
Application Report
SLAA109 - November 2000

Interfacing the TLV320AIC10/11 Codec to the
TMS320C5402 DSP

Wendy X. Fang and Perry Miller AAP Data Conversion

ABSTRACT

This report describes how the analog interface circuit (AIC) device TLV320AIC10/11, 16-bit,
22-ksps audio codec has been applied in telephony (tone generation and echo cancellation)
and speech (voice security system and voice-over IP). It describes the TMS320C54xx
software architecture, and the hardware that has been developed and built. The C source
code developed offers good reuse capabilities. The sample code discussed in this
application report can be downloaded from http://www.ti.com/lit/zip/SLAA109.

1 Introduction
Contents

. 3
2 Hardware Interface ... 3

2.1 TMS320C5402 DSK ... 3
2.1.1 Block Diagram .. 3
2.1.2 External Interfaces .. 4
2.1.3 User Hardware Configuration ... 5
2.1.4 System Connection and Configurations ... 6

2.2 TMS320AIC10/11 EVM .. 7
2.2.1 Block Diagram .. 7
2.2.2 Analog Interfaces .. 9
2.2.3 Digital Interface ... 9
2.2.4 System Connection and Configurations ... 11

3 Software Interface .. 11
3.1 DSP Initialization .. 11

3.1.1 DSP System Clock Frequency ... 12
3.1.2 Software Loop Control .. 12
3.1.3 McBSP Initialization .. 13
3.1.4 Interrupts .. 16

3.2 CPLD Register Initialization .. 17
3.3 AIC10/11 Control Registers Initialization .. 18

3.3.1 ADC/DAC Sampling Frequency .. 18
3.3.2 Communication Cycle and Phase .. 18
3.3.3 Sync Communication Timing .. 19
3.3.4 Interface Data Format ... 21
3.3.5 Hardware Configuration Identification .. 22
3.3.6 AIC10/11 Control Register Configuration ... 22

1

http://www.ti.com/lit/zip/SLAA109

SLAA109

2 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

3.3.7 AIC10/11 Control Register Reading ... 23
3.4 Data Receive (ADC) and Transmit (DAC) Programs ... 23
3.5 Software Structure .. 24
3.6 Application Examples ... 25

3.6.1 Tone Generation ... 25
3.6.2 Voice Security System .. 26
3.6.3 Echo Cancellation ... 28

4 References .. 29
Appendix A TMS320C5402 DSK C Program Main Routine .. 30
Appendix B DSK Initialization Assembly Routine .. 32
Appendix C AIC10/11 Devices Initialization Assembly Routine.. 35
Appendix D DSP Interrupt Service Routines .. 47
Appendix E TMS320C5402 DSP Memory Mapped Registers .. 50
Appendix F Interrupt Vector Table Initialization ... 54
Appendix G Linker Command Program .. 57

List of Figures

1 TMS320VC5402 DSK Block Diagram .. 4
2 System Connection .. 6
3 TLV320AIC10/11 EVM Block Diagram ... 8
4 Software Main Loop Flow Chart ... 13
5 McBSP Initialization Flow Chart ... 16
6 Cascade Paralleling TLV320AIC10 Master-Slave Frame Sync Timing Diagram 20
7 Interface Data Format .. 21
8 Timing Diagram of Autoconfiguration Procedure ... 22
9 BRINIT ISR Flow Chart .. 24
10 Software Tree Structure ... 25
11 Principle of Voice Security System ... 27
12 Voice Security System Block Diagram ... 28
13 Echo Cancellation Block Diagram . 28

List of Tables

1 8-Position DIP Switch Description ... 5
2 DIP Switch Controlled CLKMD Configuration .. 5
3 Hardware Strap Description ... 5
4 DIP Switch Configuration ... 7
5 TLV320AIC10/11 EVM Analog Interfaces .. 9
6 EVM Motherboard Peripheral Connector Pinout .. 10
7 McBSP Registers ... 14
8 McBSP Hardware Pins .. 15
9 CPLD Registers ... 17
10 CPLD Control Register 2 (CNTL2) Definition ... 18

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 3

1 Introduction
This report discusses the TMS320C54xx digital signal processor (DSP) and the analog interface
circuits for interfacing an analog signal or sensor to the DSP, and to convert digital DSP–sourced
signals into analog.

The TMS320C5402 DSP is a popular member of the TMS320C5000 family of fixed-point DSPs .
The C5402 DSP features 16-bit resolution, 16 kword on-chip memory, up to 100 million
instruction per second (MIPS) speed performance, and on-chip peripherals. The peripherals
include two multichannel buffered serial ports (McBSPs), enhanced 8-bit parallel host port, two
16-bit timers, and six-channel direct memory access (DMA) controller. The TMS320C5402 DSP
starter kit (DSK), one of the C54xx’s development tools, is intended for DSP hardware/software
designers developing a complete data acquisition system connected to a PC or a laptop
computer.

A TLV320AIC10/11 device is an analog interface circuit (AIC)—also called a modem codec—that
contains analog-to-digital converter (ADC) and digital-to-analog converter (DAC) paths and
which interfaces with the DSP through syncronization (sync) serial bus lines. The
TLV320AIC10/11 device, providing 16-bit resolution and up to 22 ksamples per second (ksps)
speed, is designed for use with the TMS320C5402 DSP, or any other DSP or microprocessor
that features a McBSP or sync serial peripheral interface (SPI). This general-purpose AIC device
is widely used in telephony and speech applications. The TLV320AIC10/11 EVM is the codec
device’s evaluation tool.

This application report uses the TMS320C5402 DSK as the working platform to develop the
interface to the TLV320AIC10/11 codec devices and to provide users with a hardware and
software solution and some examples.

2 Hardware Interface

The hardware interface consists of the TMS320C5402 DSK (DSP starter kit) and the
TLV320AIC10/11 EVM (evaluation module).

2.1 TMS320C5402 DSK

The TMS320C5402 DSK provides C5402 DSP users with a low-cost, comprehensive,
stand-alone development tool. The DSK is designed specifically for digital communications
applications and comes complete with a TMS320C5402-based target board, DSK-specific Code
Composer Studio software debugger, 32K application-size-limited C compiler/assembler/linker,
parallel-port interface, power supply and cables.

2.1.1 Block Diagram

Figure 1 shows a block diagram of the DSK board. The DSK board has a 100-MHz
TMS3200C5402 DSP, 64K words of external SRAM, 256K words of nonvolatile flash ROM, and
a complex programmable logic device (CPLD). See TMS320VC5402 Fixed-Point Digital Signal
Processor, SPRS079 [1] for a detail description of the DSP device.

SLAA109

4 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

20 Mhz Crystal

MIC/SPKR

Figure 1. TMS320C5402 DSK Block Diagram

2.1.2 External Interfaces
The following external interfaces have been installed on the DSK board to enable various
communication channels and to achieve a high degree of flexibility between the DSK and
external interface boards (see Figure 1). These external interfaces (highlighted in Figure 1)
include:
• 2.5 mm barrel-type power connector for external +5-V dc power supply
• 4-pin industry-standard Molex external power connector
• 25-pin DB-25 IEEE 1284 parallel port for JTAG/HPI access

RS-232
Expansion Memory Interface

DB-9P
Conn.

DRVR/
RCVR

64K x 16
1WS SRAM

(PM/DM) 256K x 16
Flash

(PM/DM)

TEL LINE
UART
(I/O)

RJ-11 20 MHz
Crystal

20 MHz
Oscillator

EMIF CLKIN

DAA
JTAG
TBC

JTAG
Codec
Ctrl.

Level
Xlat.
and
Mux

(Decode / Registers)
5402–100

DSP

JTAG
HEADER

(2x7)

LEDs 8-Pos
DIP SW CTL

McBSP0
HPI

McBSP1

Level
Xlat.

Parallel
Port

Interface

Host
DB-25P
Conn.

IEEE
1284

Level
Xlat.
and
Mux

LED
AD50 1.8 V

AD50

Level
Xlat.
and
Mux

3.3 V

5 VA

5 VD
TMR, INT. and CTL

+12 V

2.5
mm

+5VDC
Ext.

Power

3.5 mm
Audio
Jacks

Expansion Peripheral Interface –12 V

Optional
Ext. Power
(Molex DD)

Voltage

Regulators

Voltage
Supervision/
Reset Ctrl.

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 5

• 14-pin JTAG emulation header
• 10-pin JTAG CPLD header
• 9-pin DB-9F RS-232 serial (UART) I/O connector
• two 3.5 mm audio jacks for microphone and speaker
• 6-pin RJ-11 modular interface connector for DAA access
• Two low-profile 80-pin daughter-board connectors: one is the expansion memory interface;

the other is the expansion peripheral interface.

2.1.3 User Hardware Configuration
There is one 8-position DIP switch and 4 hardware straps provided on the DSK for the user to
set up or configure the DSK, based on user options (Figure 2). Table 1 summarizes the 8
switches and their functions in both ON and OFF settings. Table 2 lists clock mode selections for
the C5402 DSP. Note that an ON setting means logic low or 0; an OFF setting translates to a
logic high or 1.

Table 1. 8-Position DIP Switch Description

SWITCH NO. NAME OFF SELECTION ON SELECTION
1 JTAGSEL External (e.g. XDS510PP) Internal (test bus controller)
2 MP/MC Microprocessor mode Microcontroller mode

3,4,5 CLKMODE See Table 2-1b See Table 2-1b
6 DMSEL External memory onboard External memory offboard
7 USER 1 User-software defined (1) User-software defined (0)
8 USER 0 User-software defined (1) User-software defined (0)

Table 2. DIP Switch Controlled CLKMD Configuration

DIP SW #5
(CLKMD1)

DIP SW #4
(CLKMD2)

DIP SW #3
(CLKMD3)

CLKMD
RESET

DEFAULT

DSP CPU
CLOCK FREQUENCY

(DSK ONBOARD 20-MHz CRYSTAL)
0 0 0 E007h x15 (not valid)
0 0 1 9007h x10 (not valid)
0 1 0 4007h x5 (100 MHz)
1 0 0 1007h x2 (40 MHz)
1 1 0 F007h x1 (20 MHz)

1 1 1 0000h x0.5 (10 MHz)
1 0 1 F000h x0.25 (5 MHz)
0 1 1 — Reserved

The DSK board hardware straps provide four user options, as described in Table 3 along with
the manufacturer’s default strap configuration (see Figure 2 for JP1 to JP4 strap locations).

Table 3. Hardware Strap Description

NAME DESCRIPTION PINS 1 TO 2
FUNCTION

PINS 2 TO 3
FUNCTION DEFAULT

JP1 CPLD program selection CPLD program through J1 and JTAG CPLD program through parallel port Pins 1 to 2
JP2 Boot mode control HPI boot selection Normal (internal or external memory) Pins 2 to 3
JP3 Speaker output control Unbuffered output Low-impedance driver output Pin 2 to 3
JP4 DAA loop current selection 125 mA (USA) (jumper installed) 45 mA (CTR21) (jumper removed) Jumper installed

SLAA109

6 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

2.1.4 System Connection and Configurations
The overall system configuration is shown in Figure 2 and the results contained in this report are
based on this hardware configuration. In Figure 2, a single 5-V dc power supply was connected
to a 2.5-mm barrel-type power connector; the XDS510PP emulator, installed inside the PC, was
connected to the DSK’s 14-pin JTAG emulation header through a JTAG adapter; and the
TLV320AIC10/11 EVM communicated with the DSK through the DSK’s 80-pin expansion
peripheral interface connector.

XDS510PP
Emulator

TLV320C5402
DSK Board

JP1

J1 JP2

Wall Power
Plug

Audio
Jacks

JP3

RJ-11

+5 VDC

JP4 8-Position DIP Reset
Botton

Interface to AIC10/11 EVM

Figure 2. System Connection

Table 4 lists the C5402–DSK DIP switch settings normally used when interfacing the DSK to the
TMS320AIC10/11 EVM.

Expansion Memory Interface

PC

Expansion Peripheral Interface

110/120 VAC
to 5 VDC

C
5402

D
SP C

PL
D

JTAG
–3/5 V

D
B

-2
5

Pa
ra

lle
l P

or
t

Ex
te

rn
al

Po

w
er

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 7

Table 4. DIP Switch Configuration

SWITCH NO. NAME ON/OFF DESCRIPTION
1 JTAGSEL OFF External (e.g. XDS510PP)
2 MP/MC ON Microcontroller mode
3 CLKMD3 ON

The CLKMD pins are set to 0 1 0, i.e., DSP CPU clock frequency is 100 MHz (20 MHz × 5). 4 CLKMD2 OFF
5 CLKMD1 ON
6 DMSEL OFF External memory onboard
7 USER 1 ON User-software defined (0)
8 USER 0 ON User-software defined (0)

It is important to note that all hardware straps were kept at the default configuration of Table 3.

2.2 TMS320AIC10/11 EVM

The TLV320AIC10/11 EVM is designed to be a daughterboard that plugs directly into the
expansion peripheral connector of the TMS320C5402 DSK. This is illustrated in Figure 2 where
it can be seen that there are two 80–pin interface connectors provided on the DSK. The EVM
has a footprint for a total of eight AIC10/11 devices, but only two TLV320AIC10/11 devices are
populated and supplied with the EVM. With only two codec (AIC10/11) devices on board, the
EVM can be used successfully to evaluate the various operating modes of the codec devices.

