
Application Report
SLAA210A–October 2004–Revised August 2007

Getting Started With the Data Converter Plug-In
Lars Lotzenburger .. E-HPA Marketing and Systems Engineering

ABSTRACT
The Data Converter Plug-In (DCP) is a software plug-in shipped with the Code
Composer Studio™ (CCS) for the TMS320C2800™, TMS320C5000™,
TMS320C6000™, and TMS320C6400™ digital signal processor (DSP) families. It
generates C source code drivers based on user inputs for Texas Instruments (TI) data
converters (ADC, DAC, and CODEC) connected to a TI DSP. This application report
introduces the tool and its use. A step-by-step walkthrough demonstrates how to
configure a converter using the THS1206 parallel ADC as an example. The integration
of the generated driver files into new or existing projects, and the steps to set up a
CCS project, are also covered. These practices are easily adapted to other converters
included in the DCP.

Contents
1 Introduction .. 2
2 Generation of Driver Files With the Data Converter Plug-In 3
3 Embedding the Driver in the Application ... 14
4 References... 18

List of Figures

1 CCS Project Creation .. 4
2 DCP Start Screen... 5
3 Data Converter Selection.. 6
4 Add a Converter to the DCP .. 7
5 DSP Tab ... 8
6 GUI For the THS1206 .. 10
7 Files Property Page... 11
8 Flow of an API Function Call .. 12
9 Seed Selection Window .. 14
10 TCF File Main Window ... 15
11 Interrupt Properties Dialog ... 16
12 Application Layer Example... 17

Code Composer Studio, TMS320C2800, TMS320C5000, TMS320C6000, TMS320C6400 are trademarks of Texas Instruments.
Inter-Integrated Circuit, I2C are trademarks of NXP Semiconductors.
All other trademarks are the property of their respective owners.

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 1
Submit Documentation Feedback

http://focus.ti.com/docs/prod/folders/print/ths1206.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

1 Introduction

Introduction

Data converters provide the interface between the analog world and the digital world of the digital signal
processor. In previous years, most converter ICs offered only simple conversion and had only
straightforward digital interfaces. This limitation has changed recently for various reasons, with more
functionality moving into the converter. Some converters have special features suited to particular
applications, such as high-precision differential inputs, while some have enhanced digital interfaces.
Others execute common pre/post-processing tasks to decrease the CPU load (for example, volume
control on audio converters).

Different applications require different processor interfaces. Many different interfaces are on the market,
ranging from simple interfaces with minimum pin counts such as the Inter-Integrated Circuit™ (I2C™)
interface, to parallel interfaces mapped into the processor memory space to maximize data throughput.

These factors complicate the design process when working with state-of-the art converters. Frequently,
design engineers must read through lengthy data sheets simply to get the selected converter operating.
Initially, the interface between the converter and the processor must be clarified, because different
approaches are sometimes possible. Following this clarification, the behavior of more complex converters
must be defined through the configuration registers.

At this stage in the design process, the data converter support software (DCP) can be a useful tool. It
generates driver source code in response to inputs from the user. All interface and configuration settings
are made through an easy-to-use graphical user interface (GUI). The drivers have been developed and
tested on the data converter evaluation modules (EVMs) that are also available from Texas Instruments.
See the DCP page on the TI web site at www.ti.com for a complete list of TI data converters supported by
the DCP.

Getting Started With the Data Converter Plug-In2 SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.ti.com/sc/dcplug-in
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2 Generation of Driver Files With the Data Converter Plug-In

2.1 Set Up and Open Code Composer Studio (CCS)

Generation of Driver Files With the Data Converter Plug-In

Texas Instruments offers two versions of Code Composer Studio:

1. CCS DSK version: The Development Starter Kit (DSK) comes with a fully functional version of CCS.
The only limitation is that this CCS version must be used with the DSK. Therefore, no particular setup
program is shipped with the DSK version.

2. CCS full version: The setup program for this version allows the user to select different configuration
schemes.

• Hardware: In this mode, software developed in the CCS environment runs on the target hardware
(DSP board) connected to the host computer. The application is debugged on real hardware. The
interface between the host computer and the DSP hardware can be the parallel port, an emulator
(XDS5x0), or the universal serial bus (USB).

• Simulator: Applications can be developed with no target hardware connected to the computer.
CCS simulates the DSP and runs the application on it.

For more details regarding the setup program, see the Code Composer Studio User's Guide
(SPRU328), available for download at www.ti.com.

