

Texas Instruments Robotics System Learning Kit

 Module 7
Lab 7: Finite State Machine

Lab 7: Finite State Machine

 2 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP096

7.0 Objectives

The purpose of this lab is to develop and test a Finite State Machine (FSM) that
could be used in a robot to follow a line.

1. You will learn how to use structures and pointers in C.
2. You will understand how to use FSMs to solve problems.
3. You will implement a simple line-following algorithm with an FSM.

Good to Know: Even though you will implement this lab using switches for
inputs and LEDs for output, the FSM design process can be used for robot
controllers. After you learn about the motors in Labs 12 and 13, you could run the
software solution to this lab to make the real robot to follow a line (black mask
tape).

7.1 Getting Started

7.1.1 Software Starter Projects

Look at these three projects:
PointerTrafficFSM (example use of a finite state machine)
LineFollowFSM (simple FSM that implements line following) and
Lab07_FSM (starter project for this lab)

7.1.2 Student Resources (in datasheets directory-Links)

Meet the MSP432 LaunchPad (SLAU596)
MSP432 LaunchPad User’s Guide (SLAU597)

7.1.3 Reading Materials

Chapter 7, “Embedded Systems: Introduction to Robotics"

7.1.4 Components needed for this lab
All the components needed in the lab are included in the TI-RSLK Max
kit (TIRSLK-EVM kit). For this lab you will need, just the MSP432-LaunchPad.
You will need to just unplug your TI MSP432-LaunchPad carefully from the robot.
See Figure 1.

Figure 1 Dis-assembly of TI-LaunchPad from the robot

Quantity Description Manufacturer Mfg P/N

1
MSP-
EXP432P401R
LaunchPad

TI MSP-EXP432P401R

7.1.5 Lab equipment needed

Oscilloscope (one channel at least 10 kHz sampling)
Logic Analyzer (4 channels at least 10 kHz sampling

7.2 System Design Requirements

The Lab07_FSM starter project implements the three-state FSM shown in Figure
2, which we could use to implement a line-following robot. The 500 is the time to
wait in each state in ms. On the real robot, we set these delay times to be much
shorter, depending on how fast the mechanical robot responds to actuator
commands. As a general rule of thumb, we run the software controller about 10
to 20 times faster than the time constant of the motors. For example, if the time
constant of a motor is 100 ms, we could run the controller every 10 ms. However,
in this lab, the 500 ms is chosen to make it easy to see the output with our eyes.

Lab 7: Finite State Machine

 3 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP096

Figure 2. Moore FSM state graph to implement line following. The time in each
state is shown in 1ms units.

The robot in Figure 3 has two sensors that detect the line. If the robot is properly
positioned on the line, both sensors will read 1. If the robot is a little off to the left
or right, one sensor reads 1, and the other sensor reads 0. If the robot is
completely off the line, both sensors will read 0.

The robot in Figure 3 has two motors. The two motors in the back and a passive
caster in the front allow the robot to operate in a differential drive fashion. If the
software outputs high to both motors, the robot moves forward in a straight line. If
the software outputs high to just one motor, it will turn. If the software outputs low
to both motors, it will stop.

Figure 3. Robot with two line sensors and two wheel motors.

You are asked to extend this FSM, adding additional states, to implement the
following behaviors.

1) The FSM in Figure 2 gets confused (has a bug) if the robot is off little bit to the
left (input is 01, and the machine is oscillating between the Left and Center
states) and then goes completely off the line to the left (input is 00). In this
machine, if it happens to be in the Center state when it goes off the line, it will
incorrectly move to the Right state even though the robot went off to the left. You
will solve this problem by implementing two left states (so it oscillates between
the two left states when a little left). For symmetry, you will implement two right
states as well. Figure 4 shows a partial solution. If the input is 11, then the output

should remain 11. If the input goes to 01 (it is a little left), then the output should
toggle 1,0↔1,1 causing a slight right turn. Similarly, if the input goes to 10 (it is a
little right), then the output should toggle 0,1↔1,1 causing a slight left turn.

Figure 4. Expanded FSM state graph. The time in each state is shown in 1ms
units.

2) The second behavior you need to implement is what happens when the robot
goes completely off the line. If it goes off the line to the right (input=0,0 while in
Right1 or Right2), it should make a hard left turn (output=0,1) for 5 seconds, then
go straight (output=1,1) for 5 seconds. If it is still off the line at this point it should
stop (output=0,0). If it finds the line, resume line following. It should take three
more states to implement this behavior.

Similarly, if the robot goes completely off the line to the left (input=0,0 while in
Left1 or Left2), it should make a hard right turn (output=1,0) for 5 seconds, then
go straight (output=1,1) for 5 seconds. If it is still off the line at this point it should
stop (output=0,0). If it finds the line, it should resume line following. It should take
three more states to implement this behavior.

The solution should have about 11 states (5 states from Figure 4, plus 3 for lost
to the right, plus 3 states for lost to the left). As long as you have 9 or more
states, feel free to make assumptions or change the exact behavior of the
machine. The objective of the lab is to describe the complete behavior of a
system with the state transition graph, and then to implement that behavior with a
very simple FSM controller. The FSM controller should have NO conditional
branch statements.