2.2.1 Block Diagram

Figure 3 shows the EVM block diagram. The nonpopulated AIC10/11 devices are shown within
the dash-dot squares.

SLAA109

8 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

J1
From

Phone Line

J7
Analog

Input
J5
to

Speaker

C5402
DSK

J12
From

Microphone
J8

Analog
Input

J6
to

Speaker

J9
1.8 VDC

J2
3.3–
5 VDC

J3
3.3–
5 VDC

J4
5 VDC

Figure 3. TLV320AIC10/11 EVM Block Diagram

TLV320AIC10/11 EVM

J10

Rx and Tx

DB_DET

DVDD

DVDD1

AVDD

5VS

DVSS

AVSS Terminal

FS
SCLK

DIN
DOUT

MCLK

FSD

TLV320AIC
10/11
(U8)

FSD

DIN
DOUT
MCLK

TLV320AIC
10/11
(U3)

FS
SCLK

Terminal

Audio Output
Driver

Input
Offset/Condition

Flag
SCLK

FS
DIN

DOUT
MCLK

FSD

TLV320AIC
10/11
(U2)

Input
Offset/Condition

RCLK,XCLK,
FSR and FSX MCLK

8.2 MHz
Oscillator

CLKOUT
and RESET

Digital
Signal

Configuration
and Controls

Audio Output
Driver

Input
Offset/Condition

MCLK

Flag
SCLK

FS
FSD
DIN

DOUT

TLV320AIC
10/11
(U1)

DAA Circuit

Buffer and LED
Display Circuit

Power
Supply

Configuring
and

Conditioning

D
VD

B
 a

nd
 A

VD
B

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 9

2.2.2 Analog Interfaces

Not including the power supply, the EVM interfaces to external analog signals via six connectors
or jacks. Two analog inputs and one analog output can be connected to each of the two
populated AIC10/11 devices. The two analog inputs are multiplexed to the AIC10/11 device’s
ADC path, and the multiplexing selection is controlled by software. Table 5 lists the six analog
interfaces and their descriptions.

Table 5. TLV320AIC10/11 EVM Analog Interfaces

CONNECTOR CONNECTOR TYPE DESCRIPTION

AIC10/11 #1

J1 Input: 6-pin RJ-11 modular interface connector DAA access

J7 Input: 3.5-mm audio jack Analog input

J5 Output: A pair of wires Speaker output

AIC10/11 #2

J12 Input: 3.5-mm audio jack Microphone input

J8 Input: 3.5-mm audio jack Analog input

J6 Output: A pair of wires Speaker output

2.2.3 Digital Interface

An 80–pin connector (J10) links the digital I/O interfacing signals between the C5402 DSK and
the AIC10/11 EVM board. Connector J10 is directly plugged into the expansion peripheral
interface of the DSK and, as a result, there is essentially clean bussing of the I/O signals
travelling between the two boards. Table 6 lists the signals that interface between the EVM and
DSK through the hardware connection, J10.

SLAA109

10 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

Table 6. EVM Motherboard Peripheral Connector Pinout

J10 PIN NO. DESCRIPTION
1 +12 V dc
2 –12V dc

3, 4 Digital ground
5 +5.0 V dc, digital
6 +5.0 V dc, analog

7, 8 Digital ground
9 +5.0 V dc, digital

10–18 Not used
19 +3.3 V dc, digital
20 +3.3 V dc, analog
21 X_CLKX0, McBSP0 Tx clock
22 Not used
23 X_FSX0, McBSP0 Tx frame sync
24 X_DX0, McBSP0 Tx data

25, 26 Digital ground

27 X_CLKR0, McBSP0 Rx clock
28 Not used
29 X_FSR0, McBSP0 Rx frame sync
30 X_DR0, McBSP0 Rx data

31, 32 Digital ground
33 X_CLKX1, McBSP1 Tx clock
34 Not used
35 X_FSX1, McBSP1 Tx frame sync
36 X_DX1, McBSP1 Tx data

37, 38 Digital ground
39 X_CLKR1, McBSP1 Rx clock
40 Not used
41 X_FSR1, McBSP1 Rx frame sync
42 X_DR1, McBSP1 Rx data

43, 44 Digital ground
45–50 Not used

51, 52 Digital ground
53–58 Not used

59 X_/RESET, Reset signal from motherboard
60 Not used

61, 62 Digital ground
63– 74 Not used

75 DB_DET, Daughter board detector
76, 77 Digital ground

78 X_CLKOUT, DSP CLKOUT Pin output signal = 1/2 CPU Frequency
79, 80 Digital ground

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 11

2.2.4 System Connection and Configurations

The EVM daughter board is mounted on top of a DSK board by plugging the EVM’s digital
interface connector, J10, into the expansion-peripheral interface of the DSK. Another 80-pin
connector, J15, is plugged into the expansion-memory interface, but J15 is not wired and only
serves as a hardware support for the EVM board.

In the work done for this application report, the EVM system ran with the manufacturer’s default
configurations, i.e., there was a total of 2 AIC10/11 devices on the board. These 2 devices
worked in parallel and cascade modes, with AIC10/11 number 1 connected as the master device
and AIC10/11 number 2 connected as the slave (default condition). In this case, the
serial-interface sync mode of the codec is set to the default mode, which is pulse mode. See
TLV320AIC10/11 EVM User’s Guide, SLWU003C [2] for the manufacturer’s defaults.

One microphone and two speakers were connected into the analog interfaces J12, J5, and J6,
respectively.

Three dc power supplies were used for the EVM board (see the EVM block diagram in Figure 3).
Digital power at 3.3-V dc was connected to J2 because the codec devices used for this
application report test were AIC10s. In addition, 3.3-V dc analog power was connected to J3,
and +5-V dc analog power to J4.

3 Software Interface

For communication between the DSP on the DSK board and the AIC10 devices on the EVM
board, a set of software drivers was developed, including initialization (software configuration) of
the DSP’s McBSP, CPLD registers, and AIC10/11 control registers. Sample code for ADC data
receive (Rx) and DAC data transmit (Tx) functions are provided in this report. For convenience,
a software structure or skeleton was implemented that can be used for a variety of applications.
Refer to TMS320C54x DSP Reference Set, Volume 4: Applications Guide, SPRU173 [3] for a
variety of applications for this device.

In this report, several application examples are also presented, and users can either adapt these
examples to their application or replace them with completely new C-language code. The driver,
the Rx/Tx example, and the software structure are included in the appendices.

3.1 DSP Initialization

DSP initialization configures the DSP system by setting up its memory-mapped registers
(MMRs) which are mapped into the beginning of the DSP’s data-memory page. For functions
and descriptions of all of the MMRs, see TMS320C54x DSP CPU and Peripherals, Reference
Set Volume 1, SPRU131F [4]. The MMRs are defined in Appendix E.

SLAA109

12 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

3.1.1 DSP System Clock Frequency

A 20-MHz crystal oscillator on the DSK board provides the C5402 DSP with basic frequency
reference (see Figure 1). The DSP system clock can be configured to different frequencies using
hardware or software. The DSP’s three clock-mode pins (CLKMD1, CLKMD2, and CLKMD3) are
designed for hardware configuration, which can be done on the DSK via DIP switch settings
(refer to Table 1). At power up, the default DSP system-clock frequency depends on the
hardware-clock mode configuration. Using the DIP switch configuration shown in Table 4, this
frequency is 100 MHz. After power up, the user can use software to change to another system
frequency, such as 40 MHz, 20 MHz, 10 MHz, or 5 MHz (see Table 2). Changing the value at the
MMR CLKM changes the DSP system clock frequency. Note that CLKMD has to be brought into
divider mode (CLKMD=0000h) before rewriting a new value. For example, if the DSP system
clock is to be changed from 100 MHz to 40 MHz after power up, that task can be executed by
the following code lines (at power up, the data in CLKMD are 0×4007, i.e., a system clock
frequency of 100 MHz):

STM

TestStatus LDM
#0, CLKMD
CLKMD, A

; switch to divider mode
; test clock mode status

AND #0x0001, A ; mask out PLL status bit
BC TestStatus, ANEQ ; wait for clock to divider mode
STM #0x1007, CLKMD ; switch to PLLx2 (= 40 MHz) mode

See TMS320C54x DSP Reference Set, Volume 2:Mnemonic Instruction Set, SPRU172B [5] for
assistance in developing other code.

3.1.2 Software Loop Control

Timer0 of the DSP is used in this application report to control the software’s main loop so that a
fixed-rate routine can be repeated. This provides basic timing for the application software
system and simplifies code development for the majority of applications. For example, with a
100-MHz system clock, a 16-kHz main application loop can be obtained in several ways, such
as by setting the Timer0 divide-down ratio MMR, TDDR, to 0 (zero) and the period MMR, PRD,
to 6249, (which gives 100MHz/(0+1)/(6249+1) = 16 kHz); or by setting TDDR to 4 and PRD to
1249 (which gives 100MHz/5/1250 = 16 kHz); or setting TDDR and PRD to other combinations
that result in (TDDR+1)×(PRD+1) = 6250. In each instance, the routines within the loop are
repeated at exactly 16 kHz.

On initialization, Timer0 is stopped, and the MMR registers for Timer0 are set up. After all initial
configurations, and just before the program enters its main repeating loop, Timer0 is started.
Timer0 begins to count down while the driver routine is running. After executing the application
routine(s), the driver checks the Timer0 interrupt flag. Note that even if the Timer0 interrupt is
disabled, its interrupt flag will still be set when the Timer0 counter reaches 0, forcing a return to
the top of the code. Figure 4 illustrates the main loop control routine. The code listing for this
routine can be found in Appendix A; also see TMS320C54x Optimizing C Compiler, SPRU103D
[6].

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 13

Figure 4. Software Main Loop Flow Chart

3.1.3 McBSP Initialization

McBSP is a high-speed, full-duplex serial port. Its triple-buffered input and double-buffered
output-data registers allow a continuous data stream and independent framing and clocking for
receiving and transmitting. With correct configuration, the McBSP can interface gluelessly with
other McBSPs or other devices, such as AIC10/11 codec.

There are two McBSPs on a C5402 DSP, namely McBSP0 and McBSP1. In this application
report, McBSP0 is used as the interface for initializing and communicating between the DSP and
all AIC10 devices. McBSP1 is used only for the direct configuration serial interface (DCSI) that
configures the AIC10/11 devices via the DCSI pin of an AIC10/11.

Start

DSP Initialization

Application Routine 2

Application Routine 1

AIC10/11 Initialization

Stop

Main Loop Control Routine

SLAA109

14 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

On the MMR memory section located on the DSP’s data page, there are six 16-bit words that
correspond to a McBSP. All McBSP control and status registers are within a subbank. Table 7
lists the MMRs of a McBSP. The data registers DRR1 and DXR1 are used for reading and
writing data that are received from and transmitted to AIC10 devices, respectively. When the
Rx/Tx data length exceeds 16 bits, DRR1 and DXR1 are supplemented with DRR2 and DXR2,
respectively. The MMR registers SPSA and SPSD are used to access the McBSP’s subbank
registers. SPSA is used to load the subaddress of a McBSP register; the register SPSD contains
the value of the McBSP’s subbank register that possesses the address shown by SPSA. To
configure a McBSP register in the subbank, first its subaddress is written into register SPSA,
and then SPSD becomes the subbank read/write register.

Table 7. McBSP Registers

ADDRESS AT DATA MEMORY SUBADDRESS ACRONYM DESCRIPTION

McBSP0 McBSP1

0x0020 0x0040 - DRR2 Data receive register 2
0x0021 0x0041 - DRR1 Data receive register 1
0x0022 0x0042 - DXR2 Data transmit register 2
0x0023 0x0043 - DXR1 Data transmit register 1
0x0038 0x0048 - SPSA Serial port sub-bank address register
0x0039 0x0049 - SPSD Serial port sub-bank data register

 0x0000 SPSCR1 Serial port control register 1
 0x0001 SPSCR2 Serial port control register 2
 0x0002 RCR1 Receive control register 1
 0x0003 RCR2 Receive control register 2
 0x0004 XCR1 Transmit control register 1
 0x0005 XCR2 Transmit control register 2
 0x0006 SRGR1 Sample rate generator register 2
 0x0007 SRGR2 Sample rate generator register 1
 0x0008 MCR1 Multi-channel register 1
 0x0009 MCR2 Multi-channel register 2
 0x000A RCERA Receive-channel enable register partition A
 0x000B RCERB Receive-channel enable register partition B
 0x000C XCERA Transmit-channel enable register partition A
 0x000D XCERB Transmit-channel enable register partition B
 0x000E PCR McBSP pin-control register

For this report, both McBSPs work as slaves; therefore, the system communication clock and
frame signals come from an external device, i.e., from a master AIC10. Also, both McBSPs do
not work in multichannel mode. Consequently, the configuration of a McBSP involves only the
following McBSP subbank registers: SPSCR1, SPSCR2, RCR1 RCR2, XCR1, XCR2, and PCR.
For the bit definitions of the McBSP subbank registers, refer to TMS320C54x Enhanced
Peripherals, Reference Set Volume 2, SPRU302 [7].

In this report, both receive and transmit data lengths are set to 16 bits and are left-justified; their
frame lengths are 1 word per frame, and their interrupts, RINT and XINT, are generated by a
new-frame sync signal (namely, the FS from the master AIC10 device).

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 15

There are seven hardware pins (described in Table 8) on the DSP that come from a McBSP.
Setting the MMR’s PCR configures the mode, direction and polarity of these pins. In this report,
the pins DR/X, FSR/X and CLKR/X function as a serial port—FSR/X and CLKR/X are driven by
a master AIC10 device; FSR/X are active high; and CLKR/X are active on the signal’s rising
edge.

Table 8. McBSP Hardware Pins

PIN DIRECTION DESCRIPTION
DR Input Received serial data
DX Output/high-impedance Transmitted serial data
FSR Input/output/high-impedance Receive frame synchronization
FSX Input/output/high-impedance Transmit frame synchronization
CLKR Input/output/high-impedance Receive clock
CLKX Input/output/high-impedance Transmit clock
CLKS Input External McBSP system clock

The McBSP initialization assembler code used for this report can be found in Appendix B. See
also TMS320C54x Assembly Language Tools, SPRU102D [8] and TMS320C54x Reference Set,
Volume 2: Mnemonic Instruction Set, SPRU172B [5]. Figure 5 shows the flow chart for the
McBSP initialization.

SLAA109

16 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

Figure 5. McBSP Initialization Flow Chart

3.1.4 Interrupts

Interrupts are hardware- or software-driven signals that cause the central processing unit (CPU)
in the DSP to suspend its main program and execute an interrupt service routine (ISR). There
are 30 interrupts in C5402 DSP. Among the 30 interrupts, two of them(RESET and NMI) are
non-maskable, 14 are software interrupts, and 14 are peripheral interrupts. The interrupt-vector
table given in Appendix F lists all the interrupts. Note that each vector occupies four words of
space.

Start

Disabled All Interrupts and
Disabled McBSP (default)

Load SPCR1 Sub-Address to SPSA
Setup SPCR1 by Writing to SPSD

Load SPCR2 Sub-Address to SPSA
Setup SPCR2 by Writing to SPSD

Load RCR1 Sub-Address to SPSA
Setup RCR1 by Writing to SPSD

Load RCR2 Sub-Address to SPSA
Setup RCR2 by Writing to SPSD

Load XCR1 Sub-Address to SPSA
Setup XCR1 by Writing to SPSD

Load XCR2 Sub-Address to SPSA
Setup XCR2 by Writing to SPSD

Stop

Load PCR Sub-Address to SPSA
Setup PCR by Writing to SPSD

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 17

By default, the C5402 interrupt table is placed on the DSP’s program-memory page with the
start address 0xFF80. The table, however, can be remapped into any 128-word memory block in
the program page (except the reserved areas). The interrupt vector pointer (IPTR) in CPU points
to the most significant nine bits of the start address of the interrupt vector table. IPTR is mapped
into the high nine bits of the processor mode status register (PMST) of MMRs. At power up,
IPTR is always 0x1FF, indicating that the default address for the vector table is 0xFF80.

In this report, the interrupt vector table is remapped to address 0x0080 in the program memory.
Therefore, the PMST register is initialized to 0x00A0, and the most significant nine bits are
000000001b (or equivalently, IPTR equals 0x001), which points to the address 0x0080.

All maskable interrupts are disabled during software initialization by setting the INTM bit to 1 in
the ST1 register of the MMRs. All peripheral interrupts are also disabled during initialization.
When a peripheral condition causes an interrupt, the corresponding interrupt flag is set and, if
the process is in the idle state, it awakens; however, no ISR is executed by the CPU if the
peripheral interrupt is disabled, or the INTM bit is already set to 1.

Two peripheral ISRs have been developed: one corresponds to the McBSP0 data-receive
interrupt BRINT0; the other corresponds to the McBSP1 data-transmit interrupt BXINT1. The
ISR for BRINT0 is designed to download AIC10 ADC data from the McBSP0 receive-data
register, DRR1, and to upload digital data, processed or generated by the DSP, into the McBSP0
transmit data register, DXR1, so as to output the processed data into the AIC10’s DAC. The ISR
for DXINT1 is used to configure the AIC10/11 control registers through DCSI.

The interrupt service routines are listed in Appendix D. They are called if the INTM bit in ST1 is
reset (CPU interrupt enabled) and the corresponding peripheral interrupts are unmasked.

3.2 CPLD Register Initialization

The C5402 DSK uses a complex programmable logic device (CPLD) to implement the required
logic and to provide control and status interfaces for the DSP software. The CPLD includes
seven control and status registers that are memory mapped into the DSP’s lower I/O memory
space, starting at address 0x0000. Table 9 lists these CPLD registers.

Table 9. CPLD Registers

ADDRESS AT DSP I/O SPACE ACRONYM DESCRIPTION
0x0000 CNTL1 Control register 1
0x0001 STAT Status register
0x0002 DMCNTL Data memory control register
0x0003 DBIO Daughter board general purpose IO
0x0004 CNTL2 Control register 2
0x0005 SEM0 Semaphore 0
0x0006 SEM1 Semaphore 1

Only CNTL2 is used for interfacing with the EVM board; it allows the software to control the
source of data for both McBSPs. The default data source for the McBSPs is the DSK board
itself. To permit communication between the McBSPs and AIC10 devices on the EVM board, the
data source for McBSP0 and McBSP1 needs to be configured so that the McBSPs interface with
data sourced from the DSK’s daughter board, i.e., from the EVM board.

SLAA109

18 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

Table 10 presents the bit definitions of the register CNTL2. For selecting the EVM board as data
source, the 0 and 1 bits in CNTL2 are set to 1. The configuration-code listing is on the first page
of Appendix C. The DSK and EVM connection routine must be executed before the DSP can
access any of the AIC10 devices.

Table 10. CPLD Control Register 2 (CNTL2) Definition

BIT NO. ACRONYM R/W DESCRIPTION
7 DAAOH RW DAA off-hook control
6 DAACID RW DAA caller ID enable
5

FLASHENB RW External memory source selection (0 = Flash; 1 = SRAM)
4

INT1SEL RW INT1 interrupt source selection (0 = UART; 1 = daughter board)
3 FC1CON RW Mic/speaker AD50 FC control
2 FC0CON RW DAA AD50 FC control
1 BSPSEL1 RW McBSP1 data source selection (0 = Mic/speaker; 1 = daughter board)
0 BSPSEL0 RW McBSP0 data source selection (0 = DAA; 1 = daughter board)

3.3 AIC10/11 Control Registers Initialization
In an AIC10/11 device,there are four control registers that permit the user to select and control
the ADC and DAC sampling frequencies, and other devices and circuits within the AIC10/11. For
the definitions of these registers, see General-Purpose 3-V to 5.5-V 16-bit 22-ksps DSP Codec,
TLV320AIC10, SLWS093D [9] and General-Purpose Low-Voltage 1.1-V to 3.6-V I/O 16-bit
22-ksps DSP Codec TLV320AIC11, SLWS100 [10].

3.3.1 ADC/DAC Sampling Frequency
The sampling frequency, FS , of an AIC10 device is:

F =
fMCLK

S 256 x N
(1)

where fMCLK is the master clock frequency and N is the frequency divider, which is an integer
from 1 to 32, set at the AIC10/11’s control registers according to the user’s application
requirement. The default value of N at each power up is 32, which brings the system to its
slowest sample rate under the master clock (MCLK). There are two clock sources in the
DSK/EVM system that can be used as the MCLK. One is from the EVM onboard crystal
oscillator and the other is from its motherboard, the CLKOUT signal of the DSP. Of course, the
user can bring in an external clock source as the MCLK. Note that the maximum MCLK
frequency for the TLV320AIC10/11 is 40 MHz, or 15 MHz if the divider, N, is an odd number. For
example, if the 8.2 MHz oscillator on the EVM board is used as the MCLK and N is 2, a 16-kHz
sampling rate is obtained. As another example, if the CLKOUT from the motherboard is used as
the MCLK and the CPU is running at 40 MHz (CLKOUT is at 20 MHz), the user can set N to 4
and obtain a 19.53-kHz sampling rate.

3.3.2 Communication Cycle and Phase
The inverse of the sample frequency, 1/FS, is called a communication cycle, which is the interval
between two consecutive ADC or DAC samples. There are generally two communication phases
in each communication cycle, called the primary and the secondary communication phase,
respectively. During the primary phase, ADC and DAC data are received/transmitted between
the McBSP0 and the AIC10/11 devices; during the secondary phase, the AIC10’s control
registers are read or written for checking the AIC10/11 devices’ status, or for configuring the
AIC10/11 devices.

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 19

The primary communication phase occurs during every communication cycle. The secondary
phase occurs only if the request for the secondary communication has been sent during the
primary phase (or by the hardware signal, FC); otherwise, time elapses but no secondary
communication FS signal is generated from the master, and no data receive/transmit takes place
during the entire secondary phase.

3.3.3 Sync Communication Timing

In Figure 3, it can be seen that the data Rx/Tx lines are connected from the DSP to all AIC10/11
devices. Thus, the frame-sync signal (FS) is essential for the DSP to set up an identity between
the data in its DRR1 or DXR1 registers and the particular AIC10/11 device associated with the
data.

A master AIC10/11 device controls the communication timing and generates the frame sync
signal (FS) and the shift clock (SCLK). The SCLK signal from the master goes to the DSP and to
all other slave AIC devices to set up their data-bit shift rates. The FS signal from the master
goes only to the DSP and is used to set a flag in McBSP0 that indicates when the new Rx/Tx
data have been written into its DRR1 and/or read from its DXR1. The FSD of the master, which
is delayed by 32 SCLK ticks (or an FS) from the FS pulse for the master itself, is output to the
next slave AIC10/11 device. A driven slave AIC10/11 device receives its FS either from the FSD
pin of the master, or from the slave that immediately precedes it in the cascade chain. This
driven slave then delays the FS 32-SCLK and outputs the pulse from its FSD. A master
AIC10/11 outputs M frame sync (FS) pulses to the DSP during a communication phase (where
M symbolizes the total number of AIC10 devices in the cascade chain), while a slave AIC10/11
device gets a single FS signal in its primary communication phase and gets either one FS or no
FS at all, in its secondary phase. Figure 6 illustrates the frame sync timing for four
cascade-connected AIC10/11 devices.

SLAA109

20 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

Secondary Primary Secondary Primary Secondary

Master FS

...S S...

M S S S... M S S S...

M S S S... M S S S...

Master FSD
Slave #1 FS

...S S... M S S S... M S S S... M S S S... M S S S...

Slave #1 FSD
Slave #2 FS

Master
Frame Sync

...S S... M S S S... M S S S... M S S S... M S S S...

Slave #1

Frame Sync

Slave #2

Frame Sync

Slave #3

Frame Sync

32 SCLKs

SCLK

NOTES: 1. In Master FS there are 32 SCLKs between a master/slave frame and a slave/slave frame.
2. There are 256 (1 to 4’AIC10s on board) or 512 (5 to 8’AIC10s on board) SCLK pulses in each communication cycle (also called

ADC/DAC sample interval), in which half (128 or 256) is for the primary phase and half is for the secondary phase.
3. The secondary communication phase occurs only if required in the primary one.

Figure 6. Cascade Paralleling TLV320AIC10 Master-Slave Frame Sync Timing Diagram

Cycle-n Cycle-n + 1

1 Cycle = 1/fs

Primary Secondary

M S1 S2 S3 M S1 S2 S3

S1 S1

S2 S2

S3 S3

32 SCLKs 32 SCLKs
32 SCLKs 32 SCLKs

32 SCLKs 32 SCLKs
32 SCLKs

fs = Sample Frequency of the ADC or DAC

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 21

3.3.4 Interface Data Format

As already discussed, the data format of a McBSP is 16 bits and the 16-bit data Rx/Tx occurs at
every frame sync (FS) signal. There are different data formats for transmission across the
interface, depending on the data mode and communication phases. Figure 7 illustrates the
McBSP and AIC10/11 interface data format.

Primary Communication Format:

(AIC Device at 15-Bit Data Mode)

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

DXR1(McBSP) or DIN(AIC)

DRR1(McBSP) or DOUT(AIC)

(AIC Device at 16-Bit Data Mode)

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

DXR1(McBSP) or DIN(AIC) DAC Data

DRR1(McBSP) or DOUT(AIC) ADC Data

Secondary Communication Format:
(McBSP Request Reading From CR)

AIC10
Device

Address

1 CR Address x Don’t Care

x x x x x Control Register Status

P

(McBSP Write to CR Through DCSI)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DXR1(McBSP) or DIN(AIC)

Start Bit

Figure 7. Interface Data Format

DAC Data Secondary CommReq

ADC Data M/S

0

AIC10
Device

Address

Control
Register
Address

x Configuration Data

Through DCSI Pin

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DXR1(McBSP) or DIN(AIC)

DRR1(McBSP) or DOUT(AIC)

(McBSP Write to CR)

Bit

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

DXR1(McBSP) or DIN(AIC)

AIC10
Device

Address

0

Control
Register
Address

x

 Conf
Fr

iguration
om McBS

Data

SLAA109

22 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

If the AIC10/11 is configured for 15-bit data mode, during the primary communication phase the
McBSP not only receives and transmits data with an AIC10/11 device, but it also passes the
AIC10/11’s mode status (master vs slave) to the McBSP and sends the AIC10//11 device’s
secondary communication request. Conversely, in 16-bit data mode, the primary phase only
receives and transmits the ADC/DAC data—the secondary communication has to be requested
by a hardware FC signal.

The secondary communication is needed for reading and writing the control registers of the
AIC10/11 devices. Besides the secondary communication, there is also another way to configure
the AIC10/11, using the DCSI pin to input the AIC10/11 configuration data directly. The DCSI
data format is also given in Figure 7. The listing of an example routine for AIC10/11 configuration
via the DCSI port can be found in Appendix D.

3.3.5 Hardware Configuration Identification

For the DSP to identify the source of the data in its DRR1 and DXR1 registers, both the number
of AIC10/11 devices on the EVM board and the position of the device that has just interfaced
with DSP must be known to the DSP. This report applies a plug-and-play algorithm that
automatically identifies this information so that the AIC10/11 configuration routine can be reused
without change or, at worst, with only small changes for different numbers and hardware
configurations of AIC10/11 devices on board. The method is explained further in Hardware
Auto-Identification and Software Auto-Configuration for the TLV320AIC10 DSP CODECs—A
Plug-and-Play Algorithm, SLYT023 [11].

3.3.6 AIC10/11 Control Register Configuration

As already mentioned, there are four control registers (CRs) in each of the AIC10/11 devices. To
configure the control registers, a total of four full communication cycles are needed by the
McBSP, with each cycle having a primary and secondary phase. Figure 8 shows the timing
diagram of the master FS for configuring 3 AIC10/11 devices—1 master and 2 slaves.

FS: M S S M S S M S S M S S M S S M S S M S S M S S

Primary Secondary Primary Secondary Primary Secondary Primary Secondary

Start

TX Reg CfgCR1 TX Reg CfgCR2 TX Reg CfgCR3 TX Reg CfgCR4

Stop

Figure 8. Timing Diagram of Autoconfiguration Procedure

In the primary phase of a cycle, the request for the secondary communication is sent, i.e., DXR1
(= 0x0001) is sent from McBSP0 to each (of the M) AIC10/11 devices. Therefore, at each master
FS pulse, the send must be repeated M times and must start with the master AIC10/11 device.
During the secondary communication phase, at each master FS pulse, an AIC10/11 control
register is configured or written. It can also be see from Figure 8 that the control registers are
configured in the following order:

in cycle 1: master CR1, slave1 CR1, slave2 CR1;
in cycle 2: master CR2, slave1 CR2, slave2 CR2;

Cycle 1 Cycle 2 Cycle 3 Cycle 4

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 23

in cycle 3: master CR3, slave1 CR3, slave2 CR3; and
in cycle 4: master CR4, slave1 CR4, slave2 CR4.

The code for configuring M cascaded AIC10/11 devices, where M = 1, 2, …, 8, is contained in
the code listing of Appendix C.

3.3.7 AIC10/11 Control Register Reading

In many cases, an application must check the status of the AIC10/11 devices by reading their
control registers. Appendix C contains a code example for reading all of the control registers
from a master and a slave AIC10/11 device.

3.4 Data Receive (ADC) and Transmit (DAC) Programs

The major function of an AIC10/11 device is to convert analog signals into digital data for the
DSP (ADC) and to convert digital data processed by the DSP back into an analog signal (DAC).
The interface between the McBSP0 of the DSP on the DSK board and the AIC10/11 devices on
the EVM board has been built using the hardware and software configurations already
described. During the DSP’s normal operation, a software routine is needed to download ADC
data and upload DAC data from the McBSP0’s registers DRR1 and DXR1, at the same
frequency as the sampling rate, e.g., at 16 kHz.

To download the ADC data for each and every sample, the receive interrupt, RINT0, of the
McBSP0 must be enabled. Also, by enabling both receive and transmit functions of the
McBSP0, a data receive (Rx) and data transmit (Tx) occur at every RINT0 interrupt, permitting
the ADC data to be downloaded from an AIC10/11 device through McBSP0’s DRR1 register and
digital data to be uploaded to the McBSP0’s register DXR1. The data in DXR1 are transmitted to
an ACI10/11 device, where they are further converted into an analog signal.

In this report, the RINT0 interrupt service routine (ISR) first identifies which of the two AIC10
devices has just finished its ADC. Then it downloads the data into the corresponding ADC data
memory and uploads the digital data to the McBSP0’s DXR1 register for transmitting to the
corresponding AIC10 device. Figure 3.4-1is the ISR flowchart. For the master AIC10, the analog
input from J7 is downloaded to the DSP and the DSP data (the secured voice SOUT) are
uploaded so as to output to the speaker connected through J5. For the slave AIC10, a
microphone input from J12 is downloaded to the DSP, and other DSP data (the DTMF tone,
called a ToneWave) are uploaded and output to the speaker connected through J6. The code
listing is in Appendix D.

SLAA109

24 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

Figure 9. BRINIT ISR Flow Chart

3.5 Software Structure

The code’s structure (see Figure 10) has been designed so that the driver and other system
software can be reused, enabling users to concentrate their efforts on their specific application.
Using this basic structure, the development of numerous other applications requires only minor
changes to a few lines of code. Furthermore, user-supplied routines can be added into the
structure in the same way as has been done for the examples DTMFTone.c, SecurityVoice.c,
and EchoCancel.c.

BRINT0 ISR

Check if
Rx From
Master

?

No

Yes

DownLoad Slave ADC Data
From DRR1 to SL_ADC

DownLoad Master ADC Data
From DRR1 to MS_ADC

UpLoad DTMF Tone
From ToneWave to DXR1

UpLoad Data Processed by
DSP From SOut to DXR1

Stop

Reset BRINT0 Interrupt Flag

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 25

Start and Control Main Loop
and Call All Applications

AICInitialization CPLD Initialization DSP Initialization

Step3 Step2 Step1

Main

Step4

File(s):
C5402Init.asm

Functions:
Setup System & Clock
Setup Timer0
Setup McBSPs

File(s):
AIC10Init.asm

Functions:
Connect McBSPs

to EVM

File(s):

AIC10Init.asm
Functions:

Identify AIC HW
Configure AIC CRs
Check AIC CRs Status

File(s):

AIC10Init.asm
AIC10Main.c
LoopControl.asm
DTMFTone.c
SecurityVoice.c
EChoCancel.c
or ...

Functions:
Start Main Loop
Call Applications
Control Loop

Figure 10. Software Tree Structure
3.6 Application Examples

In this report, three application examples have been implemented and developed into
C-language routines that conform to the general structure of Figure 10.

3.6.1 Tone Generation

An audio tone is generated by the DSP from a group of seven sine-wave tables with different
frequencies, from 697 Hz to 1477 Hz. The tone generator runs at 16 kHz. At each sample point,
a high and a low tone are generated from two different frequency sine tables, and are combined
to form a two-frequency tone. The seven single-frequency tones are mixed two-by-two to obtain

Rts.lib

.h IntrSrvc

MMRegs .h
AIC10Init .h

DTMFTone .h
SecurityVoice .h
EchoCancel .h
VoiceOverIP .h

.c IntrSrvc

AIC10Main .c
LoopControl.asm
C5402Vec .asm
C5402Init .asm
AIC10Init .asm

DTMFTone .c
SecurityVoice .c
EchoCancel .c
VoiceOverIP .c

AIC10EVM.cmd

Library Include Source System

AIC10/11 SW

SLAA109

26 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

10 two-frequency tones. The tones are transmitted to the slave AIC10 device and output to the
speaker connected on the EVM’s jack, J6. Each of the 10 two-frequency tones is output to the
speaker every 0.1 s and the 10-tone combinations simulate music, whose pattern is repeated at
a frequency of 1 Hz.

3.6.2 Voice Security System

A microphone is plugged into J12 (connected to the ADC path of the slave AIC10 on the EVM).
This signal is converted to digital by the AIC10 and sent to the DSP through the McBSP0. The
DSP mixes this audio signal with a fixed-frequency sine wave, called the carrier wave, so as to
shift the audio signal into a different part of the frequency spectrum. Then a 4th-order
Butterworth low-pass digital filter is applied to remove the right half of the mirrored frequency
spectrum of the carrier frequency. The result is the same aural signal, but with a different vocal
sound, as illustrated in Figure 11. The processed voice signal is output to the speaker connected
by jack J5 to the master AIC10. The block diagram for the system is shown in Figure 12.

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 27

*

Figure 11. Principle of Voice Security System

Carrier Wave

Frequency

Microphone Input

Frequency

(Mic Input) x (Carrier Wave)

Frequency

Low-Pass Filter

Frequency

(Mic Input) x (Carrier Wave)
After Filtering

Frequency

SLAA109

28 Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP

C5402 DSP

Figure 12. Voice Security System Block Diagram

This kind of application is sometimes called a voice security system because the voice delivered
by the speaker differs from the voice speaking into the microphone. This masks the identity of
the speaker.

3.6.3 Echo Cancellation

TI has developed a number of algorithms and routines for echo cancellation. These are used
with many different DSP and analog devices. The C5402 DSP and two AIC10 devices are used
in this application report. Figure 13 illustrates the principle.

TLV320AIC10/11 EVM C5402 DSP

Figure 13. Echo Cancellation Block Diagram

The tone from the tone-generation code (already described) is used as the far-end input signal
Sf (k). This signal is output to the near-end speaker which is the speaker connected to the slave
AIC through J6. Also, Sf (k) is fed into the DSP’s echo-cancellation routine for the echo
estimation calculation. It is estimated that the echo in the near-end for Sf (k), denoted by ê(k), is:

e^(k) = H
^
(z) x Sf (k) (2)

TLV320AIC10/11 EVM

J12 J5

Slave AIC LowPass Filter Master AIC

Output
Driving DAC ADC Input

Conditioning

Sine
Carrier Wave

Generator

J6 Sf(k)

Slave AIC
Near-End

H(k) Far-End

– ê(k)

J12 + J5

Sn(k) + Sn(k) +
Slave AIC e(k) e(k) – ê(k) Master AIC

Output
Driving DAC ADC Input

Conditioning

Adaptive
Filter

Tone
Generator DAC Output

Driving

SLAA109

Interfacing the TLV320AIC10/11 Codec to the TMS320C5402 DSP 29

^

where H(z) is an adaptive digital filter whose parameters are updated at every sample to
minimize the estimation error. See Acoustic-Echo Cancellation Software for Hands-Free
Wireless Systems, SPRA162 [12].

The real echo, e(k), of the far-end input signal travels from the near-end speaker to the near-end
microphone, or from the slave AIC10’s speaker (connected to J6) to its microphone (connected
to J12). The near-end microphone signal and the echo signal are both picked up by the
near-end microphone, transferred the slave AIC10’s ADC and input to the DSP. The
echo-cancellation software processes the ADC data so that the output to the far-end speaker,
J5, which is the master AIC10 DAC output, is: Sn (k) + e(k) – ê(k), where Sn (k) is the pure
near-end microphone signal, e(k) is the near-end echo disturbance, and ê(k) is the estimated
e(k), expressed by equation 2.

If the adaptive filter is reasonably good, or ê(k) ≈ e(k), the far-end speaker will output Sn (k), the
pure near-end microphone signal, without echo disturbance effects.

The echo cancellation routine runs at a loop rate of 8 kHz. The ADC/DAC sample rate and the
adaptive filter parameter adapting rate are both 8 kHz.

