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You will learn in this module   

 Software Design 

• Call graph 

• Data Flow Graph 

• Successive refinement 

• Abstraction (functions) 

• Modular design (header/code files) 

 

 

SwitchMain 

Switch LaunchPad 

Call Graph 

SwitchMain Switch LaunchPad 

Data Flow Graph 

Switch LED 
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Multi-threading 
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System Design 
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What does being in a state mean?  

• List state parameters 

What is the starting state of the system? 

• Define the initial state 

What information do we need to collect?  

• List the input data 

What information do we need to generate?  

• List the output data 

How do we move from one state to another?  

• Actions we could do 

What is the desired ending state?  

• Define the ultimate goal 
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Successive Refinement 

6 

 Start with a task 

• Clear and unambiguous description: requirements, specifications  

 Decompose the task into a set of simpler subtasks (components) 

• Subtasks are decomposed into even simpler sub-subtasks 

• Each subtask is simpler than the task itself 

 Make design decisions 

• Document decisions and subtask requirements 

 Ultimately, subtask is so simple, it can be implemented 

• Implementation 

• Testing 

• Documentation 

 Combine components to build system 

• Interfaces are key 

 

 

Three similar terms:  

• Successive Refinement 

• Stepwise Refinement 

• Systematic Decomposition 
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 Why do we have header/code files? 

• Complexity abstraction 

• Separate what it does (header) from how it works 

• Automatic documentation (doxygen) 

 What is in a header file? 

• Prototypes for public functions 

• Comments on what it does/how to use it 

• Code to make it load once 

• Shared structure  

 What is not in a header file? 

• Function definitions 

• Variables 

• Anything private 

Header files 
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/** 

 * @file      Switch.h 

/** 

 * Input from positive logic switch  

 * interfaced to GPIO Port 1 bit 5. 

 * 

 * @param  none 

 * @return 0x20 if pressed; 0x00 if not pressed 

 * @brief  Switch input 

 */ 

uint32_t Switch_Input(void); 

SwitchMain 

Switch LaunchPad 

Call Graph 
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 What is in a code file? 

• Implementations for public functions 

• Variables 

• Private functions 

• Comments how it works 

• Comments on how it was tested 

• Comments on how it can be changed 

 What is not in a code file? 

• References to private data/functions in other files 

Code files 
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//------------Switch_Input------- 

// Read and return P1.5 

// Input: none 

// Output: 0x20 if P1.5 is high 

//         0x00 if P1.5 is low 

uint32_t Switch_Input(void){ 

// read P1.5 input 

  return (P1->IN&0x20);              

// return 0x20(if pressed)  

// or 0(if not pressed) 

} 

#include <stdint.h> 

#include "Switch.h" 

#include "../inc/LaunchPad.h" SwitchMain 

Switch LaunchPad 

Call Graph 
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Software Design using MSP432 
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Summary 

 Software design 

• Successive refinement 

• doxygen 

• Header/code files 

• Abstraction 

 

SwitchMain Switch LaunchPad Switch LED 

SwitchMain 

Switch LaunchPad 

Call Graph 
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C Programming on the MSP432 
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You will learn in this module   

 Basics of C programming 

• Logic/shift operations 

• Arithmetic calculations 

• Conditionals 

• Loops 

• Functions 

• Variables  

• Constants 

 

 Algorithm development (lab) 

• GP2Y0A21YK0F IR distance sensor 

• Where in the world am I? 
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Flowcharts 
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Logic Operations 
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AND 

• Select bits (AND with 1) 

• Clear bits (AND with 0) 

OR 

• Combine 

• Set bits (OR with 1) 

EOR 

• Toggle bits (EOR with 1) 

 

y = P1->IN&0x03; // select bits 1,0 

x = x&(~0x08);   // clear bit 3 

x &= ~0x08;      // clear bit 3 

z = x|y;         // combine x,y 

x = x|0x08;      // set bit 3 

x |= 0x08;       // set bit 3 

P1->OUT ^= 0x08;  // toggle bit 3 

A ~A 

0 1 

1 0 

A B A&B A|B A^B 

0 0 0 0 0 

0 1 0 1 1 

1 0 0 1 1 

1 1 1 1 0 



Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition 

SEKP080 |  Software Design using MSP432 - Design 

z 

Shift Operations 
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Unsigned (logical) shift right 

• Divide by 2n 

• Align bits 

Signed (arithmetic) shift right 

• Divide by 2n 

Shift left (logical/arithmetic) 

