

32-mm Glass Transponder Eco-Line Read Only, Read/Write

Reference Guide

June 2001

SCBU017

32-mm Glass Transponder Eco-Line Read Only, Read/Write

Reference Guide

Literature Number: SCBU017 June 2001

Contents

Prefa	асе		5
1	Prod	luct Description	7
	1.1	General	
	1.2	Product Codes	8
	1.3	Functions	8
		1.3.1 Read (Read Only and Read/Write Transponders)	8
		1.3.2 Write and Program	9
2	Spec	cifications 11	1
	2.1	Mechanical Data 12	
		2.1.1 Dimensions	2
		2.1.2 Vibration	2
		2.1.3 Mechanical Shock 12	2
		2.1.4 Break Force 13	3
	2.2	Electrical Data 13	3
		2.2.1 Memory 13	3
		2.2.2 Operating Conditions 13	3
3	Reg	ulatory and Warranty Notices15	5
	3.1	Regulatory Notes 16	6
		3.1.1 General 16	6
	3.2	Warranty and Liability 16	6
Α	Tern	ns and Abbreviations 17	7

List of Figures

1-1	System Configuration	8
1-2	FM principle Used for the Read Function of TIRIS Transponders	9
1-3	Read Data Format of Read Only Transponder	9
1-4	Read Data Format of Read Write Transponder	9
2-1	Dimensions of the 32-mm Glass Transponder (Read Only, Read/Write)	12

Preface SCBU017–June 2001

Edition One - June 2001

This is the first edition of this manual, it describes the following transpnders and derivatives of 32mm Eco-Line Glass Transponder:

RI-TRP-RE2B	32 mm Glass Transponder Read Only
RI-TRP-WE2B	32 mm Glass Transponder Read/Write

About This Guide

This guide describes the Read Only and Read/Write version of the 32-mm Glass Transponder, and gives an overview of the most important specifications.

Regulatory and warranty notices that must be followed are given in Chapter 3.

Conventions

WARNING

A warning is used where care must be taken or a certain procedure must be followed, in order to prevent injury or harm to your health.

CAUTION

This indicates information on conditions that must be met or a procedure that must be followed, which if not heeded, could cause permanent damage to the equipment or software.

Note: Indicates conditions that must be met or procedures that must be followed, to ensure proper functioning of any equipment or software.

Indicates information that makes usage of the equipment or software easier.

If You Need Assistance

For more information, please contact the sales office or distributor nearest you. This contact information can be found on our web site at: <u>http://www.ti-rfid.com</u>.

Trademarks

Trademarks

TIRIS[™], TI-RFid[™], and Tag-it[™] are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

Chapter 1 SCBU017–June 2001

This chapter describes the RFID System and the functions of the 32-mm Read Only and Read/Write Glass Transponder.

Торіс		Page
1.1	General	8
1.2	Product Codes	8
1.3	Functions	8
1.2	Product Codes	8

1.1 General

An RFID system comprises a reader, an antenna, and a transponder.

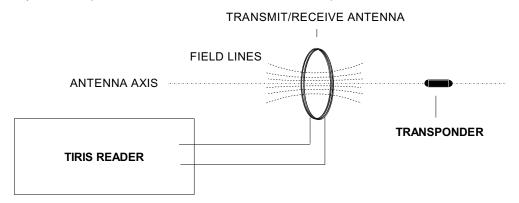


Figure 1-1. System Configuration

The reader and the transponder operate in a sequential mode with timely separated power and data transmission cycles.

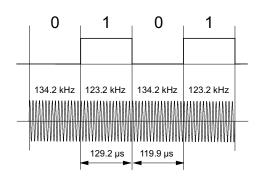
1.2 Product Codes

Function	Product Code ⁽¹⁾		
Read Only	RI-TRP-RE2B-xx		
Read Write	RI-TRP-WE2B-xx		
(1) xx defines the revision			

) xx defines the revision

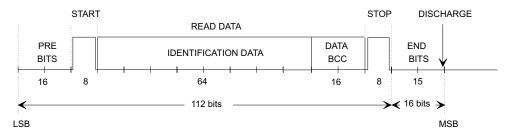
The Read Only type is factory programmed with a unique number.

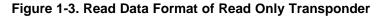
The Read/Write version can be programmed by the user.

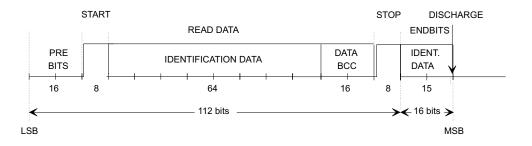

1.3 Functions

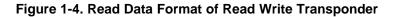
1.3.1 Read (Read Only and Read/Write Transponders)

During the charge (or powering phase) of between 15 and typically 50 ms the interrogator generates an electromagnetic field using a frequency of 134.2 kHz. The resonant circuit of the transponder is energized and the induced voltage is rectified by the integrated circuit to charge the capacitor. The transponder detects the end of the charge burst and transmits its data using Frequency Shift Keying (FSK), utilizing the energy stored in the capacitor. The charge phase is followed directly by the read phase (Read mode). After transmission of the data format the capacitor is discharged.


The typical data low bit frequency is 134.2 kHz, the typical data high bit frequency is 123.2 kHz. The low and high bits have different duration, because each bit takes 16 RF cycles to transmit. The high bit has a typical duration of 130 μ s, the low bit of 119 μ s. Figure 1-2 shows the FM principle used. Regardless of the number of low and high bits, the transponder response duration is always less than 20 ms.


Functions





The data format consists of 128 bits. Different start/stop bytes and end bits are used, to allow secure distinction between RO and R/W Transponder. Figure 1-3 and Figure 1-4 show the format of the received data for RO and R/W transponders.