Action: Start the setup program, and choose the appropriate driver (if not using the DSK version of CCS).

When you close the setup program, you can start the Code Composer Studio Integrated Development
Environment (CCS IDE).

Action: Launch CCS using the icon on your desktop.

The DCP is shipped with the CCS package. However, it is recommended to download the latest version of
the DCP through the update advisor utility in CCS or directly from the DCP web site.

Action: Select CCS menu → Help → Update Advisor → Check For Updates.

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 3
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU328
http://www.ti.com
http://www.ti.com/sc/dcplug-in
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.2 Create a New Project in CCS

Generation of Driver Files With the Data Converter Plug-In

The DCP creates a set of files and adds them to a CCS project. Therefore, it is important to create a new
project or to open an existing project before running the DCP.

Action:
• Select CCS menu → Project → New… to create a new project, as shown in Figure 1; or
• Select CCS menu → Project → Open… to open an existing project

Go to Section 2.3 if you are working on an existing project.

Figure 1. CCS Project Creation

Action: In the field labeled Project Name, type the name of your project; for example, DemoDCP.

Verify the location where your project will be created. It is usually c:\CCStudio_v3.3\myprojects where
c:\CCStudio_v3.3 is the CCS installation directory.

Set Project Type to Executable and Target to your DSP family (in this example, TMS320C67XX).

Action: Click the Finish button to create the project.

CCS automatically creates a subdirectory and places the project file in it. The newly-created project
appears in the project pane (at the left side of the CCS window).

Getting Started With the Data Converter Plug-In4 SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.3 Open DCP

Generation of Driver Files With the Data Converter Plug-In

With the project open, you are ready to start the DCP.

Action: Select CCS menu → Tools → Data Converter Support to launch the DCP.

The DCP opens with the System Tab selected, as shown in Figure 2.

Figure 2. DCP Start Screen

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.4 Add a Converter to the DCP

Generation of Driver Files With the Data Converter Plug-In

The next step is to add the desired converter to the DCP. This step can be accomplished in two ways:
either navigate the converter tree to find the desired converter based on the interface and width, or use
the Quick Select feature (used for this example).

As you type the name of the converter name in the Quick Select field, the DCP searches for all converters
beginning with the letters and numbers typed. You can easily select your converter from the generated
drop-down list as shown in Figure 3.

Action: Type the converter name you want to use in the Quick Select entry field. You can type the entire
part number and press the Enter key, or to use the generated drop-down list after typing the first few
characters of the desired converter name.

Note: In this document, the THS1206 is used as an example.

Figure 3. Data Converter Selection

When a converter is selected, the DCP expands the tree, highlighting the device and placing the cursor on
it. Some converters are colored gray. This shading means that for this converter on this specific DSP
platform, no complete driver is available. You can still create the register settings for the converter that can
later be used in your own driver. In this case, a header file (dc_conf.h) describing the converter setup; this
process is described in Section 2.7.2. The next step is to add the converter to the system to make it
available for configuration.

Action: Right-click on the highlighted converter. A pop-up menu appears (see Figure 4). Click on the first
entry labelled Add. This selection includes the converter in the system and adds a configuration tab for it
to the DCP window.

6 Getting Started With the Data Converter Plug-In SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

Generation of Driver Files With the Data Converter Plug-In

Figure 4. Add a Converter to the DCP

Notice that a new tab called <Converter name>_1 has been added to the DCP.

The pop-up menu (shown in Figure 4) has two more active menu items. Clicking on the Properties item
reveals the driver seed and driver output file names used for the selected converter. The Help item from
the pop-up menu opens the help file of the DCP.

The DCP supports multiple converters in the system. If your system has more than one converter
connected to the DSP, repeat the steps from the beginning of this section.

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.5 DSP Configuration

Generation of Driver Files With the Data Converter Plug-In

The DSP-specific settings should be chosen before the converter settings are entered.

Action: Click on the DSP tab to display the DSP-specific controls.

Figure 5. DSP Tab

The DSP page opens (Figure 5). Through the configuration setup, the DCP automatically determines the
DSP family to be used, and lists all supported DSPs in the DSP Type control.

Action: Choose the DSP you are using in your system from the drop-down list.

The DSP Clock control should be set to the DSP frequency used in the design. This value is used for
frequency calculation for the peripherals only. It does not control the DSP frequency.

Action: Type the DSP frequency you are using in your system into the DSP Clock edit field.

The Dispatcher in DSP/BIOS Used check box under Misc Settings informs the DCP if you are using the
dispatcher in the DSP/BIOS. If you are not using DSP/BIOS, this checkbox must be left unchecked.

Note: If you are using the dispatcher in the DSP/BIOS, the interrupt keyword in front of each
interrupt service routine (ISR) in your driver source code must be removed. DCP does this
for you.

Getting Started With the Data Converter Plug-In8 SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.5.1 TMS320F2800 Family Specific Settings

Generation of Driver Files With the Data Converter Plug-In

If the TMS320F2800 family is used, three additional controls are added in the Platform Specific Settings
area. This family does not use the DSP clock as a source clock for the peripherals directly. The DSP
generates a low-speed clock (LSPCLK) from the DSP clock that is used for the timer and a high-speed
clock (HSPCLK) used for the serial port. The two controls LSPCLK field and HSPCLK field allow you to
select the ratio of the DSP clock to LSPCLK or HSPCLK. Again, this selection is important for DSP clock
generation in the driver because peripherals such as serial ports or timers depend on LSPCLK or
HSPCLK rather than on the DSP system clock.

The driver code generated by the DCP can initialize the divider by writing the appropriate register in the
DSP (select DCP Driver button). If it is not desired for the driver to perform this initialization, select the
User Program button

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.6 Converter Settings

Generation of Driver Files With the Data Converter Plug-In

Now, enough DSP information is in the DCP to configure the data converter.

Action: Click on the tab for the data converter you added in Section 2.4.

This page has several settings reflecting the possible configuration of the device. Converters differ in
capabilities and interfaces. As a result, each converter has its own unique setup tab. All pages are
separated into:

• Interface Settings
• Converter Settings (if applicable)

The Interface Settings section is where the user enters information about the physical connection between
the DSP and the data converter.

The Converter Settings section determines the behavior of the converter after power up. These settings
are completely configurable—the converter works with any combination of the controls.

The THS1206 GUI is shown in Figure 6. One important feature of the tool is that it is not possible to
choose invalid combinations—the DCP validates all user inputs against the device constraints and
displays only valid combinations for the particular converter selected.

Figure 6. GUI For the THS1206

Action: Choose the desired settings for all converters in your system.

Getting Started With the Data Converter Plug-In10 SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.7 Code Generation

2.7.1 'defines' Header File (dc_conf.h)

Generation of Driver Files With the Data Converter Plug-In

Once the converter is set up, the driver code can be generated.

Action: Click on the Files tab, as shown in Figure 7.

The last property page opens. The Show Files checkbox specifies whether the generated source files
remain open in the CCS environment (checked) or are closed (unchecked) once they are generated.

Verify the that directory where the driver files will be generated is the project directory. In our example, the
directory is named c:\CCStudio_v3.3\myprojects\DemoDCP.

Figure 7. Files Property Page

Action: Click on the Write Files button to start the file creation process.

Five files are generated, unless you selected a gray-colored converter in the tree. In this case, the driver
source code file and the driver header file are not generated.

This file is always called dc_conf.h and includes definitions only. These definitions describe the interface
and register settings of the converter as well as the DSP used. In a multiple-converter environment, the
settings of all converters are collected here.

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.7.2 Abstraction Layer Files (tidc_api.c, tidc_api.h)

...
void main(void)

{

dc_configure (&Ths1206_1);

...

}

Application layer (for example,)main.c

...

TTIDCSTATUS dc_configure(void *pDC)

{

return ((TTIDC *) pDC)−>configure(pDC);

}

Abstraction layer (tidc_api.c)

...

.

.

.

.

.

.

};

TTIDCSTATUS THS1206_configure(void *pDC)

{

...

}

Driver layer ()t1206_ob.c

Pointer

4

3

2

1

TTHS1206 Ths1206_1 = {
&THS1206_configure,
&THS1206_control,
&THS1206_readsample,
&THS1206_readblock,
&THS1206_writesample,
&THS1206_writeblock,
&THS1206_close,

/* init of DSP resources and Ths1206 goes
here... */

Abstraction layer calls THS1206_configure()
(address derived from the function table)

Function address of driver
configure function is known

Application calls
abstraction layer function

Data Converter
Object

...

Generation of Driver Files With the Data Converter Plug-In

Every call to a driver function is made through a unique API that consists of seven functions, as in the
driver source code file described in Section 2.7.3.