• Multiply by 2n 

• Align bits 

y = x>>3;      // divide by 8 

x = P1->IN&0x01;    // P1.0 (0,1) 

y = P2->IN&0x08;    // P2.3 (0,8) 

z = (x<<1)|(y>>3);  // combine 

y = x<<8;  // multiply by 256 

int32_t 

uint32_t 

uint32_t or int32_t 
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Arithmetic Operations 
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 Addition/subtraction 

• Two n-bit → n+1 bits 

 Multiplication 

• Two n-bit → 2n bits 

 Division 

• Avoid divide by 0 

• Watch for dropout 

 Avoid overflow 

• Restrict input values 

• Promote to higher, perform, check, 

demote 

 Signed versus unsigned 

• Either signed or unsigned, not both 

• Be careful about converting types 

uint8_t int8_t 

uint16_t  int16_t 

uint32_t int32_t 

uint8_t Add(uint8_t A, uint8_t B){ 

uint32_t A32,B32,R32; 

  A32 = A; B32=B; // promotion 

  R32 = A+B;      // 32-bit addition 

  if(R32>255){ 

    R32 = 255;    // ceiling 

  } 

  return R32;     // demotion 

} 
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Conditionals 
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 Boolean 

• Zero is false 

• Nonzero is true 

• && ||  ! are operators 

 

 Relational 

• Compare similar types 

• Returns a Boolean 

• >  >=  <  <=  ==  != 

 

 Conditional 

• if-then 

• if-then-else 

 

 

z 

if((G1<=G2)&&(G3!=G4)){ 

  Yes(); 

}else{ 

  No(); 

} 

if(P1->IN&0x80){ 

  Something(); // if P1.7 is high 

}; 

These are different   &  && 

These are different   |  || 
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while loops 
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while loop 

• Test first 

 

do-while loop 

• Test last 

 

for loop 

• Test first 

 

 

while(G2>G1){ 

  Body(); 

} 

do{ 

  Body(); 

} while(G2>G1); 

for(i=10; i!=0; i--){ 

  Body(); 

} 

for(i=0; i<10; 

i++){ 

  Body(); 

} 
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 What it does 

• Prototype 

• Header file 

 

 

 How it works 

• Implementation 

• Code file 

 

 Invocation 

• Calling sequence 

• Inputs: call by value/reference 

• Output: return value 

Functions 
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// random.c 

uint32_t static M; 

void Seed(uint32_t x){ 

  M = x; 

} 

uint8_t Rand(void){ 

  M=1664525*M+1013904223; 

  return M>>24; 

} 

// random.h 

void Seed(uint32_t x); 

uint8_t Rand(void); 

// main.c 

uint8_t n; 

void main(void){ 

  Seed(1); 

  while(1){ 

    n = Rand(); 

  } 

} 
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Examples of variables 
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 Global 

• Public scope 

• Permanent allocation 

• Bad style 

 Static 

• Private scope to file 

• Permanent allocation 

• Sharing: ISR ↔ Functions 

 Local - Automatic 

• Private scope,  

• Dynamic allocation 

 Static local 

• Private scope to function 

• Permanent allocation 

 

uint32_t static M; 

void Seed(uint32_t x){ 

  M = x; 

} 

uint8_t Rand(void){ 

uint32_t n; 

uint32_t static count=0; 

  count++; 

  M=1664525*M+1013904223; 

  n = M>>24; 

  return (uint8_t)n; 

} 

uint8_t global; 

void main(void){ 

uint8_t n; 

  Seed(1); 

  while(1){ 

    n = Rand(); 

  } 

} 
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Variables 
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Scope => from where can it be accessed 

 Private means restricted, need to know basis 

• More protection, simpler systems 

 Public means any software can access it 

• Difficult to debug, hidden complexity 

 

Allocation => when is it created & destroyed 

 Dynamic allocation using registers or stack 

 Permanent allocation assigned a block of memory 

 

Type 

 Signed/unsigned 

 Precision: 8, 16, 32 bits 

 

 

Can you convert between types? 

uint8_t → uint16_t, int16_t, uint32_t, int32_t 

int8_t → int16_t, int32_t 

uint16_t → uint32_t, int32_t 

int16_t  → int32_t 

How does one classify I/O port registers? 

