm{F}}\left(\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{D}}\right)^{2}}}=\frac{1}{2} \sqrt{\frac{\mathrm{R}_{\mathrm{D}}}{\mathrm{R}_{\mathrm{F}}}} \\
\left|\mathrm{~A}_{\mathrm{I}}\right|=\left[1+\mathrm{A} \omega^{2}+\mathrm{B} \omega^{4}+\mathrm{C} \omega^{6}\right]^{-\frac{1}{2}} \\
\mathrm{~A}=\tau_{1}^{2}+\left(\tau_{\mathrm{C}}+\tau_{\mathrm{CD}}\right)^{2}-2 \tau_{\mathrm{C}} \tau_{\mathrm{D}} \tag{26}\\
\mathrm{~B}=\tau_{1}^{2}\left[\left(\tau_{\mathrm{C}}+\tau_{\mathrm{CD}}\right)^{2}-2 \tau_{\mathrm{C}} \tau_{\mathrm{D}}\right]+\left(\tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)^{2} \\
\mathrm{C}=\left(\tau_{1} \tau_{\mathrm{C}} \tau_{\mathrm{D}}\right)^{2}
\end{gather*}
$$

Figure 14 shows the theoretical (ideal) frequency response curve of a 3rd order low-pass filter. The definitions in Figure 13 support the readings from the filter table.

FIGURE 13. Definitions of a 3rd Order Low-Pass Filter.

Example Calculation
 For a Low-Pass Filter

$\mathrm{p}=+0.1 \mathrm{~dB} ; \mathrm{f}_{\mathrm{g}}=10 \mathrm{MHz} ; \mathrm{C}_{1}=\mathrm{C}_{\mathrm{C}}=\mathrm{C}_{\mathrm{D}}=30 \mathrm{pF}$
$\mathrm{f}_{01} / \mathrm{f}_{\mathrm{g}}=0.697919$
$\mathrm{f}_{02} / \mathrm{f}_{\mathrm{g}}=0.935859$
$\mathrm{Q}_{2}=1.340928$
Q_{2} and f_{01} / f_{g} are derived from the filter table.

$$
\begin{aligned}
\tau_{1}= & \frac{1}{\left(f_{01} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}=\frac{1}{0.697919 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=22.80 \mathrm{~ns} \\
\tau_{\mathrm{C}} & =\tau_{\mathrm{CD}}=\frac{1}{2 \mathrm{Q}_{2}\left(f_{02} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}} \\
& =\frac{1}{2 \cdot 1.340928 \cdot 0.935859 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=6.341 \mathrm{~ns}
\end{aligned}
$$

$\tau_{\mathrm{D}}=\frac{2 \mathrm{Q}_{2}}{\left(f_{02} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}=\frac{2 \cdot 1.340928}{0.935859 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=45.61 \mathrm{~ns}$
$\mathrm{R}_{1}=\frac{\tau_{1}}{\mathrm{C}_{1}}=\frac{22.80 \mathrm{~ns}}{30 \mathrm{pF}}=760 \Omega ; \mathrm{R}_{\mathrm{F}}=\frac{\tau_{\mathrm{C}}}{\mathrm{C}_{\mathrm{C}}}=\frac{6.341 \mathrm{~ns}}{30 \mathrm{pF}}=211.4 \Omega$

3.2
 3rd Order Low-Pass Filter With A Modeled Op Amp

In Figure 15, the 3rd order low-pass filter circuit using an ideal op amp has been replaced by a modeled OPA660.
Figure 14 also shows how by inserting a passive prefilter, this 3rd order low-pass filter produces an improvement in stopband attenuation over a 2nd order filter while maintaining the same hardware in the active filter.

$$
\mathrm{R}_{\mathrm{D}}=\frac{\tau_{\mathrm{D}}}{\mathrm{C}_{\mathrm{D}}}=\frac{45.61 \mathrm{~ns}}{30 \mathrm{pF}}=1520 \Omega
$$

FIGURE 14. Ideal Frequency Responses of a 3rd Order Low-Pass Filter Based on Adjusted Open-Loop Poles.

FIGURE 15. 3rd Order Low-Pass Filter with the Modeled OPA660.