• dc_configure()
• dc_control()
• dc_readsample()
• dc_readblock()
• dc_writesample()
• dc_writeblock()
• dc_close()

The application layer normally calls the driver source code function through this standard API rather than
calling the driver source code functions directly, providing a simple, common interface to the driver from
the application point of view. The underlying driver function that is actually called (important in a
multiple-converter environment) is selected based on the data converter object passed as an argument.
Figure 8 illustrates these details.

Figure 8. Flow of an API Function Call

1. The application layer calls the abstraction-layer dc_configure(void* pDC) function with the converter
(identified by the data converter object pointer) as a parameter.

2. This data converter object pointer is used as the basis to access the function pointer table of the
correct object.

3. The abstraction layer calls the function identified by the address located at position 'configure' in the
function pointer table.

4. The THS1206_configure(void *pDC) function is called and executed.

Getting Started With the Data Converter Plug-In12 SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

2.7.3 Driver Source Code File (txxxx_ob.c)

2.7.4 Driver Header File (txxxx_fn.h)

Generation of Driver Files With the Data Converter Plug-In

The source code of the driver is included in this file. It contains the seven standard functions, while some
of them may not be implemented (depending on the converter type):

• <Converter name>_configure: Allocates and configures the DSP resources used and configures the
converter .

• <Converter name>_control: Controls the converter; for example, channel selection, or power down/up.
• <Converter name>_readsample: Reads one sample from the converter.
• <Converter name>_readblock: Reads a block of data from the converter.
• <Converter name>_writesample: Writes one sample to the converter.
• <Converter name>_writeblock: Writes a block of data to the converter.
• <Converter name>_close: De-allocates DSP resources used by this software.

Almost all drivers support an interrupt service routine (ISR) for block transfer; this routine can be found in
this DCP file. The user must map this ISR. This process is described in Section 3.1. Furthermore, the
driver source file can support auxiliary functions that are only used by standard functions. Therefore, these
functions only have a file-level scope and are not exposed to the application layer.

This file is the header file for the driver source code file. It contains all prototypes for the driver functions,
as well as the structure for the data converter object to be exposed to the application by including this
header file with the application file. This object is filled in the source code file. Complex drivers may also
have register unions and bit-field definitions in this file for easier and more understandable source code to
facilitate changes in converter features.

The generated source files are automatically added to the project as soon as they are created.

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

3 Embedding the Driver in the Application

3.1 Project Environment

Embedding the Driver in the Application

To set up a proper project environment, create a Textual Configuration File (TCF).

Action: CCS Menu → File → New… → DSP/BIOS Configuration...

A window with all available TCF seeds opens. Select the seed most similar to your system, as illustrated
in Figure 9.

Action: uncheck the Dynamic Memory Heap and Task Manager check boxes; they are not used here.

Action: Select the seed and press OK to generate the file.

Figure 9. Seed Selection Window

Most drivers generated by the DCP use one or more interrupts; for example, the DMA interrupt for
background data transfers on converters with a parallel interface, or the serial port receive interrupt for
converters using the serial port. This interrupt must be registered in the TCF to generate an appropriate
entry in the interrupt vector table.

Action: Open the Scheduling tree item in the newly-created TCF window. Next, expand the
HWI–Hardware Interrupt Service Routine Manager item (see Figure 10).

14 Getting Started With the Data Converter Plug-In SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

Embedding the Driver in the Application

Figure 10. TCF File Main Window

In order to register the ISR in the TCF, the name of the ISR must be known.

Action: Open the driver header file (t<converter>_fn.h) and find the prototype of the ISR. Copy the name
of the ISR to the system clipboard (use <Ctrl+C>).

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

Embedding the Driver in the Application

Depending on the interrupt source, select the correct HWI entry in the graphical configuration window. The
TMS320C6000 family uses an interrupt-multiplex mechanism. As a result, every event can be mapped to
every interrupt source. On all other DSP platforms, the interrupts are tied to their sources. Consult the
product data sheet for your specific DSP to find the correct peripheral interrupt number.

Action: Right-click the appropriate HWI item (for example, HWI_INT8, the default EDMA controller
interrupt in TMS320C6000 family, as shown in Figure 11), and click Properties on the resulting submenu.
In the dialog, insert in the function field the name _DCPDISP_dispatchEdmaIsr, which is the DCP
dispatcher ISR. This function can be found in file tidc_api.c.

Note: The DCP dispatcher is only available on the TMS320C6000 and TMS320C6400 DSP
platforms.

Figure 11. Interrupt Properties Dialog

The leading underscore is important because the ISR, written in the C language, is called from an
assembler environment. More information on the TCF can be found in the TMS320 DSP/BIOS User's
Guide (SPRU423).

Action: If you checked the DSP/BIOS used button in the DSP tab earlier, you must also check use
Dispatcher in the Dispatcher tab.

Action: Save the TCF file to Config.tcf in your project directory

Saving the TCF file also generates the linker command file (Configcfg.cmd).

Action: Add the files Config.tcf and Configcgf.cmd (generated during the TCF file save) to your project:
Select CCS Menu → Project → Add File to Project… in order to get the project framework.

Getting Started With the Data Converter Plug-In16 SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU423
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

3.2 Call the Driver Function From Your Application Layer

Embedding the Driver in the Application

The last step is to call the driver functions from your application layer. In this exercise, an example
application source file is created.

Action: Select CCS Menu → File → New. Save the file with the name main.c in the project directory. Add
the file to the project.

The following steps are necessary to use the driver:

• Make the data converter object visible to the application layer by including the driver header file
(txxxx_fn.h) in main.c.

• Make the common driver function visible to the application layer by including the file tidc_api.h in
main.c.

• Create the program entry point—the main() function.
• Call dc_configure() in the main() body with the pointer of the data converter object as the parameter in

order to initialize the converter.
• Enable the global interrupt bit. This step is not done in the driver in order to have more flexibility in the

application layer. In some drivers, depending on the driver structure, this bit is already enabled in the
driver source code.

• Call a data transfer function (dc_readsample(), dc_readblock(), dc_writesample() or dc_writeblock()) to
get data from the converter. The function used depends on the converter type you are using. For
example, there is no such thing as using dc_readblock() on a DAC, because data are only written to
the device.

The data converter object passed as a parameter to every function has the same name as the converter
instance in the DCP (that is, the name of the converter tab).

A simple application layer accessing the driver functions might look like Figure 12.

Figure 12. Application Layer Example

SLAA210A–October 2004–Revised August 2007 Getting Started With the Data Converter Plug-In 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

www.ti.com

3.3 Run the Program

4 References

References

Now, all that is left to do is to build the project.

Action: Click on CCS Menu →Project→Rebuild All to build the entire project.

If you did not change the project settings, a debug version of your application has been created. After the
project build completes, the newly created, downloadable DemoDCP.out file is located in the Debug
directory of your project.

Action: Select Load DemoDCP.out file to your target: CCS Menu → File → Load Program…

Action: Once the file is downloaded, press <F5> to run the application.

Run the application a few seconds; then stop the program by pressing <Shift+F5>. If samples are
collected from the converter (when using either an ADC or codec), you can use a graph window (CCS
Menu → View → Graph → Time/Frequency…) to display the buffer where the samples are stored. For
more information on how to display data, see the Code Composer Studio User's Guide (SPRU328).

Now you have successfully created an application that communicates with a data converter. You can
easily add your own signal processing function to the application layer to process the data.

These documents are available for download through the Texas Instruments web site (www.ti.com).

1. Code Composer Studio User's Guide (SPRU328)
2. TMS320 DSP/BIOS User's Guide (SPRU423)

18 Getting Started With the Data Converter Plug-In SLAA210A–October 2004–Revised August 2007
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRU328
http://www.ti.com
http://www-s.ti.com/sc/techlit/SPRU328
http://www-s.ti.com/sc/techlit/SPRU423
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA210A

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Generation of Driver Files With the Data Converter Plug-In
	2.1 Set Up and Open Code Composer Studio (CCS)
	2.2 Create a New Project in CCS
	2.3 Open DCP
	2.4 Add a Converter to the DCP
	2.5 DSP Configuration
	2.5.1 TMS320F2800 Family Specific Settings

	2.6 Converter Settings
	2.7 Code Generation
	2.7.1 'defines' Header File (dc_conf.h)
	2.7.2 Abstraction Layer Files (tidc_api.c, tidc_api.h)
	2.7.3 Driver Source Code File (txxxx_ob.c)
	2.7.4 Driver Header File (txxxx_fn.h)

	3 Embedding the Driver in the Application
	3.1 Project Environment
	3.2 Call the Driver Function From Your Application Layer
	3.3 Run the Program

	4 References