• Formally: Global = public permanent 

• Practically: private permanent  

Can access 

Does access 
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Examples of constants 
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Symbol 

• #define 

 

 

ROM 

• const 

 

 

Enumerated types 

• enum 

 

 

int32_t const ADCBuffer[16]= 

{2000, 2733, 3466, 4199, 4932, 

5665, 6398, 7131, 7864, 8597, 

9330, 10063, 10796, 11529, 

12262, 12995}; 

enum scenario { 

  Error = 0, 

  LeftTooClose = 1, 

  RightTooClose = 2, 

  CenterTooClose = 4, 

}; 

typedef enum scenario scenario_t; 

#define IRSlope 1195172 

#define IROffset -1058 
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Software design, building blocks 
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• “do A then do B” → sequential 

• “do A and B in either order” → sequential (parallel) 

• “if A, then do B” → conditional 

• “for each A, do B” → iterative 

• “do A until B” → iterative 

• “repeat A over & over forever” → iterative (condition always true) 

• “on external event do B” → interrupt 

• “every t msec do B” → interrupt 
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C Programming using MSP432 
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Summary 

 Review C programming 

• Logic/shift operations 

• Arithmetic calculations 

• Functions 

• Conditionals 

• Variables  

• Constants 
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Lecture: Software Design using MSP432- Debugging 
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Debugging on the MSP432 
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You will learn in this module   

 Debugging 

• Control (step, breakpoints) 

• Observing variables 

• Functional debugging 

 

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

D
is

ta
n

c
e
 (

m
m

) 

14-bit ADC 

Expected Results 

z 

Your Function 

Input 

Output 



Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition 

SEKP080 |  Software Design using MSP432 - Design 

Debugging 
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 Functional Debugging 

• Known inputs 

• Expected outputs 

 

 Stabilization 

• Fix input values, fix timing of input 

• Repeated testing shows changes in software 

 

 Test cases 

• Near the extremes and in the middle 

• Most typical of how clients will properly use the system  

• Most typical of how clients will improperly use the system  

• That differ by one 

• You know your system will find difficult (corner cases) 

• Using a random number generator 

 

 

Important aspects:  

• Control 

• Observability 

// Program 4_1 used to test the Convert function  

int32_t const ADCBuffer[16]={2000,2733,3466,4199,4932,  

 5665, 6398, 7131, 7864, 8597, 9330, 10063, 10796, 

 11529, 12262, 12995}; 

int32_t const DistanceBuffer[16]={800,713,496,380, 

 308,259,223,196,175,158,144,132,122,114,106,100}; 

void Program4_1(void){int i; 

int32_t adc,distance,errors,diff; 

  errors = 0; 

  for(i=0; i<16; i++){ 

    adc = ADCBuffer[i]; 

    distance = Convert(adc); // call to your function 

    diff = distance-DistanceBuffer[i]; 

    if((diff<-1)||(diff>1)){ 

      errors++; 

    } 

  } 

  while(1){}; 

} 
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Debugging (Control) 
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 Test cases  

• Get data from arrays (rather than actual inputs 

devices) 

 

 Single step  

• Step, step over, step in, step out 

 

 Breakpoints 

• Set using debugger 

 

 Special test main 

• Establish exact scenario you wish to test  

• Stabilization 

 

 

Important aspects:  

• Control 

• Observability 

int32_t errors; 

void Program4_2(void){ 

  scenario_t result,truth; 

  int i,j,k; 

  int32_t left, right, center; // sensor readings  

  errors = 0; 

  for(i=0; i<18; i++){ 

    left = CornerCases[i]; 

    for(j=0; j<18; j++){ 

      center = CornerCases[j]; 

      for(k=0; k<18; k++){ 

        right = CornerCases[k]; 

        result = Classify(left,center,right);  

        truth = Solution(left,center,right);   

        if(result != truth){ 

          errors++; 

        } 

      } 

    } 

  } 

  while(1){ 

  } 

} 
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Debugging (Observability) 
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 Debugger monitor windows 

• Globals 

• Locals 

• I/O registers 

 

 Dump 

• Save results in RAM or ROM 

 

 Output to UART 

• Observe with terminal program like PuTTY or TExaSdisplay 

 

 Hardware Monitors 

• Lights, sounds  

• Nokia 5110 LCD display 

 

 

Important aspects:  

• Control 

• Observability 
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Debugging on the MSP432 
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Summary 

 Debugging 

• Control 

• Observability 

• Functional debugging Convert 

Input 

Output 
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