- Controlled Baseline
- One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree \dagger
- 2-V to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Operation
- Supports Mixed-Mode Voltage Operation on All Ports
- High On-Off Output-Voltage Ratio
- Low Crosstalk Between Switches
\dagger Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
- Individual Switch Controls
- Extremely Low Input Current
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description/ordering information

This 8-channel CMOS analog multiplexer/demultiplexer is designed for $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74LV4051A handles both analog and digital signals. Each channel permits signals with amplitudes up to 5.5 V (peak) to be transmitted in either direction.

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

T $_{\text {A }}$	PACKAGE \ddagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - D	Tape and reel	SN74LV4051ATDREP	LV4051ATEP
	SOIC - DW	Tape and reel	SN74LV4051ATDWREP§	LV4051ATEP
	TSSOP - PW	Tape and reel	SN74LV4051ATPWREP	L4051EP

\ddagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
§ Product Preview.

FUNCTION TABLE			
INPUTS ON INH C B A CHANNEL			
L	L	L	L
L	L	L	H
L	L	H	L
L	L	H	H
L	H	L	L
L	H	L	H
L	H	H	L
L	H	H	H
H	X	X	X
Y7	None		

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) ${ }^{\dagger}$

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		$2 \ddagger$	5.5	V
V_{IH}	High-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\mathrm{V}_{\text {CC }} \times 0.7$		
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\text {CC }} \times 0.7$		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	$\mathrm{V}_{\mathrm{CC}} \times 0.7$		
V_{IL}	Low-level input voltage, control inputs	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		0.5	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		C $\times 0.3$	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		C $\times 0.3$	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		C $\times 0.3$	
V_{1}	Control input voltage		0	5.5	V
VIO	Input/output voltage		0	V_{CC}	V
$\Delta t / \Delta v$	Input transition rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		200	ns/V
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V		100	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		20	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40	105	${ }^{\circ} \mathrm{C}$

\ddagger With supply voltages at or near 2 V , the analog switch on-state resistance becomes very nonlinear. It is recommended that only digital signals be transmitted at these low supply voltages.
NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

SCLS501D - MAY 2003 - REVISED MAY 2004
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN		TYP	MAX					
${ }^{\text {ron }}$	On-state switch resistance		$\mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND , $\mathrm{V}_{\text {INH }}=\mathrm{V}_{\text {IL }}$, (see Figure 1)	2.3 V		38	180		225	Ω
		3 V			30	150		190		
		4.5 V			22	75		100		
ron(p)	Peak on-state resistance	$\mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ to GND , $\mathrm{V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}}$	2.3 V		113	500		600	Ω	
			3 V		54	180		225		
			4.5 V		31	100		125		
$\Delta r_{\text {on }}$	Difference in on-state resistance between switches	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \\ & \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	2.3 V		2.1	30		40	Ω	
			3 V		1.4	20		30		
			4.5 V		1.3	15		20		
I	Control input current	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND	$\begin{gathered} 0 \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$			± 0.1		± 1	$\mu \mathrm{A}$	
IS(off)	Off-state switch leakage current	$\begin{aligned} & V_{I}=V_{C C} \text { and } V_{O}=G N D, \text { or } \\ & V_{I}=G N D \text { and } V_{O}=V_{C C}, \\ & V_{\text {INH }}=V_{\text {IH }} \text {, (see Figure 2) } \end{aligned}$	5.5 V			± 0.1		± 1	$\mu \mathrm{A}$	
IS(on)	On-state switch leakage current	$\begin{aligned} & V_{I}=V_{C C} \text { or } G N D, V_{I N H}=V_{I L} \\ & \text { (see Figure 3) } \end{aligned}$	5.5 V			± 0.1		± 1	$\mu \mathrm{A}$	
ICC	Supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5 V					20	$\mu \mathrm{A}$	
$\mathrm{CIC}^{\text {c }}$	Control input capacitance	$\mathrm{f}=10 \mathrm{MHz}$	3.3 V		2				pF	
$\mathrm{CIS}^{\text {S }}$	Common terminal capacitance		3.3 V		23.4				pF	
Cos	Switch terminal capacitance		3.3 V		5.7				pF	
C_{F}	Feedthrough capacitance		3.3 V		0.5				pF	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN			TYP	MAX					
tpLH tpHL	Propagation delay time		COM or Yn	Yn or COM	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF}, \\ & \text { (see Figure 4) } \end{aligned}$		1.9	10		16	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Enable delay time	INH	COM or Yn	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & (\text { see Figure 5) } \end{aligned}$		6.6	18		23	ns	
tpHZ tPLZ	Disable delay time	INH	COM or Yn	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & \text { (see Figure 5) } \end{aligned}$		7.4	18		23	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation delay time	COM or Yn	Yn or COM	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & (\text { see Figure 5) } \end{aligned}$		3.8	12		18	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Enable delay time	INH	COM or Yn	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & (\text { see Figure 5) } \end{aligned}$		7.8	28		35	ns	
$\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Yn	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & (\text { see Figure 5) } \end{aligned}$		11.5	28		35	ns	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN			TYP	MAX					
tPLH tpHL	Propagation delay time		COM or Yn	Yn or COM	$C_{L}=15 \mathrm{pF}$ (see Figure 4)		1.2	6		10	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Enable delay time	INH	COM or Yn	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 5)		4.7	12		15	ns	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Yn	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 5)		5.7	12		15	ns	
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM	$\begin{aligned} & C_{L}=50 \mathrm{pF} \\ & \text { (see Figure } 4 \text {) } \end{aligned}$		2.5	9		12	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Enable delay time	INH	COM or Yn	$C_{L}=50 \mathrm{pF},$ (see Figure 5)		5.5	20		25	ns	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Yn	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$ (see Figure 5)		8.8	20		25	ns	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted)

