
Texas Instruments Robotics System Learning Kit

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Module 4
Lecture: Software Design using MSP432 - Design

2

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Software Design using MSP432

3

You will learn in this module

 Software Design

• Call graph

• Data Flow Graph

• Successive refinement

• Abstraction (functions)

• Modular design (header/code files)

SwitchMain

Switch LaunchPad

Call Graph

SwitchMain Switch LaunchPad

Data Flow Graph

Switch LED

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Multi-threading

4

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

System Design

5

What does being in a state mean?

• List state parameters

What is the starting state of the system?

• Define the initial state

What information do we need to collect?

• List the input data

What information do we need to generate?

• List the output data

How do we move from one state to another?

• Actions we could do

What is the desired ending state?

• Define the ultimate goal

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Successive Refinement

6

 Start with a task

• Clear and unambiguous description: requirements, specifications

 Decompose the task into a set of simpler subtasks (components)

• Subtasks are decomposed into even simpler sub-subtasks

• Each subtask is simpler than the task itself

 Make design decisions

• Document decisions and subtask requirements

 Ultimately, subtask is so simple, it can be implemented

• Implementation

• Testing

• Documentation

 Combine components to build system

• Interfaces are key

Three similar terms:

• Successive Refinement

• Stepwise Refinement

• Systematic Decomposition

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

 Why do we have header/code files?

• Complexity abstraction

• Separate what it does (header) from how it works

• Automatic documentation (doxygen)

 What is in a header file?

• Prototypes for public functions

• Comments on what it does/how to use it

• Code to make it load once

• Shared structure

 What is not in a header file?

• Function definitions

• Variables

• Anything private

Header files

7

/**

 * @file Switch.h

/**

 * Input from positive logic switch

 * interfaced to GPIO Port 1 bit 5.

 *

 * @param none

 * @return 0x20 if pressed; 0x00 if not pressed

 * @brief Switch input

 */

uint32_t Switch_Input(void);

SwitchMain

Switch LaunchPad

Call Graph

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

 What is in a code file?

• Implementations for public functions

• Variables

• Private functions

• Comments how it works

• Comments on how it was tested

• Comments on how it can be changed

 What is not in a code file?

• References to private data/functions in other files

Code files

8

//------------Switch_Input-------

// Read and return P1.5

// Input: none

// Output: 0x20 if P1.5 is high

// 0x00 if P1.5 is low

uint32_t Switch_Input(void){

// read P1.5 input

 return (P1->IN&0x20);

// return 0x20(if pressed)

// or 0(if not pressed)

}

#include <stdint.h>

#include "Switch.h"

#include "../inc/LaunchPad.h" SwitchMain

Switch LaunchPad

Call Graph

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

z

Software Design using MSP432

9

Summary

 Software design

• Successive refinement

• doxygen

• Header/code files

• Abstraction

SwitchMain Switch LaunchPad Switch LED

SwitchMain

Switch LaunchPad

Call Graph

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Module 4
Lecture: Software Design using MSP432 - C Programming

10

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

C Programming on the MSP432

11

You will learn in this module

 Basics of C programming

• Logic/shift operations

• Arithmetic calculations

• Conditionals

• Loops

• Functions

• Variables

• Constants

 Algorithm development (lab)

• GP2Y0A21YK0F IR distance sensor

• Where in the world am I?

0

200

400

600

800

1000

0 5000 10000 15000

D
is

ta
n

c
e
 (

m
m

)

14-bit ADC

GP2Y0A21YK0F IR Distance
Sensor

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Flowcharts

12

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Logic Operations

13

AND

• Select bits (AND with 1)

• Clear bits (AND with 0)

OR

• Combine

• Set bits (OR with 1)

EOR

• Toggle bits (EOR with 1)

y = P1->IN&0x03; // select bits 1,0

x = x&(~0x08); // clear bit 3

x &= ~0x08; // clear bit 3

z = x|y; // combine x,y

x = x|0x08; // set bit 3

x |= 0x08; // set bit 3

P1->OUT ^= 0x08; // toggle bit 3

A ~A

0 1

1 0

A B A&B A|B A^B

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

z

Shift Operations

14

Unsigned (logical) shift right

• Divide by 2n

• Align bits

Signed (arithmetic) shift right

• Divide by 2n

Shift left (logical/arithmetic)

• Multiply by 2n

• Align bits

y = x>>3; // divide by 8

x = P1->IN&0x01; // P1.0 (0,1)

y = P2->IN&0x08; // P2.3 (0,8)

z = (x<<1)|(y>>3); // combine

y = x<<8; // multiply by 256

int32_t

uint32_t

uint32_t or int32_t

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Arithmetic Operations

15

 Addition/subtraction

• Two n-bit → n+1 bits

 Multiplication

• Two n-bit → 2n bits

 Division

• Avoid divide by 0

• Watch for dropout

 Avoid overflow

• Restrict input values

• Promote to higher, perform, check,

demote

 Signed versus unsigned

• Either signed or unsigned, not both

• Be careful about converting types

uint8_t int8_t

uint16_t int16_t

uint32_t int32_t

uint8_t Add(uint8_t A, uint8_t B){

uint32_t A32,B32,R32;

 A32 = A; B32=B; // promotion

 R32 = A+B; // 32-bit addition

 if(R32>255){

 R32 = 255; // ceiling

 }

 return R32; // demotion

}

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Conditionals

16

 Boolean

• Zero is false

• Nonzero is true

• && || ! are operators

 Relational

• Compare similar types

• Returns a Boolean

• > >= < <= == !=

 Conditional

• if-then

• if-then-else

z

if((G1<=G2)&&(G3!=G4)){

 Yes();

}else{

 No();

}

if(P1->IN&0x80){

 Something(); // if P1.7 is high

};

These are different & &&

These are different | ||

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

z

z

z

while loops

17

while loop

• Test first

do-while loop

• Test last

for loop

• Test first

while(G2>G1){

 Body();

}

do{

 Body();

} while(G2>G1);

for(i=10; i!=0; i--){

 Body();

}

for(i=0; i<10;

i++){

 Body();

}

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

 What it does

• Prototype

• Header file

 How it works

• Implementation

• Code file

 Invocation

• Calling sequence

• Inputs: call by value/reference

• Output: return value

Functions

18

// random.c

uint32_t static M;

void Seed(uint32_t x){

 M = x;

}

uint8_t Rand(void){

 M=1664525*M+1013904223;

 return M>>24;

}

// random.h

void Seed(uint32_t x);

uint8_t Rand(void);

// main.c

uint8_t n;

void main(void){

 Seed(1);

 while(1){

 n = Rand();

 }

}

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Examples of variables

19

 Global

• Public scope

• Permanent allocation

• Bad style

 Static

• Private scope to file

• Permanent allocation

• Sharing: ISR ↔ Functions

 Local - Automatic

• Private scope,

• Dynamic allocation

 Static local

• Private scope to function

• Permanent allocation

uint32_t static M;

void Seed(uint32_t x){

 M = x;

}

uint8_t Rand(void){

uint32_t n;

uint32_t static count=0;

 count++;

 M=1664525*M+1013904223;

 n = M>>24;

 return (uint8_t)n;

}

uint8_t global;

void main(void){

uint8_t n;

 Seed(1);

 while(1){

 n = Rand();

 }

}

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Variables

20

Scope => from where can it be accessed

 Private means restricted, need to know basis

• More protection, simpler systems

 Public means any software can access it

• Difficult to debug, hidden complexity

Allocation => when is it created & destroyed

 Dynamic allocation using registers or stack

 Permanent allocation assigned a block of memory

Type

 Signed/unsigned

 Precision: 8, 16, 32 bits

Can you convert between types?

uint8_t → uint16_t, int16_t, uint32_t, int32_t

int8_t → int16_t, int32_t

uint16_t → uint32_t, int32_t

int16_t → int32_t

How does one classify I/O port registers?

