

Using ADS8411/ADS8412 as a Serial ADC

Bhaskar Goswami and Rajiv Mantri

Data Acquisition Products

ABSTRACT

This application report discusses how to use a parallel ADC as a serial ADC by using a low-cost CPLD. This concept is tested with a Texas Instruments ADS8411/12 (16-bit, 2 MSPS SAR ADC) and an Altera[™] MAX 3000A CPLD. A full solution with schematic, layout, and software for programming the CPLD is presented at the end of the report. Project collateral discussed in this application report can be downloaded from the following URL: <u>http://www.ti.com/lit/zip/SLAA199</u>.

Contents

2
2
2
2
3
4
5
8
-

Figures

Fiaure 1.	Simplified Block Diagram	3
	Timing Diagram at 2 MSPS	

Tables

Table 1.	Chipset Timings	4
----------	-----------------	---

1 Introduction

The Texas Instruments ADS8411 is a 16-bit, 2 MSPS, unipolar single-ended ADC with parallel interface and internal reference. The ADS8412 is a 16-bit, 2 MSPS, unipolar differential ADC with parallel interface and internal reference. To complement the serial interface, this application report discusses how to use this ADC as a serial output ADC. To convert the parallel data to serial output, a CPLD (complex programmable logic device) is used. The same CPLD converts the serial control signals (CS , FS, SCLK, etc.) to parallel control signals and sends them to the device. So, to the user, the ADC along with the CPLD (henceforth referred as a chipset) is a serial device. The user sends serial control signals to the chipset and receives serial data outputs. An Altera[™] MAX 3000A-series CPLD is used.

2 Hardware

The hardware platform comprises the ADS8411 and the MAX 3000A CPLD. To program the one-time programmable CPLD, an Altera[™] ByteBlasterMV cable can be used.

2.1 ADS8411

The ADS8411 is a 16-bit, 2-MHz A/D converter with an internal 4.096-V reference. The device includes a 16-bit, capacitor-based, SAR A/D converter with inherent sample and hold capability.

2.2 MAX 3000A CPLD

The Altera[™] MAX 3000A-series CPLD was selected for this solution because of its low cost, ease of use, and does not need a configuration device. The MAX 3000A CPLD part number is EPM3032ATC44-10.

2.3 ByteBlasterMV Cable

The ByteBlasterMV parallel port download cable (ordering code: PL-BYTEBLASTERMV) connects to a standard PC parallel port (also known as an LPT port). This cable drives configuration data from the PC to MAX 3000A devices and configuration devices. Because design changes are downloaded directly to the CPLD, prototyping is easy, and multiple design iterations can be accomplished quickly.

2.4 Hardware Interface

The ADS8411 sends parallel data (D0-D15) to the CPLD (see Figure 1). SCLK and CS are sent to the CPLD from outside. The CPLD generates the CONVST signal to control the parallel device and also outputs the serial data. See the schematics in Appendix B for more detail.

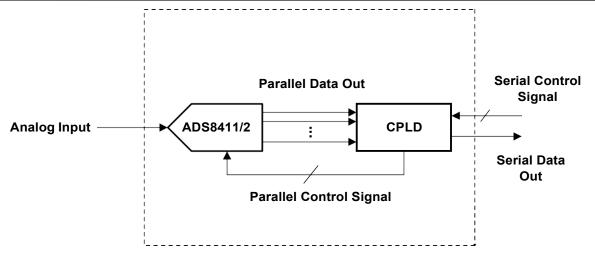
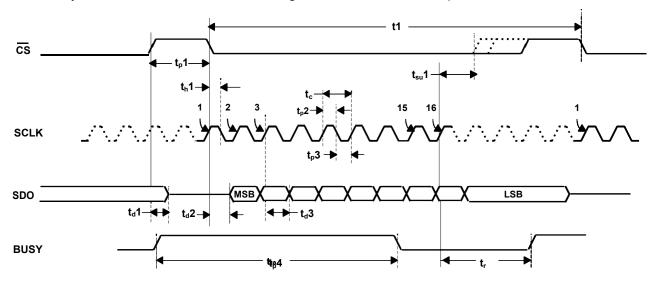