[^0]
3.3 Tests Using The Demo Board

Figure 14 shows frequency responses measured using the demo board illustrated in Figure 16. As with 2nd order lowpass filters, the best curve results when the frequency response $\left|\mathrm{A}_{\mathrm{D} 2}\right|$ is decoupled separately by the BUF600 at $\mathrm{V}_{\text {OUTD2 } 2}$.

4.0
 5TH ORDER LOW-PASS FILTER BASED ON ADJUSTED OPEN-LOOP POLES

4.1
 5th Order Low-Pass Filter With Ideal Amplifiers

Figure 17 shows the 3rd order low-pass filter from Figure 12 in series with the 2 nd order low-pass filter from Figure 8.

$$
\begin{array}{lll}
\tau_{1}=\mathrm{R}_{1} \mathrm{C}_{1} & \tau_{\mathrm{CD} 2}=\mathrm{R}_{\mathrm{F} 2} \mathrm{C}_{\mathrm{D} 2} & \tau_{\mathrm{C} 3}=\mathrm{R}_{\mathrm{F} 3} \mathrm{C}_{\mathrm{C} 3} \\
\tau_{\mathrm{C} 2}=\mathrm{R}_{\mathrm{F} 2} \mathrm{C}_{\mathrm{C} 2} & \mathrm{C}_{\mathrm{C} 2}=\mathrm{C}_{\mathrm{D} 2} & \tau_{\mathrm{D} 3}=\mathrm{R}_{\mathrm{D} 3} \mathrm{C}_{\mathrm{D} 3} \\
\tau_{\mathrm{D} 2}=\mathrm{R}_{\mathrm{D} 2} \mathrm{C}_{\mathrm{D} 2} & \mathrm{C}_{\mathrm{C} 3}=\mathrm{C}_{\mathrm{D} 3} & \tau_{\mathrm{CD} 3}=\mathrm{R}_{\mathrm{F} 3} \mathrm{C}_{\mathrm{D} 3}
\end{array}
$$

$$
\begin{gathered}
\mathrm{A}_{1}=\left\{\left[1+\mathrm{j} \omega\left(\tau_{1}\right)\right]\left[1+\mathrm{j} \omega\left(\tau_{\mathrm{C} 2}+\tau_{\mathrm{CD} 2}\right)+(\mathrm{j} \omega)^{2}\left(\tau_{\mathrm{C} 2} \tau_{\mathrm{D} 2}\right)\right]\right. \\
\left.\left[1+\mathrm{j} \omega\left(\tau_{\mathrm{C} 3}+\tau_{\mathrm{CD} 3}\right)+(\mathrm{j} \omega)^{2}\left(\tau_{\mathrm{C} 3} \tau_{\mathrm{D} 3}\right)\right]\right\}^{-1} \\
\mathrm{a}_{1}=\tau_{1} \omega_{\mathrm{g}}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right)} ; \\
\mathrm{a}_{2}=\left(\tau_{\mathrm{C} 2}+\tau_{\mathrm{CD} 2}\right) \omega_{\mathrm{g}}=\frac{1}{\mathrm{Q}_{2}\left(\omega_{02} / \omega_{\mathrm{g}}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{b}_{2}=\tau_{\mathrm{C} 2} \tau_{\mathrm{D} 2} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{02} / \omega_{\mathrm{g}}\right)^{2}} \\
& \mathrm{a}_{3}=\left(\tau_{\mathrm{C} 3}+\tau_{\mathrm{CD} 3}\right) \omega_{\mathrm{g}}=\frac{1}{\mathrm{Q}_{3}\left(\omega_{03} / \omega_{\mathrm{g}}\right)}
\end{aligned}
$$