Lab 7: Finite State Machine

 4 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP096

7.3 Experiment set-up

You will implement this lab using just the MSP432 LaunchPad, without need for
additional circuits, see Figure 5. We recommend you remove the LaunchPad
from the robot. See construction guide document (SEKP164) or Figure 1.

The LaunchPad driver software converts the switch input to positive logic so
“switch pressed” is seen as a 1, see Table 1. The LED outputs are in positive
logic, see Table 2.

Figure 5 P1.4 is the left sensor, P1.1 is the right sensor, P2.1 is the left motor
P2.0 is the right motor.

The LaunchPad_Input function (defined in LaunchPad.c) returns the switch
position in positive logic, so pushing both switches creates an input condition of
1,1. The LaunchPad_Output function (defined in LaunchPad.c) sends data to
the 3-bit color LED.

SW2 SW1 LaunchPad_Input Meaning
pressed pressed 1,1 = 0x03 On line
pressed not 1,0 = 0x02 Right of line
not pressed 0,1 = 0x01 Left of line
not not 0,0 = 0x00 Off the line
Table 1. Switches simulate line sensors.

P2.1 P2.0 LaunchPad_Output LED Meaning
off off 0,0 = 0x00 black Stop
off on 0,1 = 0x01 red Turn left
on off 1,0 = 0x02 green Turn right
on on 1,1 = 0x03 yellow Straight
Table 2. LEDs simulate robot motor

7.4 System Development Plan

7.4.1 Line Follow FSM

The first step is to compile, download and run the LineFollowFSM example
shown below. Using the debugger, single step through the controller (step over
the functions) and observe Input, Output, and the pointer Spt. Notice how the
structure is defined and how the pointer is used to access data in the structure.
Using the debugger, determine where in memory is the FSM located (is it in RAM
or ROM)?

MSP432 P1.4
P1.1

SW1 SW2P2.0
P2.1
P2.2

RedBlue Green

EL-19-337

JP4
P1.2/RxD
P1.3/TxD

P3.4/CTS

Serial
P3.1/RTS

P1.0

JP9
JP10

JP11

JP8
LTST-C190CKT
1.65V3.5mA

470

26 24 110

Lab 7: Finite State Machine

 5 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP096

struct State {
 uint32_t out; // 2-bit output
 uint32_t delay; // time to delay in 1ms
 const struct State *next[4]; // Next if input is 0-3
};
typedef const struct State State_t;

#define Center &fsm[0]
#define Left &fsm[1]
#define Right &fsm[2]
StateType fsm[3]={
 {0x03, 500, { Right, Left, Right, Center }},
 {0x02, 500, { Left, Center, Right, Center }},
 {0x01, 500, { Right, Left, Center, Center }}
};
State_t *Spt; // pointer to the current state

uint32_t Input;
uint32_t Output;

int main(void){ uint32_t heart=0;
 Clock_Init48MHz();
 LaunchPad_Init();
 TExaS_Init(LOGICANALYZER); // optional
 Spt = Center;
 while(1){
 Output = Spt->out; // set output from FSM
 LaunchPad_Output(Output); // output to motors
 TExaS_Set(Input<<2|Output); // optional
 Clock_Delay1ms(Spt->delay); // wait
 Input = LaunchPad_Input(); // read sensors
 Spt = Spt->next[Input]; // next
 heart = heart^1;
 LaunchPad_LED(heart); // optional
 }
}

In this program, this FSM performs the 4-step sequence over and over:
 1) Output depends on State (LaunchPad LED)
 2) Wait depends on State
 3) Input (LaunchPad buttons)
 4) Next depends on (Input, State)

Run the program and observe the static behavior.

Static response) Fill in Table 3 describing what this machine does if the
input remains constant.

SW2 SW1 Input Meaning Output behavior
pressed pressed 1,1 On line
pressed not 1,0 Right of line
not pressed 0,1 Left of line
Table 3. Static response table of the simple FSM.

When just one switch is pressed, it represents the condition where the robot is a
little off the line. In this situation, one wheel is active and other wheel oscillates
on and off. This oscillation causes this wheel to spin, but at a slower rate. If P2.1
is high, the left wheel spins at 100%. The duty cycle of a digital wave is defined
as the percentage of the time the signal is high. If the duty cycle on P2.0 is
n=(high/ (high+low)), then the right motor spins at n*100%, and the robot will
gently turn. Use an oscilloscope or logic analyzer to measure the oscillation rate
and duty cycle on Port P2.0. See Figure 6.

Figure 6. Logic analyzer trace showing the oscillation on the right wheel
Channel 0 is 1 Hz and has a 50% duty cycle.

Note: Channel 3-2 are Input =1 (left sensor=0, right sensor =1), showing the
condition a little bit off to left. Channels 1-0 are the Output (left motor=1, right
motor oscillating), showing a gentle right turn.

Lab 7: Finite State Machine

 6 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP096

Lastly, you will observe the bug in this FSM.
 1) Start with both switches pressed (on the line);
 2) Release SW2 (the robot is a little off to the left); then
 3) Release SW1.