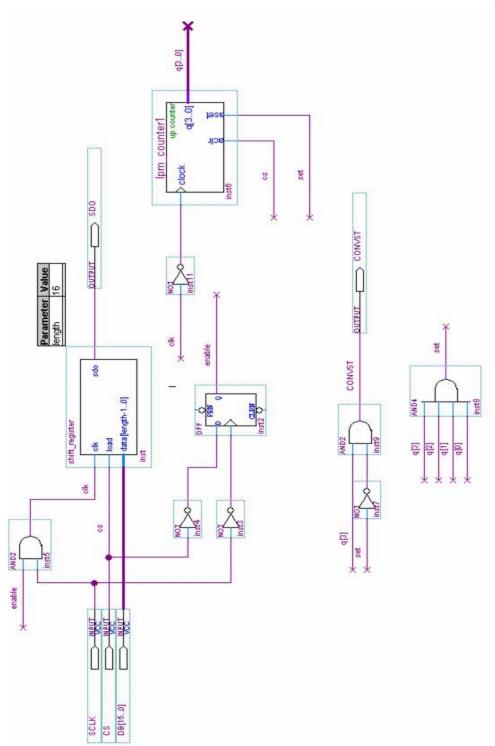
Figure 1. Simplified Block Diagram

The system inside the dashed line of Figure 1 works as a serial part.

2.5 Timing

The serial interface used in this chipset is SPI (serial peripheral interface) compatible. The \overline{CS} and SCLK signals control the chipset (see Figure 2). The data is only available in the bus when \overline{CS} is low. Otherwise, the bus is in a 3-state mode. After the \overline{CS} falling edge, the chipset waits for the falling edge of SCLK. This clock is counted as the first SCLK. The MSB of the data appears after the \overline{CS} falling edge. Then, the next data appears after the rising edge of second SCLK. Only 16 clocks per frame are necessary for the chipset to work. After that, the clock can be free-running or withdrawn.

Symbol	Parameter	MIN	MAX	Unit
t1	Width of a full frame	500		ns
t _p 1	Pulse duration, CS high time	20		ns
t _h 1	Hold time, CS falling edge (first SCLK falling edge after CS toggles from high to low) to SCLK falling edge	4		ns
t _{su} 1	Setup time, 16 th clock rising edge to $\overline{\text{CS}}$ rising edge	20		ns
t _c	Cycle time, SCLK	20		ns
t _p 2	Pulse duration, SCLK high	8		ns
t _p 3	Pulse duration, SCLK low	8		ns
t _d 1	Delay, CS high to SDO 3-state		15.5	ns
t _d 2	Delay, Falling edge of CS to SDO		15.5	ns
t _p 4	Pulse duration, Busy high		360 ⁽¹⁾	ns
tr	16 th clock rising edge to Busy High		75	ns
t _d 3	Delay, Rising edge of SCLK to SDO toggle		9.5	ns


Table 1. Chipset Timings

⁽¹⁾ Maximum pulse duration data taken from ADS8411 data sheet (SLAS369).

2.6 Quartus™ II 3.0

The logic for converting parallel data to serial data and serial control signals to parallel control signals is written in Quartus II 3.0 software from Altera. Verilog HDL is used to write the hardware description. To program the CPLD, the user needs to download Quartus II 3.0 free evaluation version from <u>www.altera.com</u>. The program is downloaded by the ByteBlasterMV cable through the PC parallel port. The Verilog file and the schematics also are available in the appendixes.

A.1 CPLD Program Logic

A.1.1 Parallel Data to Serial Data

Shift_register (inst) is a 16-bit parallel-to-serial shift register (see Figure A-1). It loads 16-bit data when load = 1. Otherwise, it shifts the 16-bit data at every positive edge of the clock. Serial data is given out in MSB-first format.

When CS is high, the 16-bit data is loaded into the shift register, but SCLK is disabled until CS is low. After \overline{CS} goes low, the chipset responds to the SCLK falling edge. To incorporate this \overline{CS} logic, the inverted Chip Select signal is sent to the D input of the DFF (inst2), and the inverted SCLK signal is sent to the clock input of the DFF. The output of the DFF generates the enable signal for the clock and for the shift register.

A.2 CONVST Generation

The 3-bit counter (inst6) along with the gates (inst7, 8, 9, and 11) generates the CONVST for the parallel device. This is the conversion start signal required for the parallel device. \overrightarrow{CS} resets the counter, and output of the 4-input AND gate sets the counter. It ensures that the counter is stopped after the 16th clock. Otherwise, the counter keeps producing \overrightarrow{CONVST} , even if the \overrightarrow{CS} is not toggled. \overrightarrow{CONVST} remains high from the 8th clock to the 15th clock. At the 16th clock, it falls to LOW and conversion starts.