• Formally: Global = public permanent

• Practically: private permanent

Can access

Does access

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Examples of constants

21

Symbol

• #define

ROM

• const

Enumerated types

• enum

int32_t const ADCBuffer[16]=

{2000, 2733, 3466, 4199, 4932,

5665, 6398, 7131, 7864, 8597,

9330, 10063, 10796, 11529,

12262, 12995};

enum scenario {

 Error = 0,

 LeftTooClose = 1,

 RightTooClose = 2,

 CenterTooClose = 4,

};

typedef enum scenario scenario_t;

#define IRSlope 1195172

#define IROffset -1058

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Software design, building blocks

22

• “do A then do B” → sequential

• “do A and B in either order” → sequential (parallel)

• “if A, then do B” → conditional

• “for each A, do B” → iterative

• “do A until B” → iterative

• “repeat A over & over forever” → iterative (condition always true)

• “on external event do B” → interrupt

• “every t msec do B” → interrupt

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

z

z

C Programming using MSP432

23

Summary

 Review C programming

• Logic/shift operations

• Arithmetic calculations

• Functions

• Conditionals

• Variables

• Constants

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Module 4
Lecture: Software Design using MSP432- Debugging

24

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Debugging on the MSP432

25

You will learn in this module

 Debugging

• Control (step, breakpoints)

• Observing variables

• Functional debugging

0

200

400

600

800

1000

0 2000 4000 6000 8000 10000 12000 14000

D
is

ta
n

c
e
 (

m
m

)

14-bit ADC

Expected Results

z

Your Function

Input

Output

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Debugging

26

 Functional Debugging

• Known inputs

• Expected outputs

 Stabilization

• Fix input values, fix timing of input

• Repeated testing shows changes in software

 Test cases

• Near the extremes and in the middle

• Most typical of how clients will properly use the system

• Most typical of how clients will improperly use the system

• That differ by one

• You know your system will find difficult (corner cases)

• Using a random number generator

Important aspects:

• Control

• Observability

// Program 4_1 used to test the Convert function

int32_t const ADCBuffer[16]={2000,2733,3466,4199,4932,

 5665, 6398, 7131, 7864, 8597, 9330, 10063, 10796,

 11529, 12262, 12995};

int32_t const DistanceBuffer[16]={800,713,496,380,

 308,259,223,196,175,158,144,132,122,114,106,100};

void Program4_1(void){int i;

int32_t adc,distance,errors,diff;

 errors = 0;

 for(i=0; i<16; i++){

 adc = ADCBuffer[i];

 distance = Convert(adc); // call to your function

 diff = distance-DistanceBuffer[i];

 if((diff<-1)||(diff>1)){

 errors++;

 }

 }

 while(1){};

}

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Debugging (Control)

27

 Test cases

• Get data from arrays (rather than actual inputs

devices)

 Single step

• Step, step over, step in, step out

 Breakpoints

• Set using debugger

 Special test main

• Establish exact scenario you wish to test

• Stabilization

Important aspects:

• Control

• Observability

int32_t errors;

void Program4_2(void){

 scenario_t result,truth;

 int i,j,k;

 int32_t left, right, center; // sensor readings

 errors = 0;

 for(i=0; i<18; i++){

 left = CornerCases[i];

 for(j=0; j<18; j++){

 center = CornerCases[j];

 for(k=0; k<18; k++){

 right = CornerCases[k];

 result = Classify(left,center,right);

 truth = Solution(left,center,right);

 if(result != truth){

 errors++;

 }

 }

 }

 }

 while(1){

 }

}

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

Debugging (Observability)

28

 Debugger monitor windows

• Globals

• Locals

• I/O registers

 Dump

• Save results in RAM or ROM

 Output to UART

• Observe with terminal program like PuTTY or TExaSdisplay

 Hardware Monitors

• Lights, sounds

• Nokia 5110 LCD display

Important aspects:

• Control

• Observability

Texas Instruments Robotics System Learning Kit: The Solderles Maze Edition

SEKP080 | Software Design using MSP432 - Design

z

Debugging on the MSP432

29

Summary

 Debugging

• Control

• Observability

• Functional debugging Convert

Input

Output

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