4 References
1. TMS320VC5402 Fixed-Point Digital Signal Processor, Data Sheet, Texas Instruments

Literature Number SPRS079D
2. TLV320AIC10/11 EVM, User’s Guide, Texas Instruments Literature Number SLWU003C
3. TMS320C54x DSP Reference Set, Volume 4: Applications Guide, Texas Instruments Literature

Number SPRU173
4. TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals, Texas Instruments

Literature Number SPRU131F
5. TMS320C54x DSP Reference Set, Volume 2: Mnemonic Instruction Set, Texas Instruments

Literature Number SPRU172B
6. TMS320C54x Optimizing C Compiler, User’s Guide, Texas Instruments Literature Number

SPRU103D
7. TMS320C54x DSP Reference Set, Volume 5: Enhanced Peripherals, Texas Instruments

Literature Number SPRU302
8. TMS320C54x Assembly Language Tools, User’s Guide, Texas Instruments Literature Number

SPRU102D
9. General-Purpose 3 V to 5.5 V 16-bit 22-ksps DSP Codec TLV320AIC10, Data Manual, Texas

Instruments Literature Number SLWS093D
10. General-Purpose Low-Voltage 1.1 V to 3.6 V I/O 16-bit 22-ksps DSP Codec TLV320AIC11, Data

Manual, Texas Instruments Literature Number SLWS100
11. Hardware Auto-Identification and Software Auto-Configuration for the TLV320AIC10 DSP

Codec—a Plug-and-Play Algorithm, Analog Applications Journal, November, 2000, Texas
Instruments Literature Number SLYT023

12. Acoustic-Echo Cancellation Software for Hands-Free Wireless Systems, Application Report,
Texas Instruments Literature Number SPRA162

SLAA109

30 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

Appendix A TMS320C5402 DSK C Program Main Routine

/***
** File Name: AIC10Main.c
** Part Number: TLV320AIC10/11EVM–SW–00001
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
**
** Function:
** This C code is written for using with the TI’s C54 Code Composer
** Studio platform. It serves as the main program for C5402 DSP. It
** communicates and controls AIC10/11 CODECs on the (daughter) EVM;
** and calls other application routines, include: DTMF tone
** generation, security voice system, acoustic echo cancellation
** (AEC), and voice over internet protocol (VoIP).
**
**
** References:
** (1) TMS320C54x DSP, CPU and Peripheral (SPRU131)
***/
/***
** External Functions Called by Main()
***/
/******* DSP & AIC10 System Routines *******/
extern void InitC5402(void);
extern void InitAIC10(void);
extern void LoopControl(void);
/******* Application Routines *******/
extern void DTMFTone(void);
extern void SecurityVoice(void);
extern void EchoCancel(void);
extern void VoiceOverIP(void);
/***
** Main Function Program
***/
void main(void)
{

InitC5402(); /* initialize C5402 DSP */
InitAIC10(); /* initialize AIC10s */
while (1)
{

DTMFTone(); /* eg#1: generate DTMF tone */
SecurityVoice(); /* eg#2: security voice system */

/* EchoCancel(); eg#3: echo cancellation */
/* VoiceOverIP(); eg#4: VoIP function */

/* add more applications here */

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 31

LoopControl(); /* control main–loop rate */
}

}
/***
** End of File –– AIC10Main.c
***/

SLAA109

32 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

Appendix B DSK Initialization Assembly Routine

**
** File Name: InitC5402.asm
** Part Number: TLV320AIC10/11EVM–SW–0011
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
**
** Function:
** This routine initializes C5402 DSP system and McBSP registers
** for communication to AIC10/11EVM.
**
**
** References:
** (1) TMS320C54x DSP, CPU and Peripheral (SPRU131)
** (2) TMS320C54x DSP, Enhanced Peripheral (SPRU302)
**

.global _InitC5402
**
** Include Statements
**

.include MMRegs.h
**
** C5402 DSP Memory Mapping Register Initialization
**
_InitC5402:

NOP
LD #0, DP ; reset data–page pointer
STM #0, CLKMD ; software setting of DSP clock
STM #0, CLKMD ; (to divider mode before setting)
STM #0x1007, CLKMD ; set C5402 DSP clock to 40MHz

* STM #0x4007, CLKMD ; set C5402 DSP clock to 100MHz
 ; (based on DSK crystal at 20MHz)

******* Configure C5402 System Registers *******

STM #0x2000, SWWSR ; 2 wait cycle for IO space &
; 0 wait cycle for data&prog spaces

STM #0x0000,BSCR ; set wait states for bank switch:
; 64k mem bank, extra 0 cycle between
; consecutive prog/data read

STM #0x1800,ST0 ; ST0 at default setting
STM #0x2900,ST1 ; ST1 at default setting(note:INTX=1)
STM #0x00A0,PMST ; MC mode & OVLY=1, vectors at 0080h

******* Set up Timer Control Registers *******
STM #0x0010, TCR ; stop on–chip timer0
STM #0x0010, TCR1 ; stop on–chip timer1

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 33

; Timer0 is used as main loop timer
STM #2499, PRD ; timer0 rate=CPUCLK/1/(PRD+1)

; =40M/2500=16KHz
* STM #6249, PRD ; if CPU at 100M/6250=16KHz

******* Initialize McBSP0 Registers *******

STM SPCR1, McBSP0_SPSA ; register subaddr of SPCR1
STM #4020h, McBSP0_SPSD ; McBSP0 recv = left–justify

; RINT generated by frame sync

STM SPCR2, McBSP0_SPSA ; register subaddr for SPCR2
; XINT generated by frame sync

STM #0020h, McBSP0_SPSD ; McBSP0 Tx = FREE(clock stops
; to run after SW breakpoint)

STM RCR1, McBSP0_SPSA ; register subaddr of RCR1
STM #0040h, McBSP0_SPSD ; recv frame1 Dlength = 16 bits
STM RCR2, McBSP0_SPSA ; register subaddr of RCR2
STM #0041h, McBSP0_SPSD ; recv Phase = 1

; Set frame2 Dlength = 16bits
STM XCR1, McBSP0_SPSA ; register subaddr of XCR1
STM #0040h, McBSP0_SPSD ; set the same as recv
STM XCR2, McBSP0_SPSA ; register subaddr of XCR2
STM #0041h, McBSP0_SPSD ; set the same as recv

; Use this code lines if McBSP0 is used as a master
; STM SRGR1, McBSP0_SPSA ; register subaddr of sample rate
; ; generator register
; STM #0001h, McBSP0_SPSD ; set to default since CLKR/X
; STM SRGR2, McBSP0_SPSA ; is input.
; STM #2000h, McBSP0_SPSD ; CLKS is derived from CPU clock

STM PCR, McBSP0_SPSA ; register subaddress of PCR
STM #0000h, McBSP0_SPSD ; clk and frame from external (slave)

; FS at pulse–mode(00)

; Use this code lines if McBSP0 is used as a master
; STM SPCR2, McBSP0_SPSA ; enable sample rate generator
; LDM McBSP0_SPSD, A
; OR #0x0040, A
; STLM A, McBSP0_SPSD
; RPT #5 ; Wait 2 sample rate Clk for
; NOP ; SRG to stabilize

******* Initialize McBSP1 Registers *******

STM SPCR1, McBSP1_SPSA ; register subaddr of SPCR1
STM #4000h, McBSP1_SPSD ; McBSP1 recv = left–justify

; RINT generated by frame sync
STM SPCR2, McBSP1_SPSA ; register subaddr for SPCR2

; XINT generated by frame sync
STM #0000h, McBSP1_SPSD ; McBSP1 Tx = FREE(clock stops

; to run after SW breakpoint
STM RCR1, McBSP1_SPSA ; register subaddr of RCR1
STM #0040h, McBSP1_SPSD ; recv frame1 Dlength = 16 bits
STM RCR2, McBSP1_SPSA ; register subaddr of RCR2

SLAA109

34 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

STM #0041h, McBSP1_SPSD ;

;
recv Phase = 1
ret frame2 Dlength = 16bits

STM XCR1, McBSP1_SPSA ; register subaddr of XCR1
STM #0040h, McBSP1_SPSD ; set the same as recv
STM XCR2, McBSP1_SPSA ; register subaddr of XCR2
STM #0041h, McBSP1_SPSD ; set the same as recv
STM PCR, McBSP1_SPSA ; register subaddress of PCR
STM #0000h, McBSP1_SPSD ; clk and frame from external (slave)

 ; FS at pulse–mode(00)
******* Finish DSP Initialization *******

STM #0x0000, IMR ; disable peripheral interrupts
STM #0xFFFF, IFR ; clear the intrupts’ flags

RET ; return to main
NOP
NOP

.end

**
** End of File –– InitC5402.asm
**

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 35

Appendix C AIC10/11 Devices Initialization Assembly Routine

**
** File Name: InitAIC10.asm
** Part Number: TLV320AIC10/11EVM–SW–0012
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
**
** Function:
** This routine identifies AIC10 device hardware configuration, by
** means of a plug–and–playing algorithm (refer to ...); and
** initializes AIC10/11 CODECs (master and slave)control registers,
** correspondingly.
**
**
** References:
** (1) Data Manual: General–Purpose 3V to 5.5V 16bit 22KSPS DSP Codec
** – TLV320AIC10
**

.global _InitAIC10
**
** Include Statements
**

.include MMRegs.h

.include InitAIC10.h
**
** Function Code
**

.text

_InitAIC10:
NOP

******* Connect MCBSP to AIC10EVM *******
PORTR DSP_CPLD_CNTL2, 0x0060 ; select the AIC10–EVM
NOP ; for McBSP read DSP_CNTL2 reg
NOP
ANDM 0xFF00, 0x0060 ; masking default
ORM 0x0003, 0x0060 ; Connect McBSP to
PORTW 0x0060, DSP_CPLD_CNTL2 ; AIC10–EVM board
NOP
NOP

******* Put Data to a Default Condition *******
LD #InitVari, DP ; set page pointer to current page
NOP

NOP
ST #1, AIC10Num ; set default value of AIC10 number

SLAA109

36 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

ST #0, MasterOnFlag ; set no–master on–board
ST #0, IdentErrs ; set no identification errors

**
** AIC10 Hardware Configuration Identification
**

******* Step1: (Use McBSP0 for Auto–Master–Detecter)
******* Clear FSCount & Enable McBSP0 Rx only
IdentStart:

NOP
ST #0, FSCount ; clear FSCount
STM SPCR1, McBSP0_SPSA ; enable McBSP0 Rx
LDM McBSP0_SPSD, A ; (by setting bit0 of SPCR1)
OR #0x0001, A
STLM A, McBSP0_SPSD
RPT #4 ; wait for 2 SCLKs
NOP

******* Step2&3:
******* Wait for Rx finished, count FS & check FSCounter max; &
******* check DR bit0 (master/slave falg)
FSCycle1: ; detect the first master primary–frame

NOP
CALL IfRxRDY0 ; check if a Rx from McBSP0 finished
ADDM #1, FSCount ; increase FS counter
LD FSCount, A ; check if FS counter>16 (max8AICs)
SUB #0x0010, A ; FSCount – 16
BC InitErr1, AGT ; to no–master err if FSCount > 16
NOP
NOP
LDM McBSP0_DRR1, A ; load Rx data to regA & clr RRDY flag
AND #0x0001, A ; mask out D0: M/S bit to find master:
BC FSCycle1, AEQ ; wait for next RX if
NOP ; not found 1st master primary frame
NOP ; else ... to cycle2

******* Step4:
******* when the 1st master AIC10 is detected,
******* set flag & clear FSCounter

NOP
ST #0x0001, MasterOnFlag ; set master on board flag
ST #0x0000, FSCount ; clear frame sync counter

******* Step5:
******* count AIC10 device number between 2 master FSs
******* check if there are ant AIC HW errors
FSCycle2:

NOP
CALL IfRxRDY0 ; check if an Rx data ready
ADDM #1, FSCount ; increase FS counter
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
AND #0x0001, A ; mask out D0: M/S bit
BC FSCycle2, AEQ ; wait for next RX if
NOP ; not found 2ns master primary frame
NOP ; else:

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 37

LD FSCount, A ; store number of AIC10 devices
STL A, AIC10Num
BC InitErr0, ALEQ ; limit AIC10Num from 1 to 8
NOP ; (InitErr0: no AIC10 on board; &
NOP ; InitErr2: more than 8 AIC10s or
SUB #0x0008, A ; other mulfuctions)
BC InitErr2, AGT
NOP
NOP

******* Step6:
******* wait for the next(3rd) FS for master &
******* check to make sure no multiple masters
FSC3Wait:

NOP
LD FSCount, A ; decrease FSCount by 1
SUB #0x0001, A
STL A, FSCount
BC FSC4Wait, ALEQ ; if current cycle finished
NOP ; skip & go to next cycle
NOP ; else:
CALL IfRxRDY0 ; wait for Rx from McBSP0 finished
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
AND #0x0001, A ; mask out D0: M/S bit
BC FSC3Wait, AEQ ; back loop if no multi–master
NOP ; else: to error routine
NOP

******* Errors

InitErr2: ; number of AICs > 8 (not possible)

NOP ; or multi–master or other HW errors
NOP
ADDM #1, IdentErrs ; set error flag
LD IdentErrs, A
SUB #1, A
BC IdentStart, AEQ
NOP
NOP
B InitErr2
NOP
NOP

InitErr1: ; there is no master AIC10 on board
NOP
NOP
ST #0x0000, MasterOnFlag ; clear master on board flag
B InitErr1
NOP
NOP

InitErr0: ; there is no AIC10 on board

NOP
NOP
ST #0x0000, MasterOnFlag ; clear master on board flag
ST #0x0000, AIC10Num ; clear AIC10 number

SLAA109

38 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

B InitFinish
NOP
NOP

******* Step7
******* Enable McBSP TX &
******* Transfer Dx with 2nd–comm Request for AIC10Num
******* to duble check no errors
FSC4Wait:

NOP
STM SPCR2, McBSP0_SPSA ; enable McBSP0 Tx
LDM McBSP0_SPSD, A ; (by setting bit0 at SPCR2)
OR #0x0001, A
STLM A, McBSP0_SPSD
NOP ; wait for stablizing
NOP
ST #0x0000, FSCount ; reset FS counter
NOP

FSC4Prim: ; cycle4 primary
NOP
STM #SECRequ, McBSP0_DXR1 ; set 2nd comm request
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also wait for Rx in

LD FSCount, A ; Check if 1st FS (for master AIC)
BC FSC4PM, AEQ ; yes: to FSC4PM
NOP
NOP ; no: make sure all are slaves
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
AND #0x0001, A ; mask out D0: M/S bit
BC InitErr2, ANEQ
NOP
NOP
B FSC4Prim1

NOP
NOP

FSC4PM: ; Cycle4, primary & master FS:
NOP ; make sure it is from master ––
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
AND #0x0001, A ; mask out D0: M/S bit
BC InitErr2, AEQ
NOP
NOP

FSC4Prim1: ; check FSCount < AIC10Num
NOP
ADDM #1, FSCount ; increase FS counter
LD FSCount, A ; if (FSCount–AIC10Num) < 0
SUB AIC10Num, A
BC FSC4Prim, ALT ; yes: next 2nd comm request
NOP ; no: contine
NOP

******* Step8:
******* Read AIC10 device ID for master AIC10 to double check no err

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 39

FSC4Second:
NOP
ST #0, FSCount ; clear FSCount
NOP

FSC4Sec1:
NOP

LD FSCount, A ; check if the master device by
BC FSC4SecS, ANEQ ; FSCount (= 0?)
NOP ; NO: skip ID check
NOP ; YES:
LD AIC10Num, A ; get master AIC ID from Ident
SUB #1, A ; ID = (AIC10Num–1) << 13
SFTA A, 13, A

OR #ReadCR1, A ; ID.OR.CR1, request to read master
STLM A, McBSP0_DXR1 ; set to request read master AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data

LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
AND #0xE000, A ; mask out D15~D13: AIC device ID
SFTA A, –13, A ; shft ID to lowest 3 bits
ADD #1, A ; get AIC device number from ID

 ; AIC10Num = ((DOUT&0xE000)>>13)+1
SUB AIC10Num, A ; check if ID–DeviceNum = identified
BC InitErr2, ANEQ ; no: to errors
NOP ; else: to next AIC10 device
NOP

BD FSC4Sec2

NOP

NOP
FSC4SecS: ; secondary comm slave frame(s)

NOP

STM #0x0000, McBSP0_DXR1 ; no secondary comm requested
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
NOP

FSC4Sec2:

NOP

ADDM #1, FSCount ; increase FS counter
LD FSCount, A ; if (FSCount–AIC10Num) < 0
SUB AIC10Num, A

BC FSC4Sec1, ALT ; yes: next secondary comm cycle
NOP ; no: finish
STM SPCR1, McBSP0_SPSA ; disable McBSP0 RX
LDM McBSP0_SPSD,A

AND #0xFFFE, A

STLM A, McBSP0_SPSD

STM SPCR2, McBSP0_SPSA ; disable McBSP0 TX
LDM McBSP0_SPSD,A

AND #0xFFFE, A

STLM A, McBSP0_SPSD

SLAA109

40 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

RPT #5
NOP
NOP

**
******* Use McBSP0 to Initalize all AIC Control Registers *******
******* –– AIC10 Configuration *******
**

NOP
ST #0x0004, CRegCount ; set AIC control reg counter (4 CRs)
NOP

STM SPCR2, McBSP0_SPSA ; enable McBSP0 Tx
LDM McBSP0_SPSD, A ; (by setting bit0 at SPCR2)
OR #0x0001, A

STLM A, McBSP0_SPSD

NOP

NOP
STM #0x0020, IMR ; unmask DXINT0 for ’IDLE’

******* Load Sencondary Comm Phase Configuring AIC10 CRs *******
******* Note: DX = [(AIC ID) 0 (CR #) x |Config]
******* [15 ~ 13 12 11~9 8 | 7 ~ 0]

NOP ; contents for configuring CR1
STM #WriteMCR1, AR1
STM #WriteSCR1, AR2
LD AIC10Num, A ; set FSCount
STL A, FSCount
BD InitStart
NOP
NOP

InitAICR2:

InitAICR3:

NOP ; contents for configuring CR3
LD CRegCount, A

SUB #2, A

BC InitAICR4, ALT

NOP

NOP

NOP ; contents for configuring CR2
LD CRegCount, A

SUB #3, A

BC InitAICR3, ALT

NOP

NOP

STM #WriteMCR2, AR1

STM #WriteSCR2, AR2

LD AIC10Num, A ; set FSCount
STL A, FSCount

BD InitStart

NOP
NOP

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 41

STM
STM

#WriteMCR3,
#WriteSCR3,

AR1
AR2

LD AIC10Num, A ; set FSCount
STL A, FSCount

BD InitStart

NOP

NOP

InitAICR4:
NOP ; contents for configuring CR4
STM #WriteMCR4, AR1

STM #WriteSCR4, AR2

LD AIC10Num, A ; set FSCount
STL A, FSCount
NOP

NOP

InitStart:

NOP ; this is a primary cycle
STM #0x3FFF, IFR ; Clear interrupt flag
STM #SECRequ,McBSP0_DXR1 ; load 2nd req to DX (at primary)
IDLE 1 ; wait for the TX finished
LD FSCount, A ; check if all AIC are requested
SUB #1, A

STL A, FSCount

BC InitStart, AGT ; no: back to do more request
NOP ; yes: to secondary cycle

******* Configuring Master AIC10 *******

NOP
LD AIC10Num, A ; get master AIC ID from Ident
SUB #1, A ; ID = (AIC10Num–1) << 13
SFTA A, 13, A
LDM AR1, B ; get CRx for master
OR B, A ; ID.OR.CRx, configuring contents
STM #0x3FFF, IFR ; Clear interrupt flag
STLM A, McBSP0_DXR1 ; put config data to CRx
IDLE 1 ; wait for the TX finished

ST #1, FSCount ; clear frame sync counter

******* Configuring Slave AIC10(s) *******
InitAICSec:

NOP
ADDM
LD
SUB

#1, FSCount
FSCount, A
AIC10Num, A

 ;
;
increase FSCount
check if FSCount > AIC10Num

BC
NOP
NOP

InitAICSec1, AGT ;
;
yes: to next CRs
no:

LD
SUB
SFTA
LDM

AIC10Num, A
FSCount, A
A, 13, A
AR2, B

;
;

;

get master AIC ID from Ident
ID = (AIC10Num–FSCount) << 13

get CRx for slave

SLAA109

42 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

OR
STM
STLM
IDLE

B, A
#0x3FFF, IFR
A, McBSP0_DXR1
1

; ID.OR.CRx, configuring contents
; Clear interrupt flag
; put config data to CRx
; wait for the TX finished

NOP

BD InitAICSec ; to next slave
NOP

NOP

InitAICSec1: ; check if all 4 CRs have been conf
NOP
LD CRegCount, A
SUB #1, A
STL A, CRegCount
BC InitAICR2, AGT
NOP
NOP

**
******* InitAIC10 Return to Main Routine *******
**
InitFinish:

NOP

STM
LDM
AND
STLM
STM
LDM
AND
STLM
RPT
NOP
STM

SPCR1, McBSP0_SPSA
McBSP0_SPSD,A
#0xFFFE, A
A, McBSP0_SPSD
SPCR2, McBSP0_SPSA
McBSP0_SPSD,A
#0xFFFE, A
A, McBSP0_SPSD
#7

0x0000, IMR

;

;

;

disable

disable

disable

McBSP0 RX

McBSP0 TX

peripheral interrupts

STM
CALL
NOP

#0x3FFF,
ReadCRs

IFR ;
;
reset all interrupt flags
read & store AIC10’s CRs status

STM
* STM

STM

#0x0010, IMR
#0x0800, IMR
#0x3FFF, IFR

;

;

enable BRINT0 interrupts
; enable BXINT1 interrupts
reset all interrupt flags

RSBX INTM ; enable system interrupts
STM
LDM
OR
STLM
STM
LDM
OR
STLM

SPCR1, McBSP0_SPSA
McBSP0_SPSD,A
#0x0001, A
A, McBSP0_SPSD
SPCR2, McBSP0_SPSA
McBSP0_SPSD,A
#0x0001, A
A, McBSP0_SPSD

;

;

ena McBSP0 RX for ADC data in

enable McBSP0 TX for DTMF out

LDM TCR, A ; start timer0 for main loop
AND #0xFFEF, A ; (by clear bit4 of TCR)

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 43

STLM A, TCR
ST #0, LoopCount ; reset main loop counter
NOP

RETD ; return to main
NOP

NOP

**
** Local Subrotuines
**
******* Waiting for McBSP0 RX Finished *******
IfRxRDY0:

NOP
STM SPCR1, McBSP0_SPSA ; enable McBSP0 Rx
LDM McBSP0_SPSD, A
AND #0002h, A ; mask RRDY bit
BC IfRxRDY0, AEQ ; keep checking
RETD ; return
NOP
NOP

******* Waiting for McBSP0 TX Finished *******
IfTxRDY0:

NOP
STM SPCR2, McBSP0_SPSA ; enable McBSP0 Tx
LDM McBSP0_SPSD, A
AND #0002h, A ; mask TRDY bit
BC IfTxRDY0, AEQ ; keep checking
RETD ; return
NOP
NOP

******* Read & Store AIC10 Control Register Values After Config *******
ReadCRs:

NOP
STM SPCR1, McBSP0_SPSA ; ena McBSP0 RX for ADC data in
LDM McBSP0_SPSD,A
OR #0x0001, A
STLM A, McBSP0_SPSD
STM SPCR2, McBSP0_SPSA ; enable McBSP0 TX for DTMF out
LDM McBSP0_SPSD,A
OR #0x0001, A
STLM A, McBSP0_SPSD
LD #InitVari, DP ; load data page
RPT #7
NOP

STM #0x0001, McBSP0_DXR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STM #0x0001, McBSP0_DXR1
CALL IfTxRDY0
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag

SLAA109

44 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

STM
CALL
CALL

#0x3200, McBSP0_DXR1
IfTxRDY0
IfRxRDY0

;
;
;

set to request read master AIC CR1
wait for Tx from McBSP0 finished
also check Rx get a data

LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL A, MstCR1 ; save master CR1 to MstCR4

STM #0x1200, McBSP0_DXR1 ; set to request read slave AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL
NOP

A, SlvCR1 ; save master CR1 to SlvCR4

STM
CALL

#0x0001, McBSP0_DXR1
IfTxRDY0

;

wait for Tx from McBSP0 finished

CALL IfRxRDY0 ; also check Rx get a data
LDM
STM
CALL
CALL

McBSP0_DRR1, A
#0x0001, McBSP0_DXR1
IfTxRDY0
IfRxRDY0

;

;

ld Rx data to regA & clr RRDY flag

also check Rx get a data

LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STM #0x3400, McBSP0_DXR1 ; set to request read master AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL A, MstCR2 ; save master CR1 to MstCR4

STM #0x1400, McBSP0_DXR1 ; set to request read slave AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL
NOP

A, SlvCR2 ; save master CR1 to SlvCR4

STM
CALL

#0x0001, McBSP0_DXR1
IfTxRDY0

;

wait for Tx from McBSP0 finished

CALL IfRxRDY0 ; also check Rx get a data
LDM
STM
CALL
CALL

McBSP0_DRR1, A
#0x0001, McBSP0_DXR1
IfTxRDY0
IfRxRDY0

;

;

ld Rx data to regA & clr RRDY flag

also check Rx get a data

LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STM #0x3600, McBSP0_DXR1 ; set to request read master AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL A, MstCR3 ; save master CR1 to MstCR4

STM #0x1600, McBSP0_DXR1 ; set to request read slave AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL A, SlvCR3 ; save master CR1 to SlvCR4

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 45

NOP

STM
CALL

#0x0001, McBSP0_DXR1
IfTxRDY0

;

wait for Tx from McBSP0 finished

CALL IfRxRDY0 ; also check Rx get a data
LDM
STM
CALL
CALL

McBSP0_DRR1, A
#0x0001, McBSP0_DXR1
IfTxRDY0
IfRxRDY0

;

;

ld Rx data to regA & clr RRDY flag

also check Rx get a data

LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STM #0x3800, McBSP0_DXR1 ; set to request read master AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL A, MstCR4 ; save master CR1 to MstCR4

STM #0x1800, McBSP0_DXR1 ; set to request read slave AIC CR1
CALL IfTxRDY0 ; wait for Tx from McBSP0 finished
CALL IfRxRDY0 ; also check Rx get a data
LDM McBSP0_DRR1, A ; ld Rx data to regA & clr RRDY flag
STL
NOP

A, SlvCR4 ; save master CR1 to SlvCR4

STM
LDM
AND
STLM
STM
LDM
AND
STLM
RPT
NOP
RET
NOP
.end

SPCR1, McBSP0_SPSA
McBSP0_SPSD,A
#0xFFFE, A
A, McBSP0_SPSD
SPCR2, McBSP0_SPSA
McBSP0_SPSD,A
#0xFFFE, A
A, McBSP0_SPSD
#7

;

;

disable McBSP0 RX

disable McBSP0 TX

**
** End of File –– InitAIC10.asm
**
**
** File Name: InitAIC10.h
** Part Number: TLV320AIC10/11EVM–SW–0111
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
**
** Function:

SLAA109

46 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

** This header file defines values for AIC10 CODEC control registers,
** which will be updated by costoms when additional AICs is added to
** the EVM board (?? should fixed before final release ??).
**
**
** References:
** (1) Data Manual: General–Purpose 3V to 5.5V 16bit 22KSPS DSP Codec
** – TLV320AIC10
**
**
** Define Statements
**
SECRequ .set 0x0001 ; in prim comm, request for 2nd comm
ReadCR1 .set 0x1200 ; in 2nd comm, read AIC10 CR1 request
******* Master AIC Control Register Values (in 2nd Comm) *******
WriteMCR1 .set 0x0200 ; use default
WriteMCR2 .set 0x0402 ; N=2 for fs = 16Khz
WriteMCR3 .set 0x0618 ; turn on OFF–HOOK to DAA
WriteMCR4 .set 0x0800 ; gain: Input=0dB, Output=24db
******* Slave AIC(s) Control Register Values (in 2nd Comm) *******
WriteSCR1 .set 0x0250 ; enable MIC op–amp interface
WriteSCR2 .set 0x0402 ; N=2 for fs = 16Khz
WriteSCR3 .set 0x0600 ; use default
WriteSCR4 .set 0x0800 ; gain: Input=24dB, Output=24db
**
** Varaible & Initialization
**

.global AIC10Num, MasterOnFlag, IdentErrs

InitVari .usect ”.variable”, 1 ; initial point of data
FSCount .usect ”.variable”, 1 ; comm FS (frame sync) counter
CRegCount .usect ”.variable”, 1 ; AIC control register counter
AIC10Num .usect ”.variable”, 1 ; number of AIC10 chips on EVM
MasterOnFlag .usect ”.variable”, 1 ; a master AIC10 on board flag
IdentErrs .usect ”.variable”, 1 ; AIC10 hw errors identified
MstCR1 .usect ”.variable”, 1 ; master AIC10 CR1 status
MstCR2 .usect ”.variable”, 1 ; master AIC10 CR2 status
MstCR3 .usect ”.variable”, 1 ; master AIC10 CR3 status
MstCR4 .usect ”.variable”, 1 ; master AIC10 CR4 status
SlvCR1 .usect ”.variable”, 1 ; slave AIC10 CR1 status
SlvCR2 .usect ”.variable”, 1 ; slave AIC10 CR2 status
SlvCR3 .usect ”.variable”, 1 ; slave AIC10 CR3 status
SlvCR4 .usect ”.variable”, 1 ; slave AIC10 CR4 status
**
** external variables
**

.ref LoopCount ; main loop counter
**
** End of File –– InitAIC10.h
**

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 47

Appendix D DSP Interrupt Service Routines

/***
** File Name: IntrSrvc.c
** Part Number: TLV320AIC10/11EVM–SW–00002
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
** Release History:
** Version Date Engr Description
** 1.00 10–11–2000 Wendy X Fang Original Release
**
**
**
** Function:
** This file includes all interrupt service routines (ISR) for
** T5402 DSP that communicates to AIC10 CODEC EVM.
**
**
** References:
** (1) TMS320C54x DSP, CPU and Peripheral (SPRU131)
** (2) TMS320C54x DSP, Enhanced Peripheral (SPRU302)
***/
/***
** Include Statements
***/
#include ”IntrSrvc.h”
/***
** Interrupt Serivece Routines
***/
/******** This ISR responds to McBSP0 receive ready

flags to load ADC data from McBSP RX register
and send DTMF tone to AIC10 for output
This interrupt occures at 16Khz frequency! *******/

interrupt void McBSP0RXISR()
{

McBSP0Frame=McBSP0_DRR1&0x0001; /* get master/slave bit */
if (McBSP0Frame == 1)
{ /* while McBSP0 comm to master AIC */

MS_ADC = McBSP0_DRR1&0xFFFE; /* load master AIC10 ADC result */
McBSP0_DXR1 = SOut; /* securied voice to mstr AIC DAC */

}
else
{ /* while McBSP0 comm to slave AIC */

SL_ADC = McBSP0_DRR1&0xFFFE; /* load slave AIC10 ADC result */
McBSP0_DXR1 = ToneWave; /* DTMF tone to slave AIC DAC */

}
IFR |= 0x0010; /* reset BRINT0 interrupt flag */

}
/******** This ISR responds to FS to generate

input for DCSI input on the AIC10–EVM
via McBSP1 TX ready interrupt (BXINT1)

SLAA109

48 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

This routine will be call if DCSI is used
as for configuration for AIC10 device
control registers. Do the following
before enable this interrupt:
(1) Set DCSICount = 0;
(2) Clear McBSP1’s RX/TX interrupt flags first;
(3) Enable McBSP1’s TX; and
(4) Enable BXINT1 *******/

interrupt void McBSP1TXISR()
{

if (McBSP1Frame == 0) /* while at master phase */
{

DCSIData = SlaveCRValues[DCSICount]; /* load slave data */
DCSICount += 1; /* point to next CR */
McBSP1Frame = 1;

}
else /* while at slave phase */
{

DCSIData = MasterCRValues[DCSICount];
if (DCSICount >= 4) /* total 4 CRs at each AIC */
{ /* while finished config: */

DCSICount = 0; /* clear Counter */
DCSIConfig = 0; /* clear DCSI Config flag */

}
McBSP1Frame = 0;

}
IFR |= 0x0800; /* reset BXINT1 interrupt flag */
McBSP1_DXR1 = DCSIData; /* put data to McBSP1 TX reg */

}
/***
** End of File –– IntrSrvc.c
***/
/***
** File Name: IntrSrvc.h
** Part Number: TLV320AIC10/11EVM–SW–00102
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
** Release History:
** Version Date Engr Description
** 1.00 10–11–2000 Wendy X Fang Original Release
**
**
**
** Function:
** This is the head file of the ISR file –– IntrSrvc.c, which defines
** or refers to all variables and parameters the ISR file uses.
**
***/
/***
** Define Statements for MMRs
***/

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 49

#define
#define

IMR
IFR

(*(volatile
(*(volatile

unsigned
unsigned

int
int

*)0x0000)
*)0x0001)

#define McBSP0_DRR2 (*(volatile unsigned int *)0x0020)
#define McBSP0_DRR1 (*(volatile unsigned int *)0x0021)
#define McBSP0_DXR2 (*(volatile unsigned int *)0x0022)
#define McBSP0_DXR1 (*(volatile unsigned int *)0x0023)
#define McBSP1_DRR2 (*(volatile unsigned int *)0x0040)
#define McBSP1_DRR1 (*(volatile unsigned int *)0x0041)
#define McBSP1_DXR2 (*(volatile unsigned int *)0x0042)
#define McBSP1_DXR1 (*(volatile unsigned int *)0x0043)
/***
** Global Varaibles Used for TX from McBSP0 to AIC10s
***/
extern int ToneWave; /* DTMF tone wave form */
extern int SOut; /* security voice or farend output*/
extern int MicPhIn;
/***
** Global Varaibles Used for Loading AIC10s’ ADC Data
***/
unsigned int MS_ADC = 0; /* master AIC10 ADC data storage */
unsigned int SL_ADC = 0; /* slave1 AIC10 ADC data storage */
/***
** Global Varaibles Used for DCSI Interfacing (direct AIC10 CRs Config)
** DCSI Data Format: [D15(=0) D14~D12 D11~D9 D8 D7 ~ D1]
** StartBit DeviceAdd CRs’ID x ConfigData
***/
unsigned int DCSIConfig ;
unsigned int DCSICount = 0; /* DCSI interface interval counter */
int DCSIData = 0; /* DCSI input(from DSP to CODEC) */
int MasterCRValues[4] = /* master AIC10’s CRs values */

{ 0x1200, /* use default for master CR1 */
0x1402, /* N=2 for Fs=16KHz, master CR2 */
0x1618, /* turn ON OFF–HOOK to DAA, CR3 */
0x1800 }; /* gain: Input=0dB, Output=0dB */

int SlaveCRValues[4] = /* slave AIC10’s CRs values */
{ 0x0250, /* enable MIC op–amp interface */
0x0402, /* N=2 for Fs=16KHz, master CR2 */
0x0618, /* use default */
0x0800 }; /* gain: Input=0dB, Output=0dB */

/***
** Local Variables
***/
/******* McBSP0 *******/
unsigned int McBSP0Frame = 0; /* McBSP0 comm to AIC10EVM frame */
/******* McBSP1 *******/
unsigned int McBSP1Frame = 0; /* McBSP1 comm to AIC10EVM frame */

/***
** End of File –– IntrSrvc.h
***/

SLAA109

50 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

Appendix E TMS320C5402 DSP Memory Mapped Registers

**
** File Name: MMRegs.h
** Part Number: TLV320AIC10/11EVM–SW–0100
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
**
** Function:
** 1. Memory–Maped Registers (MMR) are mapped to data–page memory
** (Address: 0x0000 to 0x005F). Note that the assembly tool
** ”.mmregs” can NOT be applied for C5402 directly!!
** 2. Sub–bank addresses for McBSP and DMA are defined, and
** 3. Addresses for C5402 DSK on–board IO ports are defined.
**
**
** References:
** (1) TMS320VC5402 Fixed–Point Digital Signal Processor (SPRS079D)
** (2) TMS320C54x DSP, CPU and Peripheral (SPRU131)
** (3) TMS320C54x DSP, Enhanced Peripheral (SPRU302)
**
**
** C5402 Memory Mapped Register Definations (On Data–Page or Page1)
**
******** Map Interrupt Registers to Data Page Addresses
IMR .set 0x0000 ; interrupt mask reg
IFR .set 0x0001 ; interrupt mask reg
******** Map CPU Registers to Data Page Addresses
ST0 .set 0x0006 ; CPU status reg0
ST1 .set 0x0007 ; CPU status reg1
A .set 0x0008 ; CPU accumulator A
AL .set 0x0008 ; CPU accumulator A low word
AH .set 0x0009 ; CPU accumulator A high word
AG .set 0x000A ; CPU accumulator A guard word
B .set 0x000B ; CPU accumulator B
BL .set 0x000B ; CPU accumulator B low word
BH .set 0x000C ; CPU accumulator B high word
BG .set 0x000D ; CPU accumulator B guard word
TREG .set 0x000E ; CPU temporary reg
TRN
* AR0
* AR1
* AR2
* AR3
* AR4
* AR5

.set
.set
.set
.set
.set
.set
.set

0x000F
0x0010
0x0011
0x0012
0x0013
0x0014
0x0015

; CPU transition reg
; CPU auxiliary reg0
; CPU auxiliary reg1
; CPU auxiliary reg2
; CPU auxiliary reg3
; CPU auxiliary reg4
; CPU auxiliary reg5

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 51

* AR6 .set 0x0016 ; CPU auxiliary reg6
* AR7 .set 0x0017 ; CPU auxiliary reg7
* SP .set 0x0018 ; CPU stack pointer reg
BK .set 0x0019 ; CPU circular buffer size reg
BRC .set 0x001A ; CPU block repeat counter
RSA .set 0x001B ; CPU block repeat start address
REA .set 0x001C ; CPU block repeat end address
******* Map System Registers to Data Page Addresses
PMST .set 0x001D ; processor mode status reg
XPC .set 0x001E ; extended program page reg
SWWSR .set 0x0028 ; software wait–state reg
BSCR .set 0x0029 ; bank–switching control reg
SWCR .set 0x002B ; software wait–state control reg
CLKMD .set 0x0058 ; clock mode reg
******** Map McBSP0 Registers to Data Page Addresses
McBSP0_DRR2 .set 0x0020 ; McBSP0 data Rx reg2
McBSP0_DRR1 .set 0x0021 ; McBSP0 data Rx reg1
McBSP0_DXR2 .set 0x0022 ; McBSP0 data Tx reg2
McBSP0_DXR1 .set 0x0023 ; McBSP0 data Tx reg1
McBSP0_SPSA .set 0x0038 ; McBSP0 sub bank addr reg
McBSP0_SPSD .set 0x0039 ; McBSP0 sub bank data reg
******** Map McBSP1 Registers to Data Page Addresses
McBSP1_DRR2 .set 0x0040 ; McBSP1 data Rx reg2
McBSP1_DRR1 .set 0x0041 ; McBSP1 data Rx reg1
McBSP1_DXR2 .set 0x0042 ; McBSP1 data Tx reg2
McBSP1_DXR1 .set 0x0043 ; McBSP1 data Tx reg1
McBSP1_SPSA .set 0x0048 ; McBSP1 sub bank addr reg
McBSP1_SPSD .set 0x0049 ; McBSP1 sub bank data reg
******** Map Timer0 Registers to Data Page Addresses
TIM .set 0x0024 ; timer0 reg
PRD .set 0x0025 ; timer0 period reg
TCR .set 0x0026 ; timer0 control reg
******** Map Timer1 Registers to Data Page Addresses
TIM1 .set 0x0030 ; timer1 reg
PRD1 .set 0x0031 ; timer1 period reg
TCR1 .set 0x0032 ; timer1 control reg
******** Map HPI Registers to Data Page Addresses
HPIC .set 0x002C ; HPI control reg
******** Map General IO Port (Pins) Registers to Data Page Addresses
GPIOCR .set 0x003C ;GP I/O Pins Control Reg
GPIOSR .set 0x003D ;GP I/O Pins Status Reg
******* Map DMA Registers to Data Page Addresses
DMPREC .set 0x0054 ; DMA channel priority and ebanle control
DMSA .set 0x0055 ; DMA subbank address reg
DMSDI .set 0x0056 ; DMA subbank data reg w/autoincrement
DMSDN .set 0x0057 ; DMA subbank data reg
**
** Sub–Bank Address Definations
**
******** McBSP Sub–Bank Register Addresses
SPCR1 .set 0x0000 ; McBSP Ser Port Ctrl Reg1
SPCR2 .set 0x0001 ; McBSP Ser Port Ctrl Reg2
RCR1 .set 0x0002 ; McBSP Rx Ctrl Reg1

SLAA109

52 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

RCR2 .set 0x0003 ; McBSP Rx Ctrl Reg2
XCR1 .set 0x0004 ; McBSP Tx Ctrl Reg1
XCR2 .set 0x0005 ; McBSP Tx Ctrl Reg2
SRGR1 .set 0x0006 ; McBSP Sample Rate Gen Reg1
SRGR2 .set 0x0007 ; McBSP Sample Rate Gen Reg2
MCR1 .set 0x0008 ; McBSP Multichan Reg1
MCR2 .set 0x0009 ; McBSP Multichan Reg2
RCERA .set 0x000A ; McBSP Rx Chan Enable Reg PartA
RCERB .set 0x000B ; McBSP Rx Chan Enable Reg PartB
XCERA .set 0x000C ; McBSP Tx Chan Enable Reg PartA
XCERB .set 0x000D ; McBSP Tx Chan Enable Reg PartB
PCR .set 0x000E ; McBSP Pin Ctrl Reg
******* DMA Sub–Bank Register Addresses
DMARC0 .set 0x0000 ; DMA channel0 source address reg
DMDST0 .set 0x0001 ; DMA channel0 destination address reg
DMCTR0 .set 0x0002 ; DMA channel0 element count reg
DMDFC0 .set 0x0003 ; DMA channel0 sync sel & frame count reg
DMMCR0 .set 0x0004 ; DMA channel0 transfer mode cntrl reg
DMARC1 .set 0x0005 ; DMA channel1 source address reg
DMDST1 .set 0x0006 ; DMA channel1 destination address reg
DMCTR1 .set 0x0007 ; DMA channel1 element count reg
DMDFC1 .set 0x0008 ; DMA channel1 sync sel & frame count reg
DMMCR1 .set 0x0009 ; DMA channel1 transfer mode cntrl reg
DMARC2 .set 0x000A ; DMA channel2 source address reg
DMDST2 .set 0x000B ; DMA channel2 destination address reg
DMCTR2 .set 0x000C ; DMA channel2 element count reg
DMDFC2 .set 0x000D ; DMA channel2 sync sel & frame count reg
DMMCR2 .set 0x000E ; DMA channel2 transfer mode cntrl reg
DMARC3 .set 0x000F ; DMA channel3 source address reg
DMDST3 .set 0x0010 ; DMA channel3 destination address reg
DMCTR3 .set 0x0011 ; DMA channel3 element count reg
DMDFC3 .set 0x0012 ; DMA channel3 sync sel & frame count reg
DMMCR3 .set 0x0013 ; DMA channel3 transfer mode cntrl reg
DMARC4 .set 0x0014 ; DMA channel4 source address reg
DMDST4 .set 0x0015 ; DMA channel4 destination address reg
DMCTR4 .set 0x0016 ; DMA channel4 element count reg
DMDFC4 .set 0x0017 ; DMA channel4 sync sel & frame count reg
DMMCR4 .set 0x0018 ; DMA channel4 transfer mode cntrl reg
DMARC5 .set 0x0019 ; DMA channel5 source address reg
DMDST5 .set 0x001A ; DMA channel5 destination address reg
DMCTR5 .set 0x001B ; DMA channel5 element count reg
DMDFC5 .set 0x001C ; DMA channel5 sync sel & frame count reg
DMMCR5 .set 0x001D ; DMA channel5 transfer mode cntrl reg
DMSRCP .set 0x001E ; DMA source prog page address
DMDSTP .set 0x001F ; DMA destination prog page address
DMIDX0 .set 0x0020 ; DMA element index address reg0
DMIDX1 .set 0x0021 ; DMA element index address reg1
DMFRI0 .set 0x0022 ; DMA frame index reg0
DMFRI1 .set 0x0023 ; DMA frame index reg1
DMGSA .set 0x0024 ; DMA global source address reload reg
DMGDA .set 0x0025 ; DMA global destination address reload reg
DMGCA .set 0x0026 ; DMA global counter reload reg
DMGFA .set 0x0027 ; DMA global frame count reload reg

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 53

**
** C5402 DSK On–Board I/O Memory Mapped Registers
**
DSP_CPLD_CNTL1 .set 0000h ;Control Reg1
DSP_CPLD_STAT .set 0001h ;Status Reg
DSP_CPLD_DMCNTL .set 0002h ;Data Memory Control Reg
DSP_CPLD_DBIO .set 0003h ;Daughter Brd / GPIO Reg
DSP_CPLD_CNTL2 .set 0004h ;Control Reg2
DSP_CPLD_SEM0 .set 0005h ;Semaphore 0
DSP_CPLD_SEM1 .set 0006h ;Semaphore 1
**
** End of File –– MMRegs.h
**

SLAA109

54 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

Appendix F Interrupt Vector Table Initialization

**
** File Name: C5402Vec.asm
** Part Number: TLV320AIC10/11EVM–SW–0010
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
** Function:
** This routine initializes the 54xx DSK PLUS vector table.
** (Note that each vector must occupates four(4)16–bit space.)
**
**
** References:
** (1) TMS320C54x DSP, CPU and Peripheral (SPRU131)
** (2) TMS320C54x DSP, Enhanced Peripheral (SPRU302)
**
**
** Include Statements
**

.global _c_int00

.global _McBSP0RXISR, _McBSP1TXISR

.sect ”.vectors”
**
** Unmaskable Interrupts
**
RESET: BD

NOP
NOP

_c_int00 ; HW/SW RESET vector

NMI: RETE ; ~NMI, Non–Maskable interrupt
 NOP
 NOP
 NOP

**
** S/W Interrupts
**
SINT17: RETE

NOP
NOP
NOP

SINT18: RETE
NOP
NOP
NOP

SINT19: RETE
NOP
NOP

SLAA109

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 55

NOP
SINT20: RETE

NOP
NOP
NOP

SINT21: RETE
NOP
NOP
NOP

SINT22: RETE
NOP
NOP
NOP

SINT23: RETE
NOP
NOP
NOP

SINT24: RETE
NOP
NOP
NOP

SINT25: RETE
NOP
NOP
NOP

SINT26: RETE
NOP
NOP
NOP

SINT27: RETE
NOP
NOP
NOP

SINT28: RETE
NOP
NOP
NOP

SINT29: RETE
NOP
NOP
NOP

SINT30: RETE
NOP
NOP
NOP

**
** Rest of the Interrupts
**
INT0: RETE ; external user interrupt #0

 NOP
 NOP
 NOP

INT1: RETE ; external user interrupt #1

SLAA109

56 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

 NOP

NOP
NOP

INT2: RETE ; external user interrupt #2
 NOP
 NOP
 NOP

TINT0: RETE ; Timer0 interrupt
 NOP
 NOP
 NOP

BRINT0: BD _McBSP0RXISR ; McBSP#0 receive interrupt
 NOP
 NOP

BXINT0: RETE ; McBSP#0 transmit interrupt
 NOP
 NOP
 NOP

DMAC0: RETE ; DMA channel0 interrupt
 NOP
 NOP
 NOP

TINT1: RETE ; Timer1 interrupt
 NOP
 NOP
 NOP

INT3: RETE ; external user interrupt #3
 NOP
 NOP
 NOP

HPINT: RETE ; HPI interrupt
 NOP
 NOP
 NOP

BRINT1: RETE ; McBSP#1 receive interrupt
 NOP
 NOP
 NOP

BXINT1: BD _McBSP1TXISR ; McBSP#1 transmit interrupt
 NOP
 NOP

DMAC4: RETE ; DMA channel4 interrupt
 NOP
 NOP
 NOP

DMAC5: RETE ; DMA channel5 interrupt
 NOP
 NOP
 NOP

.end
**
** End of File –– C5402Vec.asm
**

Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP 57

Appendix G Linker Command Program

SLAA109r

/***
** File Name: AIC10EVM.cmd
** Part Number: TLV320AIC10/11EVM–SW–00301
**
** Copyright (c) Texas Instruments, Inc. 2000
**
**
**
**

Release History:
Version Date

Engr

Description

** 1.00 10–11–2000 Wendy X Fang Original Release
**

**
**
** Function:
** This is the TMS320C54xx DSK linker command and memory mapping
** file, which consists of programs for Linking (options have been
** defined through Code–Composer); and maps DSP memory and its
** sections.
**
***/
/***
** Link Files
***/
/******* Basic DSP & AIC10 Management/Setup Files *******/
AIC10Main.obj /* DSP main code for AIC10EVM */
InitC5402.obj /* C5402 DSP initialization */
InitAIC10.obj /* AIC10 initialization */
LoopControl.obj /* main program loop control */
/******* Application Support Program *******/
C5402Vec.obj /* C5402 interrupt vector table */
IntrSrvc.obj /* DSP Interrupt service routines */
/******* Application Programs *******/
DTMFTone.obj /* DTMF tone generation */
SecurityVoice.obj /* security voice system */
EchoCancel.obj /* echo cancellation */
VoiceOverIP.obj /* voice over IP */
/***
** Memory Map and Section Definition
***/
MEMORY
{

PAGE 0: /* program space */
VECS: origin = 0x0080, length = 0x0080 /* 128bytes vector table space */
PROG: origin = 0x0100, length = 0x1F00 /* 8K program memory space */

PAGE 1: /* data space */
SCRA: origin = 0x0060, length = 0x0020 /* scratch pad mem space */
STCK: origin = 0x2000, length = 0x0400 /* 1K words for stack */
DAT1: origin = 0x2400, length = 0x0100 /* 256 words for sys data */
DAT2: origin = 0x2500, length = 0x1B00 /* 12K words for appl data */

}
SECTIONS

58 Interfacing the TLV320AIC11 Codec to the TMS320C5402 DSP

SLAA109r

{

 .vectors : {} > VECS PAGE 0 /* interrupt vector table */
 .text : {} > PROG PAGE 0 /* program code */
 .data : {} > PROG PAGE 0 /* initialized data */
 .coeffs : {} > PROG PAGE 0 /* initialized parameters */
 .stack : {} > STCK PAGE 1 /* software stack section */
 .variable : {} > DAT1 PAGE 1 /* uninitialized vars for DSP&AIC10 */
 .bss : {} > DAT2 PAGE 1 /* uninitialized vars for applications */

}
/***
** End of File –– AIC10EVM.cmd
***/

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	4 References 29
	Appendix A TMS320C5402 DSK C Program Main Routine 30
	Appendix B DSK Initialization Assembly Routine 32
	Appendix C AIC10/11 Devices Initialization Assembly Routine 35
	Appendix D DSP Interrupt Service Routines 47
	Appendix E TMS320C5402 DSP Memory Mapped Registers 50
	Appendix F Interrupt Vector Table Initialization 54
	Appendix G Linker Command Program 57
	List of Figures
	List of Tables
	2 Hardware Interface
	2.1 TMS320C5402 DSK
	2.1.1 Block Diagram
	Figure 1. TMS320C5402 DSK Block Diagram

	2.1.2 External Interfaces
	2.1.3 User Hardware Configuration
	2.1.4 System Connection and Configurations
	Figure 2. System Connection

	2.2 TMS320AIC10/11 EVM
	2.2.1 Block Diagram
	Figure 3. TLV320AIC10/11 EVM Block Diagram

	2.2.2 Analog Interfaces
	2.2.3 Digital Interface
	2.2.4 System Connection and Configurations

	3 Software Interface
	3.1 DSP Initialization
	3.1.1 DSP System Clock Frequency
	3.1.2 Software Loop Control
	3.1.3 McBSP Initialization
	3.1.4 Interrupts

	3.2 CPLD Register Initialization
	3.3 AIC10/11 Control Registers Initialization
	3.3.1 ADC/DAC Sampling Frequency
	3.3.2 Communication Cycle and Phase
	3.3.3 Sync Communication Timing
	3.3.4 Interface Data Format
	Primary Communication Format:
	Figure 7. Interface Data Format

	3.3.5 Hardware Configuration Identification
	3.3.6 AIC10/11 Control Register Configuration
	Figure 8. Timing Diagram of Autoconfiguration Procedure
	Figure 10. Software Tree Structure
	Figure 11. Principle of Voice Security System
	Figure 12. Voice Security System Block Diagram
	Figure 13. Echo Cancellation Block Diagram

	Appendix A TMS320C5402 DSK C Program Main Routine
	Appendix B DSK Initialization Assembly Routine
	Appendix C AIC10/11 Devices Initialization Assembly Routine
	Appendix D DSP Interrupt Service Routines
	Appendix E TMS320C5402 DSP Memory Mapped Registers
	Appendix F Interrupt Vector Table Initialization
	Appendix G Linker Command Program