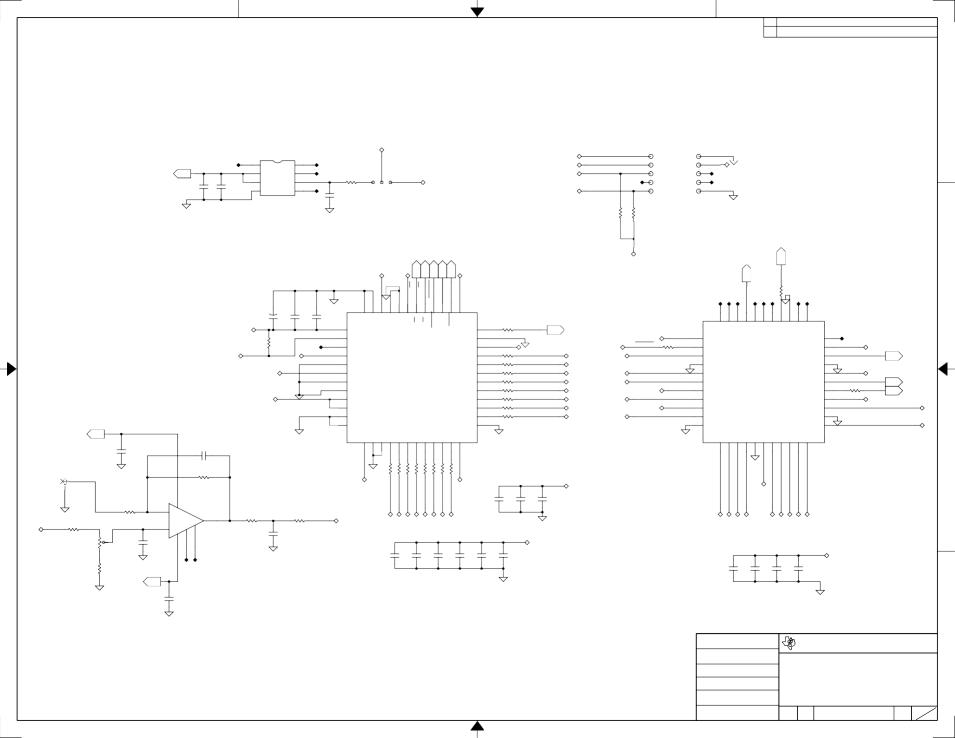
A.3 Verilog Code for the CPLD Program (File: shift_register.v)

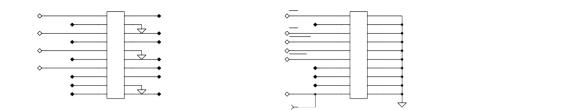
module shift_register(clk, load, data, sdo);

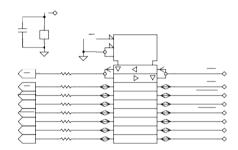
```
parameter length=16;
input clk, load;
input [length-1:0] data;
output sdo;
reg sdo;
reg [length-1:0] q;
always @ (posedge clk or posedge load)
begin
 if(load)
 q<=data:
 else
  begin
   q[15]<=q[14];
                  q[14]<=q[13];
                  q[13] <= q[12];
                  q[12]<=q[11];
                  q[11] \le q[10];
                  q[10]<=q[9];
                  q[9]<=q[8];
```

q[8]<=q[7]; q[7]<=q[6];
q[6]<=q[5];
$q[5] \le q[4];$
q[4]<=q[3]; q[3]<=q[2];
q[2] <= q[1];
q[1]<=q[0];
end

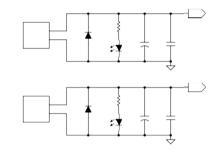
sdo<=q[length-1];</pre>

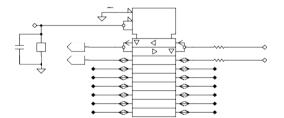

end

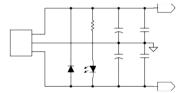

endmodule

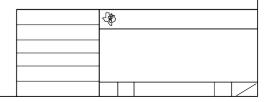

Appendix B. ADS8411 Schematic

Sheets 1 and 2 of the ADS8411 schematic follow.






¥



►

◀

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated