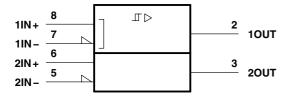

uA9639C DUAL DIFFERENTIAL LINE RECEIVER

SLLS113C - OCTOBER 1986 - REVISED MARCH 1997

- Operates From Single 5-V Power Supply
- Wide Common-Mode Voltage Range
- High Input Impedance
- TTL-Compatible Outputs
- High-Speed Schottky Circuitry
- 8-Pin Dual-In-Line Packages
- Designed to Be Interchangeable With National DS9639AC



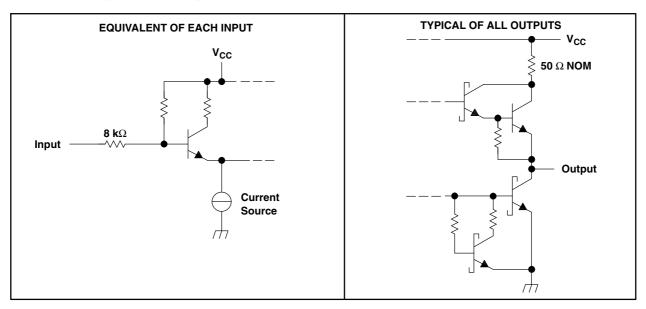
description

The uA9639C is a dual differential line receiver designed to meet ANSI Standards EIA/TIA-422-B and EIA/TIA-423-B and ITU Recommendations V.10 and V.11. It utilizes Schottky circuitry and has TTL-compatible outputs. The inputs are compatible with either a single-ended or a differential-line system. This device operates from a single 5-V power supply and is supplied in an 8-pin, dual-in-line package.

The uA9639C is characterized for operation from 0°C to 70°C.

logic symbol[†]

logic diagram



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	–0.5 V to 7 V
Input voltage, V _I	±15 V
Differential input voltage, V _{ID} (see Note 2)	±15 V
Output voltage range, V _O (see Note 1)	
Low-level output current, I _{OL}	50 mA
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential input voltage, are with respect to the network ground terminal.
 - 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	OPERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
Р	1000 mW	8.0 mW/°C	640 mW

SLLS113C - OCTOBER 1986 - REVISED MARCH 1997

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.75	5	5.25	V
Common-mode input voltage, V _{IC}			±7	V
Operating free-air temperature, T _A	0		70	°C

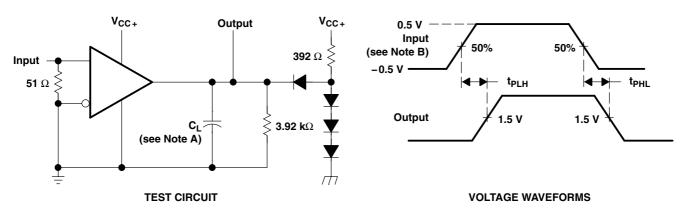
electrical characteristics over recommended ranges of supply voltage, common-mode input voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONI	TEST CONDITIONS			MAX	UNIT	
V _{IT+} Positive-going input threshold voltage		Con Note 2				0.2		
		See Note 3	See Note 3			0.4	V	
V _{IT} Negative-going input threshold voltage		Con Note 2						
		See Note 3		-0.4‡			V	
V _{hys}	Hysteresis voltage (V _{IT+} -V _{IT-})				70		mV	
V_{OH}	High-level output voltage	$V_{ID} = 0.2 V$,	$I_O = -1 \text{ mA}$	2.5	3.5		V	
V_{OL}	Low-level output voltage	$V_{ID} = -0.2 V$,	$I_O = 20 \text{ mA}$		0.35	0.5	V	
	land de surrent	$V_{CC} = 0 \text{ to } 5.5 \text{ V},$	V _I = 10 V		1.1	3.25	A	
Ц	Input current	See Note 4	$V_{I} = -10 \text{ V}$		-1.6	-3.25	mA	
Ios	Short-circuit output current§	V _O = 0,	$V_{ID} = 0.2 \text{ V}$	-40	-75	-100	mA	
I _{CC}	Supply current	$V_{ID} = -0.5 V$,	No load	·	35	50	mA	

 $^{^{\}dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics, V_{CC} = 5 V, T_A = 0°C to 70°C

	PARAMETER	TEST CONDITIONS	MIN M	AX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_1 = 50 \text{ pF}$. See Figure 1		85	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 50 pF, See Figure 1		85	ns


[‡] The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels only.

[§] Only one output should be shorted at a time, and duration of the short circuit should not exceed one second.

NOTES: 3. The expanded threshold parameter is tested with a 500-Ω resistor in series with each input.

^{4.} The input not under test is grounded.

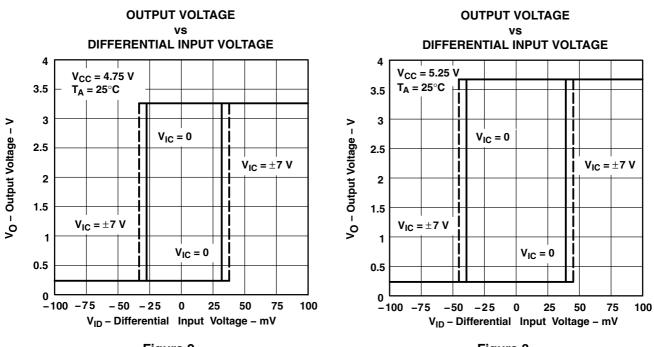
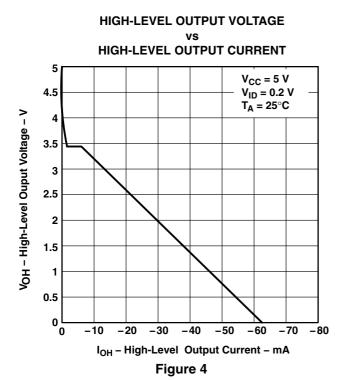
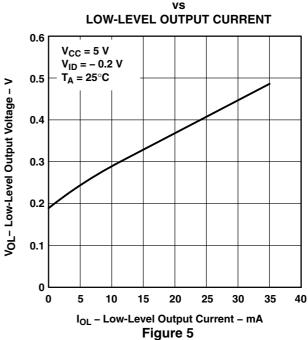
PARAMETER MEASUREMENT INFORMATION

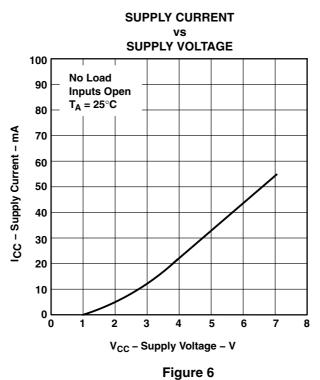
NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: $t_f \le 5$ ns, $t_f \le 5$ ns, $PRR \le 5$ MHz, duty cycle = 50%.

Figure 1. Test Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS


Figure 2 Figure 3

LOW-LEVEL OUTPUT VOLTAGE

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

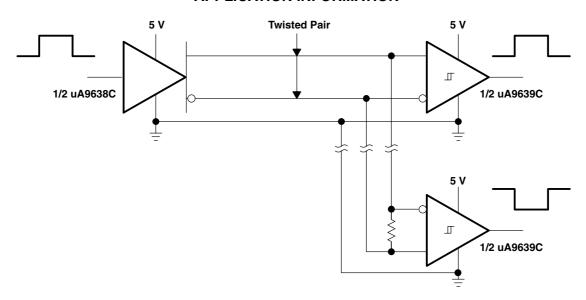


Figure 7. EIA/TIA-422-B System Applications

11-Nov-2025 www.ti.com

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
UA9639CP	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	UA9639CP
UA9639CP.A	Active	Production	PDIP (P) 8	50 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	UA9639CP

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

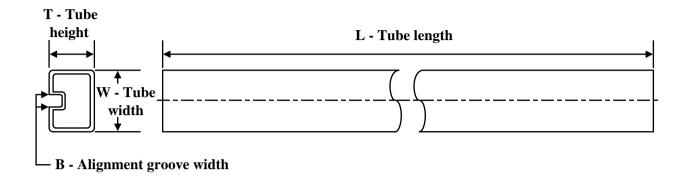
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No. RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

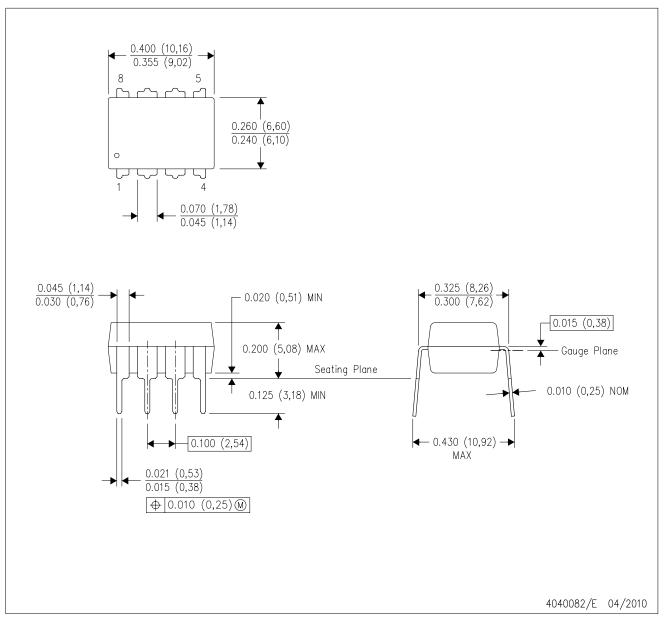

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
UA9639CP	Р	PDIP	8	50	506	13.97	11230	4.32
UA9639CP.A	Р	PDIP	8	50	506	13.97	11230	4.32

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025