At this point you are completely off the line to the left. Repeat this 1-2-3 step
sequence multiple times, and you will find sometimes it correctly ends up in the
left state, but sometimes it incorrectly ends up in the right state.

7.4.2 Design an improved FSM

The second step is to design an FSM as described in the requirements section,
Figure 4. As long as your machine has 9 or more states, feel free to adjust
exactly how the machine operates. In this lab section you will:

i) Draw the state transition graph
ii) Create a state transition table, and enter the C code for the data

structure.
All three should be exactly the same information (no more no less).
This equivalency is called one-to-one and it is an important feature of
good FSM design. If the graph is one-to-one with the data structure in
C, then we can be confident the system operates as described by the
graph.

iii) You will test your system using the same 1-2-3 step sequence shown

at the end of section 7.4.1. However, as long as you wait at least 500
ms with SW2 released before you release SW1, then you should
always end up in one of the left states.

Perform this test at least ten times to verify it works correctly. Similarly for the
right side states,
 1) Start with both switches pressed (on the line);
 2) Release SW1 (the robot is a little off to the right); then
 3) Release SW2

At this point you are completely off the line to the right. Repeat this 1-2-3 step ten
multiple times and you should always end up in one of the right states.

Use the logic analyzer to test the static behavior of the system. Assuming the
input remains constant fill in Table 4.There are two off the line conditions: off to
left and off to right.

SW2 SW1 Input Meaning Output behavior
pressed pressed 1,1 On line
pressed not 1,0 Right of line
not pressed 0,1 Left of line
not not 0,0 Off the line
not not 0,0 Off the line
Table 4. Static response table of the Lab FSM.

7.5 Troubleshooting

Can’t program LaunchPad:

• Remove the LaunchPad from the robot.
• Check the cables, jumpers on the LaunchPad development board.
• Check the Windows driver to see if the board is recognized by the

operating system.
• Try another LaunchPad on this computer.
• Try this LaunchPad on another computer.

Hard fault:

• Verify Spt always points an entry in the FSM.

Time delays are too slow or too fast:

• Verify the computer is running at 48 MHz.
• Go back and make sure Lab in Module 6GPIO still works

Lab 7: Finite State Machine

 7 Texas Instruments Robotics System Learning Kit: The Solderless Maze Edition
SEKP096

7.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.

• Can there be two states with the same output? Why?
• How does the FSM create the 50% duty cycle output wave? What would

you change to make it 75% (even more gentle turn)? What would you
change to make it 25% (sharper turn)?

• It is important that the state transition graph and the data structure in C
are one-to-one. What does one-to-one mean and explain how is it true?

• This lab uses I/O abstraction in the four functions that begin with
LaunchPad_. What information is in the header file LaunchPad.h?
What is in the code file LaunchPad.c? What benefits does this
abstraction provide?

• This FSM had 2 inputs. What would change if there were 3 inputs?
4 inputs?

• This FSM had 2 outputs. What would change if there were 3 outputs?
4 outputs?

• How is the FSM tested?

7.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. You could extend the system or propose something
completely different. For example,

• Replace the switch input with the actual line sensor interfaced in Lab 6.
If you use the line sensor, you can expand the input from 2 bits to 4 bits.

• Use the FSM method to solve similar problems like the traffic light
controller or a stepper motor controller

• This FSM used a pointer to define the current state. You could
implement the FSM using an index to access the parameters of the
state. E.g., Output = fsm[index].out;

7.8 Which modules are next?

The FSM is a powerful design tool for solving complex systems. Effective
solutions to many of the possible robot challenges will include FSMs.

Module 8) Interface actual switches and LEDs to the microcontroller.
 This will allow for more inputs and outputs increasing the
 complexity of the system.
Module 9) Develop a simple PWM output to adjust duty cycles
Module 10) Develop debugging techniques to prove behavior for
 complex systems
Module 12) Connect the line sensor and motors to the robot, and run the
 solution to this lab on the actual robot.

7.9 Things you should have learned

In this section, we review the important concepts you should have learned in
this module:

• Use struct to organize data
• Access data using a pointer
• Use multiple files in a project to implement abstraction
• Design a simple FSM drawing a state transition graph
• Convert a state transition graph into C data structure
• Use a logic analyzer to measure timing between inputs/outputs
• Debug the FSM and verify its proper behavior

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	RSLK MAX_7_FSM_Lab_NEW
	7.0 Objectives
	7.1 Getting Started
	7.1.1 Software Starter Projects
	7.1.2 Student Resources (in datasheets directory-Links)
	7.1.3 Reading Materials
	7.1.4 Components needed for this lab
	All the components needed in the lab are included in the TI-RSLK Max
	7.1.5 Lab equipment needed

	7.2 System Design Requirements
	7.4 System Development Plan
	7.4.1 Line Follow FSM
	7.4.2 Design an improved FSM

	7.5 Troubleshooting
	7.6 Things to think about
	7.7 Additional challenges
	7.8 Which modules are next?
	7.9 Things you should have learned

	TI-RSLKMax_Cover

