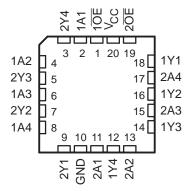

SCBS302C - SEPTEMBER 1993 - REVISED JULY 1995

- State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low-Static Power Dissipation
- High-Impedance State During Power Up and Power Down
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Support Unregulated Battery Operation Down to 2.7 V
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 500 mA Per JEDEC Standard JESD-17
- Bus-Hold Data Inputs Eliminate the Need for External Pullup Resistors
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), and Ceramic (J) DIPs


description

These octal buffers/drivers are designed specifically for low-voltage (3.3-V) V_{CC} operation with the capability to provide a TTL interface to a 5-V system environment.

SN54LVTZ244 . . . J PACKAGE SN74LVTZ244 . . . DB, DW, OR PW PACKAGE (TOP VIEW)

SN54LVTZ244 . . . FK PACKAGE (TOP VIEW)

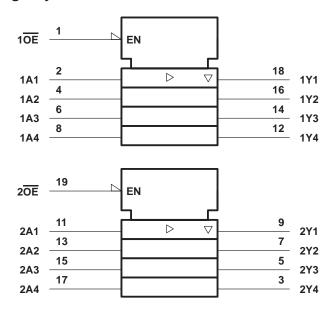
These devices are organized as two 4-bit line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

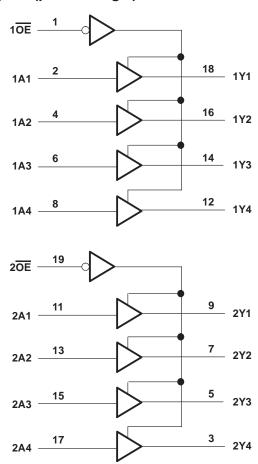
The SN74LVTZ244 is available in TI's shrink small-outline package (DB), which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed-circuit-board area.

The SN54LVTZ244 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVTZ244 is characterized for operation from –40°C to 85°C.

FUNCTION TABLE (each buffer)


INPU	JTS	OUTPUT
OE	Α	Υ
L	Н	Н
L	L	L
Н	Χ	Z

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS302C - SEPTEMBER 1993 - REVISED JULY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	-0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high state or power-off state, V _O (see Note 1)	. -0.5 V to 7 V
Current into any output in the low state, IO: SN54LVTZ244	96 mA
SN74LVTZ244	128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTZ244	48 mA
SN74LVTZ244	64 mA
Input clamp current, I _{IK} (V _I < 0)	50 mA
Output clamp current, I _{OK} (V _O < 0)	50 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 3): DB package	0.6 W
DW package	1.6 W
PW package	0.7 W
Operating free-air temperature range, T _A : SN54LVTZ244	−55°C to 125°C
SN74LVTZ244	-40°C to 85°C
Storage temperature range, T _{stg}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.
 For more information, refer to the Package Thermal Considerations application note in the 1994 ABT Advanced BiCMOS Technology Data Book, literature number SCBD002B.

recommended operating conditions (see Note 4)

			SN54LV	TZ244	SN74LV	TZ244	
			MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2	, sh	2		V
V _{IL}	Low-level input voltage			0.8		8.0	V
VI	Input voltage					5.5	V
loн	High-level output current		4	-24		-32	mA
loL	Low-level output current		22	48		64	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	200	10		10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		200		μs/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused control inputs must be held high or low to prevent them from floating.

SN54LVTZ244, SN74LVTZ244 3.3-V ABT OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS

SCBS302C - SEPTEMBER 1993 - REVISED JULY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	_			SN	54LVTZ2	44	SN	74LVTZ2	244	
PARAMETER	T	EST CONDITIONS		MIN	TYP [†]	MAX	MIN	TYP†	MAX	UNIT
VIK	$V_{CC} = 2.7 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.2			-1.2	V	
	$V_{CC} = MIN \text{ to } MAX^{\ddagger},$	$I_{OH} = -100 \mu A$		VCC-0).2		VCC-C).2		
	$V_{CC} = 2.7 \text{ V},$	$I_{OH} = -8 \text{ mA}$		2.4			2.4			V
VOH	V _{CC} = 3 V	$I_{OH} = -24 \text{ mA}$		2						V
	ACC = 2 A	$I_{OH} = -32 \text{ mA}$					2			
	V 27V	$I_{OL} = 100 \mu A$				0.2			0.2	
	V _{CC} = 2.7 V	$I_{OL} = 24 \text{ mA}$				0.5			0.5	
		$I_{OL} = 16 \text{ mA}$				0.4			0.4	V
VOL	V _{CC} = 3 V	$I_{OL} = 32 \text{ mA}$				0.5			0.5	V
		$I_{OL} = 48 \text{ mA}$			0.55					
		$I_{OL} = 64 \text{ mA}$							0.55	
	$V_{CC} = 0$ or MAX^{\ddagger} ,	V _I = 5.5 V			10			10		
1.		$V_I = V_{CC}$ or GND	Control inputs			ž ±1			±1	^
1 ₁	$V_{CC} = 0 \text{ to } 3.6 \text{ V}$	$V_I = V_{CC}$	Data innuta		2	1		1		μΑ
		V _I = 0	Data inputs	-5			-5			
l _{off}	$V_{CC} = 0 V$,	V_{1} or $V_{0} = 0$ to 4.5			5				±100	μΑ
I _{OZPU} §	$V_{CC} = 0 V \text{ to } 1.5 V,$	$V_0 = 0.5 \text{ V to 3 V},$	OE = X	Ó	?				±50	μΑ
I _{OZPD} §	$V_{CC} = 1.5 \text{ V to } 0,$	$V_0 = 0.5 V \text{ to } 3 V,$	OE = X	0					±50	μΑ
t	\\ 2\\	$V_{I} = 0.8 V$	A :	75			75			4
l _{l(hold)}	VCC = 3 V	V _I = 2 V	A inputs	-75			-75			μΑ
lozh	$V_{CC} = 3.6 \text{ V},$	V _O = 3 V				5			5	μΑ
lozL	$V_{CC} = 3.6 \text{ V},$	$V_0 = 0.5 V$				-5			-5	μΑ
			Outputs high		0.12	0.5		0.12	0.225	
lcc	V _{CC} = 3.6 V,	$I_{O} = 0$,	Outputs low		8.6	15		8.6	15	mA
	$V_I = V_{CC}$ or GND		Outputs disabled		0.12	0.5		0.12	0.225	1117 (
ΔI _{CC} ¶	$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$ One input at $V_{CC} - 0.6 \text{ V},$ Other inputs at V_{CC} or GND					0.3			0.2	mA
C _i	V _I = 3 V or 0				4			4		pF
Co	V _O = 3 V or 0				8			8		pF

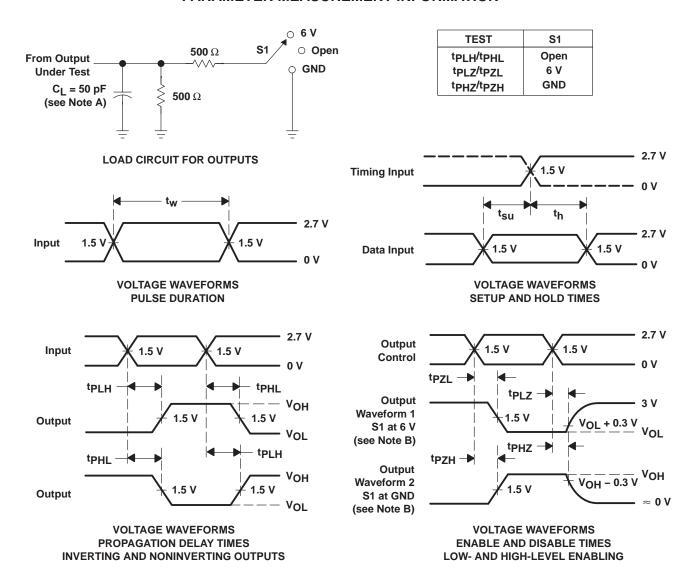
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[§] This parameter is specified by characterization.

 $[\]P$ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SN54LVTZ244, SN74LVTZ244 3.3-V ABT OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS


SCBS302C - SEPTEMBER 1993 - REVISED JULY 1995

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

				SN54L\	/TZ244			SN	74LVTZ2	244		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V_{CC} = 3.3 V \pm 0.3 V			V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
tPLH	^	V	1	4.7	3/1/2	5.2	1	2.5	4.1		5	20
^t PHL	А	Ť	1	4.4	74	5.4	1	2.5	4.1		5.2	ns
^t PZH	ŌĒ	V	1	5.4	1,1	6.5	1	2.7	5.2		6.3	
t _{PZL}	OE	Y	1.1	5.4		7.6	1.1	3.1	5.2		6.7	ns
^t PHZ	ŌĒ	Y	1.9	6.2		6.9	1.9	3.9	5.6		6.3	ns
tPLZ	OE .		1.8	5.5		6	1.8	3.2	5.1		5.6	115

[†] All typical values are at V_{CC} = 3.3 V, T_{A} = 25°C.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
SN74LVTZ244DBR	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LXZ244
SN74LVTZ244DBR.B	Active	Production	SSOP (DB) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LXZ244
SN74LVTZ244DW	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTZ244
SN74LVTZ244DW.B	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTZ244
SN74LVTZ244DWR	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTZ244
SN74LVTZ244DWR.B	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTZ244
SN74LVTZ244PWR	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LXZ244
SN74LVTZ244PWR.B	Active	Production	TSSOP (PW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LXZ244

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

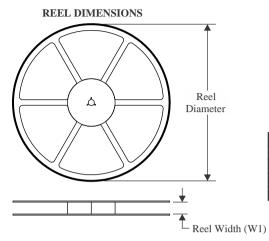
⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

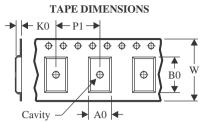
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

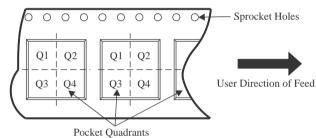
PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025

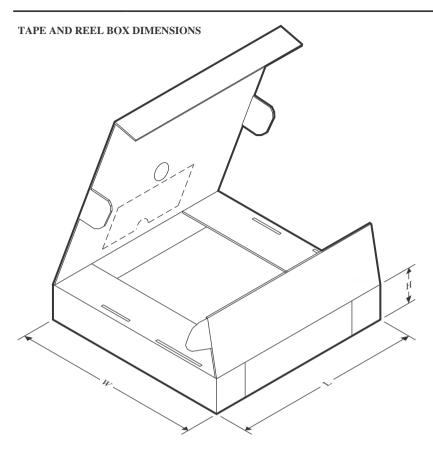

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

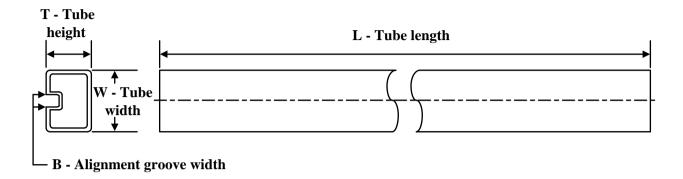
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTZ244DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LVTZ244DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LVTZ244PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.0	1.4	8.0	16.0	Q1

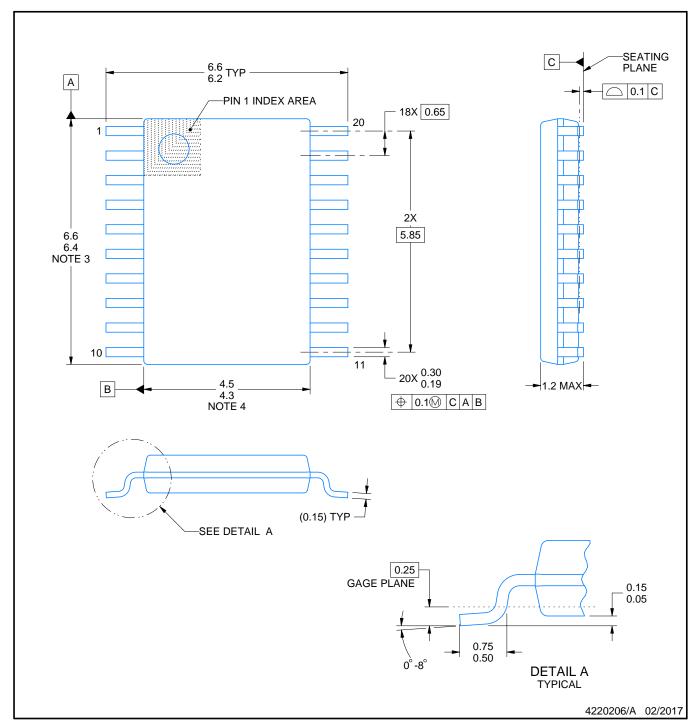
www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTZ244DBR	SSOP	DB	20	2000	353.0	353.0	32.0
SN74LVTZ244DWR	SOIC	DW	20	2000	356.0	356.0	45.0
SN74LVTZ244PWR	TSSOP	PW	20	2000	353.0	353.0	32.0

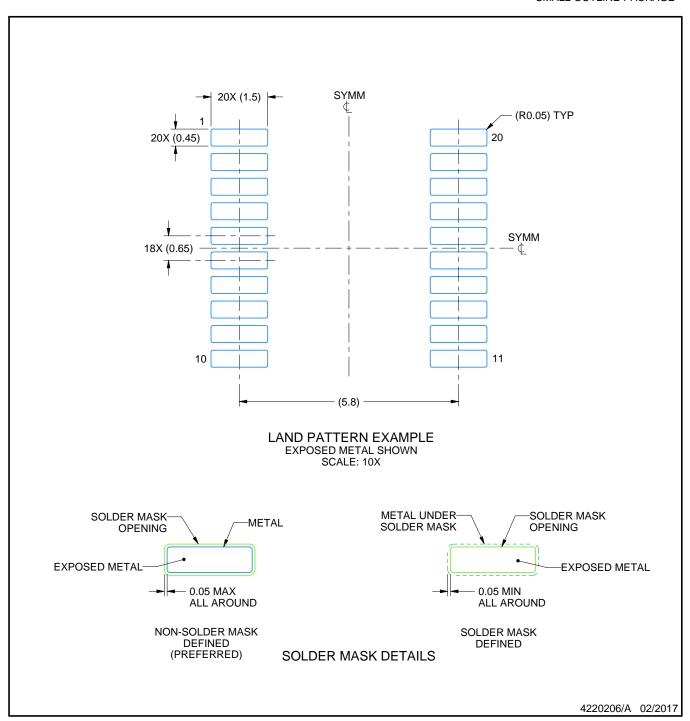
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TUBE

*All dimensions are nominal

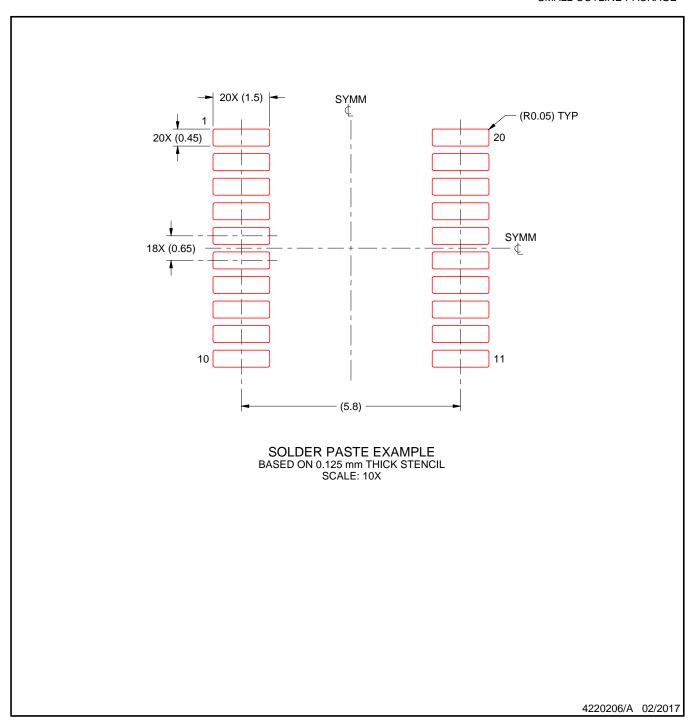
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LVTZ244DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN74LVTZ244DW.B	DW	SOIC	20	25	507	12.83	5080	6.6


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

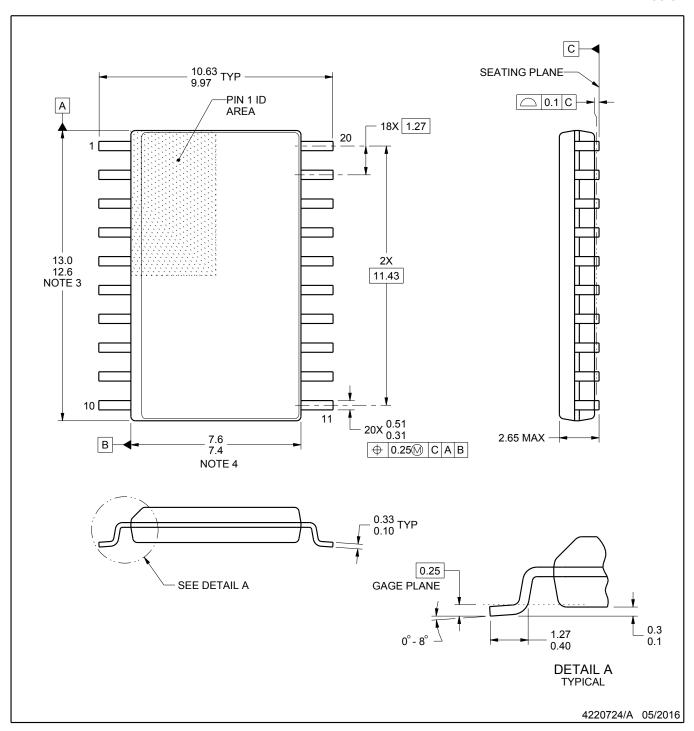
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

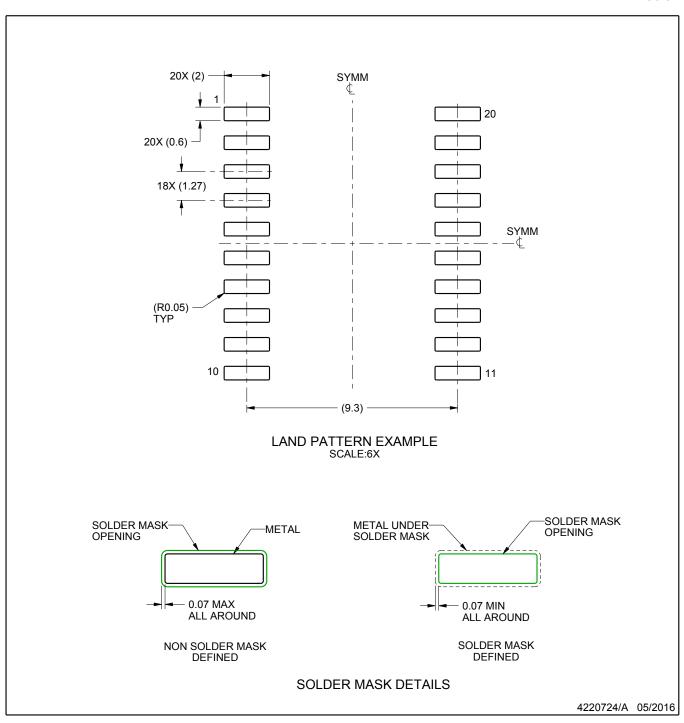
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SOIC

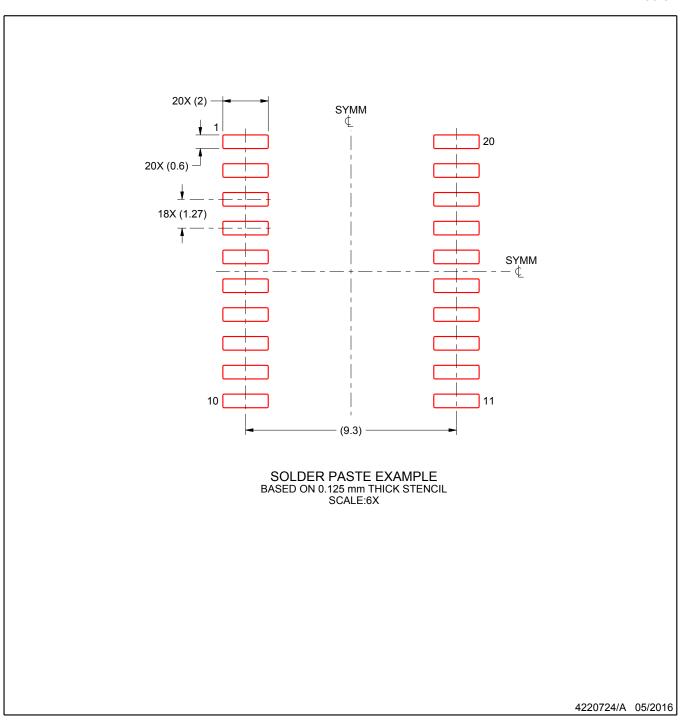
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

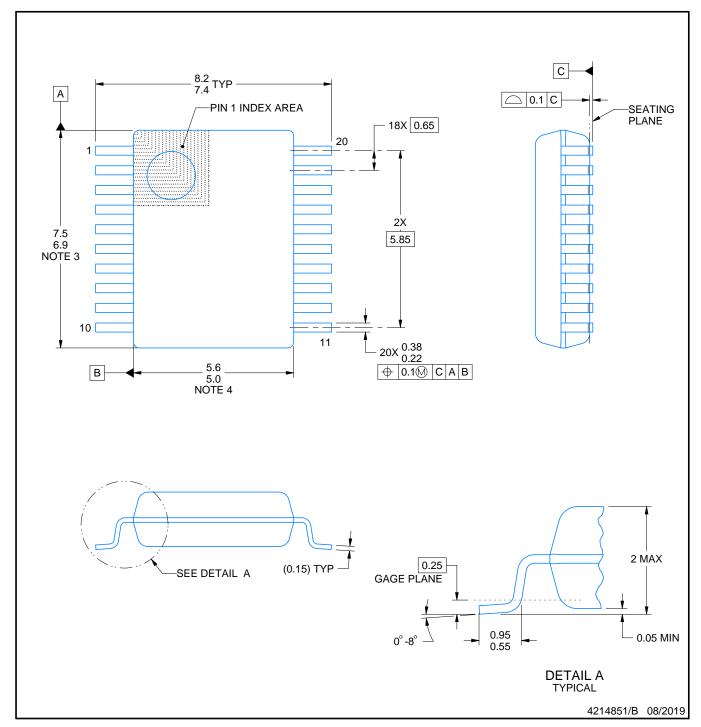
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

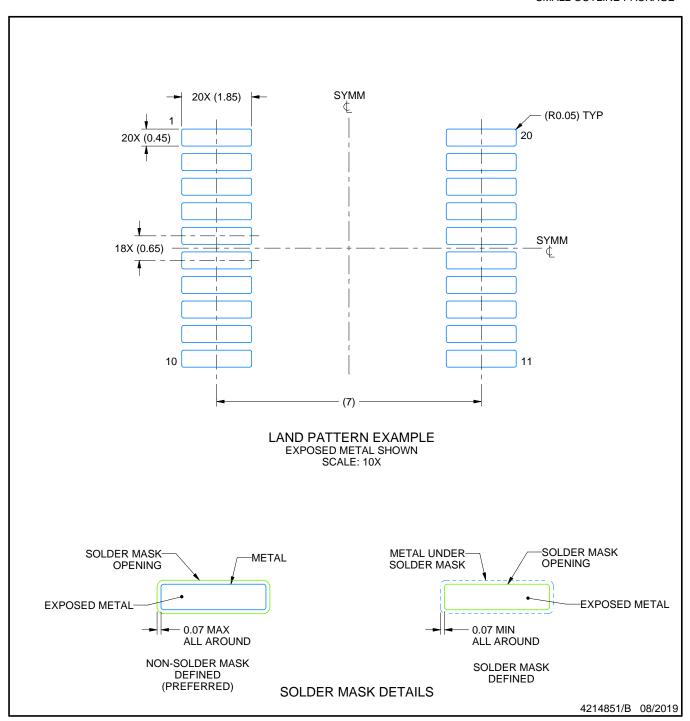
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC



NOTES: (continued)

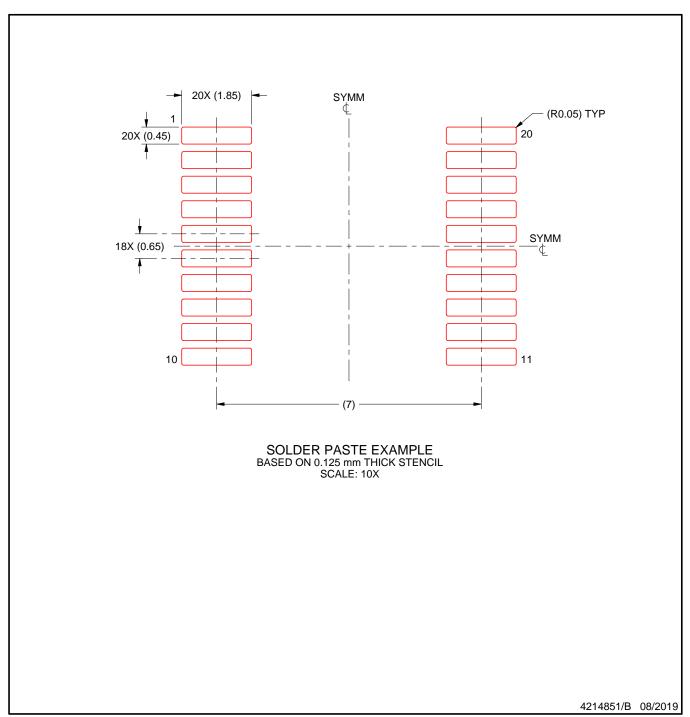
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-150.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025