$$
\begin{gather*}
\mathrm{b}_{3}=\tau_{\mathrm{C} 3} \tau_{\mathrm{D} 3} \omega_{\mathrm{g}}^{2}=\frac{1}{\left(\omega_{03} / \omega_{\mathrm{g}}\right)^{2}} \tag{28}\\
\tau_{1}=\frac{1}{\left(\omega_{01} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \tau_{\mathrm{C} 2}=\tau_{\mathrm{CD} 2}=\frac{1}{2 \mathrm{Q}_{2}\left(\omega_{02} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \\
\tau_{\mathrm{D} 2}=\frac{2 \mathrm{Q}_{2}}{\left(\omega_{02} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} \\
\tau_{\mathrm{C} 3}=\tau_{\mathrm{CD} 3}=\frac{1}{2 \mathrm{Q}_{3}\left(\omega_{03} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} ; \tau_{\mathrm{D} 3}=\frac{2 \mathrm{Q}_{3}}{\left(\omega_{02} / \omega_{\mathrm{g}}\right) \omega_{\mathrm{g}}} \\
\omega_{01}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}} ; \omega_{02}=\frac{1}{\sqrt{\mathrm{R}_{\mathrm{D} 2} \mathrm{R}_{\mathrm{F} 2} \mathrm{C}_{2} \mathrm{C}_{\mathrm{D} 2}}} ; \tag{29}\\
\mathrm{Q}_{2}=\sqrt{\frac{\mathrm{R}_{\mathrm{D}} \mathrm{C}_{\mathrm{C} 2} \mathrm{C}_{\mathrm{D} 2}}{\mathrm{R}_{\mathrm{F} 2}\left(\mathrm{C}_{\mathrm{C} 2}+\mathrm{C}_{\mathrm{D} 2}\right)^{2}}}=\frac{1}{2} \sqrt{\frac{\mathrm{R}_{\mathrm{D} 2}}{\mathrm{R}_{\mathrm{F} 2}}} \\
\omega_{03}=\frac{1}{\mathrm{R}_{\mathrm{D} 3} \mathrm{R}_{\mathrm{F} 3} \mathrm{C}_{\mathrm{C} 3} \mathrm{C}_{\mathrm{D} 3}} ; \mathrm{Q}_{3}=\sqrt{\frac{\mathrm{R}_{\mathrm{D} 3} \mathrm{C}_{\mathrm{C} 3} \mathrm{C}_{\mathrm{D} 3}}{\mathrm{R}_{\mathrm{F} 3}\left(\mathrm{C}_{\mathrm{C} 3}+\mathrm{C}_{\mathrm{D} 3}\right)^{2}}}=\frac{1}{2} \sqrt{\frac{\mathrm{R}_{\mathrm{D} 3}}{\mathrm{R}_{\mathrm{F} 3}}} \tag{30}
\end{gather*}
$$

FIGURE 16. Demo Board with a 3rd Order Low-Pass Filter Using the OPA660.

FIGURE 17. 5th Order Low-Pass Filter with Ideal Amplifiers.

Example Calculation

For A Low-Pass Filter
$\mathrm{p}=+0.2 \mathrm{~dB}, \mathrm{f}_{\mathrm{g}}=10 \mathrm{MHz}, \mathrm{C}_{1}=70 \mathrm{pF}, \mathrm{C}_{\mathrm{C} 2}=\mathrm{C}_{\mathrm{D} 2}=30 \mathrm{pF} ;$
$C_{C 3}=C_{D 3}=9 \mathrm{pF}$
$\mathrm{f}_{01} / \mathrm{f}_{\mathrm{g}}=0.419787 \quad \mathrm{Q}_{2}=1.000908$
$\mathrm{f}_{02} / \mathrm{f}_{\mathrm{g}}=0.679846$
$\mathrm{Q}_{3}=3.706857$
$\mathrm{f}_{03} / \mathrm{f}_{\mathrm{g}}=0.961717$
$f_{01} / f_{g}, f_{02} / f_{g}, f_{03} / f_{g}, Q_{2}$ and Q_{3} are derived from the filter table. $\tau_{1}=\frac{1}{\left(f_{01} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}=\frac{1}{0.419787 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=37.91 \mathrm{~ns}$

$$
\begin{aligned}
\tau_{\mathrm{C} 2} & =\tau_{\mathrm{CD} 2}=\frac{1}{2 \mathrm{Q}_{2}\left(f_{01} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}} \\
& =\frac{1}{2 \cdot 1.000908 \cdot 0.679846 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=11.69 \mathrm{~ns}
\end{aligned}
$$

$$
\tau_{\mathrm{D} 2} \frac{2 \mathrm{Q}_{2}}{\left(f_{02} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}=\frac{2 \cdot 1.000908}{0.679846 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=46.86 \mathrm{~ns}
$$

$$
\tau_{\mathrm{C} 3}=\tau_{\mathrm{CD} 3}=\frac{1}{2 \mathrm{Q}_{3}\left(f_{03} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}
$$

$$
=\frac{0.1}{2 \cdot 3.706857 \cdot 0.961717 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=2.2322 \mathrm{~ns}
$$

$$
\tau_{\mathrm{D} 3}=\frac{2 \mathrm{Q}_{3}}{\left(f_{03} / f_{\mathrm{g}}\right) \cdot 2 \pi f_{\mathrm{g}}}=\frac{2 \cdot 3.706857}{0.961717 \cdot 2 \pi \cdot 10 \mathrm{MHz}}=122.69 \mathrm{~ns}
$$

$$
\mathrm{R}_{1}=\frac{\tau_{1}}{\mathrm{C}_{1}}=\frac{37.91 \mathrm{~ns}}{70 \mathrm{pF}}=541.6 \Omega
$$

$$
\mathrm{R}_{\mathrm{F} 2}=\frac{\tau_{\mathrm{C} 2}}{\mathrm{C}_{\mathrm{C} 2}}=\frac{11.69 \mathrm{~ns}}{30 \mathrm{pF}}=389.8 \Omega
$$

$$
\mathrm{R}_{\mathrm{D} 2}=\frac{\tau_{\mathrm{D} 2}}{\mathrm{C}_{\mathrm{D} 2}}=\frac{46.86 \mathrm{~ns}}{30 \mathrm{pF}}=1562 \Omega
$$

$$
\mathrm{R}_{\mathrm{F} 3}=\frac{\tau_{\mathrm{C} 3}}{\mathrm{C}_{\mathrm{C} 3}}=\frac{2.2322 \mathrm{~ns}}{9 \mathrm{pF}}=248.0 \Omega
$$

$$
\mathrm{R}_{\mathrm{D} 3}=\frac{\tau_{\mathrm{D} 3}}{\mathrm{C}_{\mathrm{D} 3}}=\frac{122.69 \mathrm{~ns}}{9 \mathrm{pF}}=13.632 \mathrm{k} \Omega
$$

Figure 18 shows the ideal frequency response $\left|\mathrm{A}_{\mathrm{I}}\right|$ of a 5th order low-pass filter.

FIGURE 18. Frequency Responses of a 5th Order Low-Pass Filter Based on Adjusted Open-Loop Poles.

4.2

5th Order Low-Pass Filter

With A Modeled Op Amp

By adjusting the resistors R_{FX} and R_{DX}, it is possible to include the effects of the parasitic resistors R_{CX} and capacitors $\mathrm{C}_{\mathrm{Xx} \text { IN }}$ in the frequency response curve while changing the curve only slightly. This process is comparable to changing $\left|\mathrm{A}_{\mathrm{I}}\right|$ to $\left|\mathrm{A}_{\mathrm{M}}\right|$ as shown in Figure 18. The output impedance R_{CX} produces more and more disturbances with increasingly higher order filters. The size of the filter capacitors C_{CX} and $C_{D X}$ also increases with higher order filters and -3 dB frequencies. Experiments are currently in progress to develop filter circuits using the OPA660 that are much less susceptible to filter quality and capacitance; we will present the results in Part Two.

4.3 Tests Using The Demo Boards

Figure 18 shows the frequency response $\left|\mathrm{A}_{\mathrm{D}}\right|$ measured using the demo board in Figure 20.
Further application notes about the OPA660:
AN-179 "Current or Voltage Feedback? That's the Question Here."
AN-180 "Quasi-Ideal Current Source"
AN-181 "Circuit Technology with the Diamond Transistor OPA660"

AN-183 "New Ultra High-Speed Circuit Techniques with Analog ICs"

FIGURE 19. 5th Order Low-Pass Filter with the Modeled OPA660.

FIGURE 20. Demo Board with a 5th Order Low-Pass Filter Using the OPA660.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

[^0]: The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