PARAMETER		FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	UNIT	
		MIN			TYP	MAX					
tPLH tPHL	Propagation delay time		COM or Yn	Yn or COM	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (see Figure 4)		0.6	4		7	ns
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Enable delay time	INH	COM or Yn	$C_{L}=15 \mathrm{pF},$ (see Figure 5)		3.5	8		10	ns	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Yn	$C_{L}=15 \mathrm{pF},$ (see Figure 5)		4.4	8		10	ns	
tPLH tPHL	Propagation delay time	COM or Yn	Yn or COM	$C_{L}=50 \mathrm{pF},$ (see Figure 4)		1.5	6		8	ns	
$\begin{aligned} & \text { tpZH } \\ & \text { tpZL } \end{aligned}$	Enable delay time	INH	COM or Yn	$C_{\mathrm{L}}=50 \mathrm{pF},$ (see Figure 5)		4	14		18	ns	
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Disable delay time	INH	COM or Yn	$C_{L}=50 \mathrm{pF}$ (see Figure 5)		6.2	14		18	ns	

analog switch characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		VCC	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			UNIT	
					MIN	TYP	MAX			
Frequency response (switch on)	COM or Yn	Yn or COM	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{\mathrm{L}}=600 \Omega, \\ & \mathrm{fin}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Note } 5 \text { and Figure 6) } \end{aligned}$			2.3 V		20		MHz
					3 V		25			
					4.5 V		35			
Crosstalk (control input to signal output)	INH	COM or Yn	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz} \text { (square wave) } \\ & \text { (see Figure 7) } \end{aligned}$		2.3 V		20		mV	
					3 V		35			
					4.5 V		60			
Feedthrough attenuation (switch off)	COM or Yn	Yn or COM	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \\ & R_{L}=600 \Omega, \\ & f_{\text {in }}=1 \mathrm{MHz} \\ & \text { (see Note } 6 \text { and Figure 8) } \end{aligned}$		2.3 V		-45		dB	
					3 V		-45			
					4.5 V		-45			
Sine-wave distortion	COM or Yn	Yn or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz} \\ & \text { (sine wave) } \\ & \text { (see Figure 9) } \end{aligned}$	$\mathrm{V}_{\mathrm{l}}=2 \mathrm{~V}_{\mathrm{p} \text {-p }}$	2.3 V		0.1		\%	
				$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	3 V		0.1			
				$\mathrm{V}_{\mathrm{l}}=4 \mathrm{~V}_{\mathrm{p} \text {-p }}$	4.5 V		0.1			

NOTES: 5. Adjust $\mathrm{f}_{\text {in }}$ voltage to obtain $0-\mathrm{dBm}$ output. Increase f_{in} frequency until dB meter reads -3 dB .
6. Adjust $f_{i n}$ voltage to obtain $0-\mathrm{dBm}$ input.
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT	
$\mathrm{C}_{\text {pd }}$	Power dissipation capacitance	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},$$\mathrm{f}=10$ MHz	5.9	pF

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

PARAMETER MEASUREMENT INFORMATION

Condition 1: $\mathrm{V}_{\mathrm{I}}=\mathrm{O}, \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{C}}$

$$
\text { Condition 2: } \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{~V}_{\mathrm{O}}=0
$$

Figure 2. Off-State Switch Leakage-Current Test Circuit

Figure 3. On-State Switch Leakage-Current Test Circuit

Figure 4. Propagation Delay Time, Signal Input to Signal Output

8-CHANNEL ANALOG MULTIPLEXER/DEMULTIPLEXER

Figure 5. Switching Time ($\mathbf{t P Z L}$, $\mathrm{t}_{\mathrm{PLZ}}, \mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$), Control to Signal Output

NOTE A: $f_{i n}$ is a sine wave.
Figure 6. Frequency Response (Switch On)

PARAMETER MEASUREMENT INFORMATION

Figure 7. Crosstalk (Control Input, Switch Output)

Figure 8. Feedthrough Attenuation (Switch Off)

Figure 9. Sine-Wave Distortion

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74LV4051ATDREP	ACTIVE	SoIc	D	16	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LV4051ATEP	Samples
SN74LV4051ATPWREP	ACTIVE	TSSOP	PW	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051EP	Samples
V62/03664-01XE	ACTIVE	TSSOP	PW	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	L4051EP	Samples
V62/03664-01YE	ACTIVE	SOIC	D	16	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LV4051ATEP	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LV4051A-EP :

- Catalog: SN74LV4051A
- Automotive: SN74LV4051A-Q1

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$
SN74LV4051ATDREP	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0
Quadrant											

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV4051ATDREP	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV4051ATPWREP	TSSOP	PW	16	2000	356.0	356.0	35.0

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