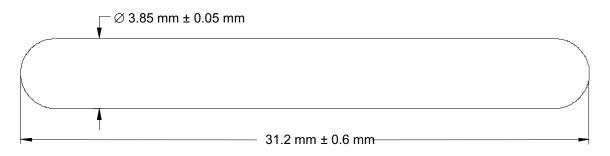
1.3.2 Write and Program

A new identification number can be written (programmed) into a R/W transponder in the following manner. After the charge phase the R/W transponder enters the write mode providing the reader starts to modulate the field by switching the transmitter on and off. Modulation index of this amplitude modulation is 100%. The duration of the off-phase defines whether a low bit or a high bit is being transmitted (Pulse Width Modulation). Writing means, the transponder shifts the received bits into a shift register. After the write phase the reader's transmitter is switched on for a certain time (programming time) in order to energize the process of programming the shift register data into the EEPROM. All 80 bits are programmed simultaneously into the EEPROM. Once the data is programmed into the EEPROM the transponder automatically sends back the captured data to the reader to allow a security check, this process takes place when the transmitter is switched off. Functions

Chapter 2 SCBU017–June 2001

Specifications

This chapter lists the operating conditions, electrical and mechanical characteristics and dimensions.


Торіс		Page
2.1	Mechanical Data	12
2.2	Electrical Data	13

2.1 Mechanical Data

2.1.1 Dimensions

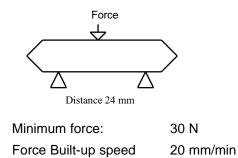
		LIMITS			
	MIN	TYP	MAX	UNIT	
Length	30.6	31.2	31.8	mm	
Diameter	3.8	3.85	3.9	mm	
Weight	0.7	0.8	0.9	gr.	
Case Material		Glass			
Protection Class		Hermetically sealed			

Figure 2-1. Dimensions of the 32-mm Glass Transponder (Read Only, Read/Write)

2.1.2 Vibration

Vibration test according IEC 68-2-6, test Fc.

Conditions	Acceleration	10 g
	Frequency	10–500 Hz
	4 hours per axis	


2.1.3 Mechanical Shock

Mechanical shock test according IEC 68-2-27, test Ea.

Conditions	Acceleration	200 g half-sine
	Time	3 ms per axis

TEXAS INSTRUMENTS www.ti.com

2.1.4 Break Force

2.2 Electrical Data

2.2.1 Memory

Parameter	Data
Memory size	80 bit
Memory organization	1 block
Identification data	64 bit
Error detection (Data BCC)	CRC – CCITT, 16 bit

2.2.2 Operating Conditions

PARAMETER		LIMITS		
	MIN	MAX	UNIT	
Operating Temperature (Read)	-25	70	°C	
Operating Temperature (Write)	-25	70	°C	
Storage Temperature	-40	85	°C	
Storage Temperature (for total 1000 hours)		125	°C	
ESD Susceptibility (IEC 801-2)	15		°C	
EM Radiation Immunity 1 – 512 MHz	100		V/m	
EM Radiation Immunity 512 – 1000 MHz	50		V/m	
X-ray Dose at 110 kV		2000	RAD	

	LIMITS						
PARAMETER	25°C			–25°c TO 70°C			UNIT
	MIN	TYP	MAX	MIN	TYP	MAX	
Charge duration for read and write				15	50		ms
Charge frequency for read and write				134.16	134.2	134.24	kHz
Activation Field Strength (AFS)	182			192			dBµV/m
Programming time				15			ms
Programming Field Strength	184			194			dBµV/m
Operating quality factor				62			
Low Bit Frequency fL	132.2		136.2	132		138	kHz

	LIMITS						
PARAMETER		25°C			–25°c TO 70°C		
	MIN	TYP	MAX	MIN	TYP	MAX	
High Bit Frequency f _H	121		125	120		127	kHz
FSK Modulation index (read); $f_L - f_H$	9	11	15	9	11	15	kHz
Output Field Strength at d = 50 mm and using above AFS				132		154	dBµV/m
Programming cycles	10K						cycles

Note: The charge duration has an influence on the reading range and a reduction from the typical value to the minimum will result in a decrease of reading range.

Regulatory and Warranty Notices

Торіс		Page
3.1	Regulatory Notes	16
3.2	Warranty and Liability	16

3.1 Regulatory Notes

3.1.1 General

A transponders may be operated only under an experimental license or final approval issued by the relevant approval authority. Before any such device can be marketed, an equipment authorization must be obtained form the relevant approval authority.

3.2 Warranty and Liability

The "General Conditions of Sale and Delivery" of Texas Instruments Incorporated or a TI subsidiary apply. Warranty and liability claims for defect products, injuries to persons and property damages are void if they are the result of one or more of the following causes:

- Improper use of the transponders
- Unauthorized assembly, operation and maintenance of the transponders
- Operation of the transponders with defective and/or non-functioning safety and protective equipment
- Failure to observe the instructions given in this document during transport, storage, assembly, operation, maintenance and setting up of the transponders
- Unauthorized changes to the transponders
- Insufficient monitoring of the transponders operation or environmental conditions
- Improperly conducted repairs
- Catastrophes caused by foreign bodies.

Appendix A SCBU017–June 2001

Terms and Abbreviations

A list of the abbreviations and terms used in the various TI manuals can be found in a separate manual:

TI-RFid[™] Product Manual Terms & Abbreviations Literature number SCBU014 (11-03-21-002)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications		
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio	
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive	
DSP	dsp.ti.com	Broadband	www.ti.com/broadband	
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol	
Logic	logic.ti.com	Military	www.ti.com/military	
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork	
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security	
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony	
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video	
		Wireless	www.ti.com/wireless	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated