
- Supports a 9-Pin GeoPort™ Host Interface Standard for the Intelligent Network Port
- Designed to Operate up to 4-Mbit/s Full **Duplex**
- ±5 V Supply Operation
- **Provides 6 kV ESD Protection**
- **Has Driver Short-Circuit Protection**
- Includes Failsafe Mechanism for Open Inputs
- Is Backward Compatible with AppleTalk™ and LocalTalk™
- **Combines Multiple Components into a** Single Chip Solution
- Complements the SN75LBC772 9-Pin **GeoPort Peripheral (DCE) Interface Device**
- Uses LinBiCMOS™ Process Technology

description

The SN75LBC771 is a low-power LinBiCMOS™ device that incorporates the drivers and receivers for a 9-pin GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/ TIA-423-B drivers and receivers to transmit data up to four-Mbit/s full duplex. GeoPort is a serial communications standard that is intended to replace the RS-232, AppleTalk, and printer ports all in one connector in addition to providing real-time data transfer capability. SN75LBC771 provides point-to-point connections between GeoPort-compatible devices with data transmission rates up to 4-Mbit/s full duplex featuring a hot-plug capability. Applications include connection to telephone, ISDN, digital sound and imaging, fax-data modems, and other traditional serial and parallel connections. The GeoPort is backwardly compatible to both LocalTalk and AppleTalk.

logic diagram (positive logic)

While the SN75LBC771 is powered off (V_{CC} and $V_{EE} = 0$), the outputs are in a high-impedance state. Also, when the shutdown (SHDN) terminal is high, all outputs go into a high-impedance state. A logic high on the driver enable (DEN) terminal places the outputs of the differential driver into a high-impedance state. All drivers and receivers have fail-safe mechanisms that ensure a high output state when the inputs are left open.

The SN75LBC771 is characterized for operation over the 0°C to 70°C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated. LinBICMOS is a trademark of Texas Instruments Incorporated.

FUNCTION TABLES†

	SINGLE-ENDED DRIVER									
INPUT (DA1)	ENABLE (SHDN)	OUTPUT (DY1)								
H L OPEN X X	L L H OPEN	L H L Z Z								

	DIFFERENTIAL DRIVER										
INPUT (DA2)	ENA (SHDN)	BLE	OUT	PUT (DZ2)							
(=1:=)	(SHDN)	(DEN)	(012)	(DZZ)							
H	L	L	Н	L							
L	L	L	L	Н							
OPEN	L	L	Н	L							
Х	Н	Χ	Z	Z							
Х	OPEN	Χ	Z	Z							
Х	Х	Н	Z	Z							
Х	Х	OPEN	Z	Z							

SINGLED-ENDED RECEIVER									
INPUT (RA2, RA3)	ENABLE (SHDN)	OUTPUT (RY2) (RY3)							
Н	L	Н	L						
L	L	L	Н						
OPEN	L	Н	Н						
SHORT‡	L	?	?						
X	Н	Z	Z						
Х	OPEN	Z	Z						

	DIFFERENTIAL RECEIVER								
	INPUT ENABLE RA1) (RB1) (SHDN)		OUTPUT (RY1)						
Н	L	L	Н						
L	Н	L	L						
OP	PEN	L	Н						
SHC	PRT‡	L	?						
Х	Χ	Н	Z						
Х	Χ	OPEN	Z						

[†] H = high level, L = low level, X = irrelevant, ? = indeterminate, Z = high impedance (off)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)§

Positive supply voltage range, V _{CC} (see Note 1)	
Negative supply voltage range, VEE (see Note 1)	–7 to 0.5 V
Receiver input voltage range (RA, RB)	
· · · · · · · · · · · · · · · · · · ·	
Receiver differential input voltage range, V _{ID}	
Receiver output voltage range (RY)	
Driver output voltage range (Power Off) (DY1, DY2, DZ2)	–15 V to 15 V
Driver output voltage range (Power On) (DY1, DY2, DZ2)	
Driver input voltage range (DA, SHDN, DEN)	
Electrostatic Discharge (see Note 2)	00
(All pins) Class 3, A	6 kV
(All pins) Class 3, B	
Continuous total power dissipation	
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Load temperature 1,0 mm (1/10 mem edge for 10 edgemes 1.1.1.1.1.	

[§] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted.
 - 2. This rating is per MIL-STD-883C, Method 3015.7.

 $^{^{\}ddagger}$ -0.2 V < V_{ID} < 0.2 V

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
DW	1125 mW	9.0 mW/°C	720 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Positive supply voltage, V _{CC}	4.75	5	5.25	V
Negative supply voltage, VEE	-5.25	-5	-4.75	V
High-level input voltage, VIH (DA, SHDN, DEN)	2			V
Low-level input voltage, V _{IL} (DA, SHDN, DEN)			0.8	V
Receiver common-mode input voltage, V _{IC}	-7		7	V
Receiver differential input voltage, V _{ID}	-12		12	V
Operating free-air temperature, T _A	0		70	°C

driver electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

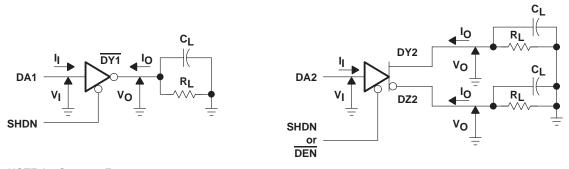
	PARAMETER		TEST CON	DITIONS	MIN	TYP	MAX	UNIT
V	High lovel output voltage		R _L = 12 kΩ		3.6	4.5		V
Vон	High-level output voltage	Single-ended,	R _L = 120 Ω		2	3.6		V
\/a.	Low lovel output voltage	See Figure 1	R _L = 12 kΩ			-4.5	-3.6	V
VOL	Low-level output voltage		R _L = 120 Ω			-3.6	-2	V
IVODI	Magnitude of differential output	t voltage	R _L = 120 Ω,	See Figure 2	4			V
$\Delta V_{OD} $	Change in differential voltage	magnitude					250	mV
Voc	Common-mode output voltage	;			-2		2	V
l∆Voc(ss)l	Magnitude of change, common steady-state output voltage	agnitude of change, common-mode eady-state output voltage		See Figure 3			200	mV
ΔVOC(PP)	Magnitude of change, common peak-to-peak output voltage	n-mode		Ĭ		700		mV
Icc	Positive supply current			Noteed		4	10	mA
I _{EE}	Negative supply current		$SHDN = \overline{DEN} = 0 \text{ V},$	No Load		-2	-5	mA
Icc	Positive supply current		OURN BEN SV	Noload			100	μΑ
IEE	Negative supply current		SHDN = DEN = 5 V,	No Load			-100	μΑ
loz	High-impedance output curren	t	$V_{CC} = 0 \text{ or } 5 \text{ V},$	-10 ≤ V _O ≤ 10 V			±100	μΑ
los	Short-circuit output current		V _{CC} = 5.25 V, See Note 3	$-5 \text{ V} \le \text{V}_{\text{O}} \le 5 \text{ V},$		±170	±450	mA

NOTE 3: Not more than one output should be shorted at one time.

SLLS226A – APRIL 1996 – REVISED NOVEMBER 1997

driver switching characteristics over operating free-air temperature range

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low level output				42	75	ns
^t PLH	Propagation delay time, low-to-high level output				41	75	ns
tPZL	Driver output enable time to low-level output				25	100	μs
^t PZH	Driver output enable time to high-level output	SHDN	Single ended,		25	100	μs
tPLZ	Driver output disable time from low-level output	SUDIN	See Figure 4		28	100	ns
tPHZ	Driver output disable time from high-level output	1			37	100	ns
t _r	Rise time		1	10	25	75	ns
t _f	Fall time		1	10	23	75	ns
tPHL	Propagation delay time, high-to-low level output				40	75	ns
tPLH	Propagation delay time, low-to-high level output		1		42	75	ns
4	Driver cutout enable time to level evel cutout	SHDN			25	100	μs
tPZL	Driver output enable time to low-level output	DEN]		29	150	ns
4	Driver cutout enable time to high level cutout	SHDN			25	100	μs
^t PZH	Driver output enable time to high-level output	DEN	Differential,		35	150	ns
4	Driver cutout disable time from level cutout	SHDN	See Figure 5		28	100	ns
^t PLZ	Driver output disable time from low-level output	DEN]		34	100	ns
4	Driver cuteut dischie time from high level cuteut	SHDN	1		37	100	ns
tPHZ	Driver output disable time from high-level output	DEN			34	100	ns
t _r	Rise time]	10	27	75	ns
t _f	Fall time		<u> </u>	10	26	75	ns
tSK(p)	Pulse skew, tpLH - tpHL					22	ns


receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{IT+}	Positive-going input threshold voltage					200	mV
V _{IT} _	Negative-going input threshold voltage	See Figure 6		-200			mV
V _{hys}	Differential input voltage hysteresis (V _{IT+} – V _{IT-})				50		mV
VOH	High-level output voltage (see Note 4)	$V_{IC} = 0$, $I_{OH} = -2 \text{ r}$ See Figure 6	mA,	2	4.5		V
VOL	Low-level output voltage	$V_{IC} = 0$, $I_{OL} = 2 \text{ m}$. See Figure 6	Α,		0.4	0.8	V
la a	Chart aire it autout aurent	VO = 0			-45	-85	mA
los	Short-circuit output current	V _O = 5.25 V			45	85	mA
R _{IN}	Input resistance	$V_{CC} = 0 \text{ or } 5.25 \text{ V}, -12 \text{ V} \le \text{V}_{I}$	≤12 V	6	30		kΩ

NOTE 4: If the inputs are left unconnected, receivers one and two interpret this as a high-level input and receiver three interprets this as a low-level input so that all outputs are at the high level.

receiver switching characteristics over recommended conditions (unless otherwise noted)

	PARAMETER		TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
tPHL	Propagation delay time, high-to-low level output					30	75	ns
tPLH	Propagation delay time, low-to-high level output]			30	75	ns
t _r	Rise time		$R_L = 2 kΩ$, See Figure 6	$C_L = 15 pF$,		15	30	ns
t _f	Fall time		Occ riguic o			15	30	ns
tSK(P)	Pulse skew tpLH-tpHL						20	ns
tPZL	Receiver output enable time to low-level output					35	100	ns
tPZH	Receiver output enable time to high-level output					35	100	ns
tPLZ	Receiver output disable time from low-level output	Differential				20	100	ns
^t PHZ	Receiver output disable time from high-level output]		Caa Firuma 7		20	100	ns
tPZL	Receiver output enable time to low-level output		$C_L = 50 \text{ pF},$	See Figure 7		12	25	ns
^t PZH	Receiver output enable time to high-level output]				12	25	μs
t _{PLZ}	Receiver output disable time from low-level output	Single-ended				25	100	μs
^t PHZ	Receiver output disable time from high-level output					125	400	ns

NOTE A: C_L = 50 pF

Figure 1. Single-Ended Driver DC Parameter Test Circuits

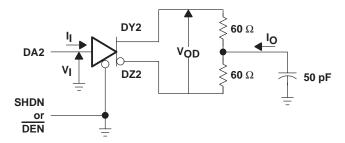
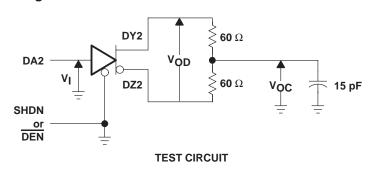
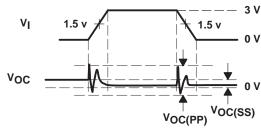
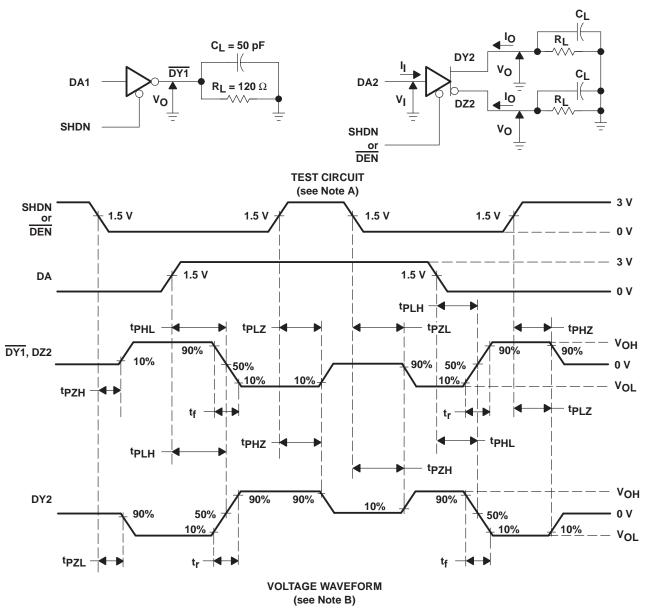
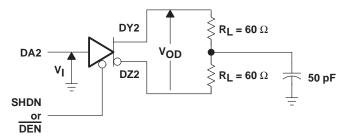




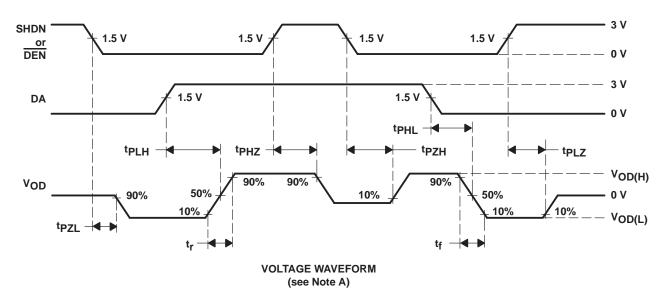
Figure 2. Differential Driver DC Parameter Test Circuit



VOLTAGE WAVEFORM

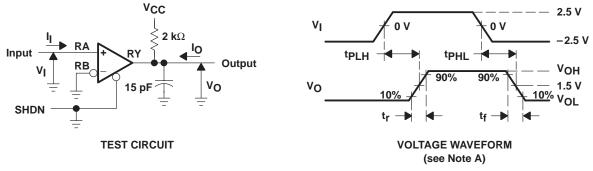
NOTE A: Measured 3dB Bandwidth = 300 MHz


Figure 3. Differential Driver Common-Mode Output Voltage Test Circuit



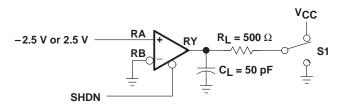
NOTES: A. C_L = 50 pF, R_L = 120 Ω B. The input waveform t_r , $t_f \le$ 10 ns.

Figure 4. Single-Ended Driver Propagation and Transition Times Test Circuits and Waveform



TEST CIRCUIT

NOTE A: For the input waveform t_f , $t_f < = 10$ ns


Figure 5. Differential Driver Propagation and Transition Times Test Circuit and Waveforms

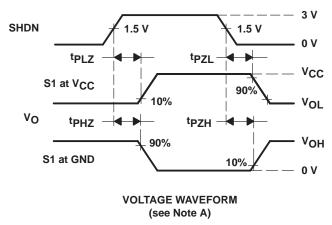
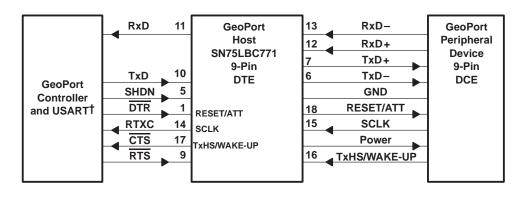
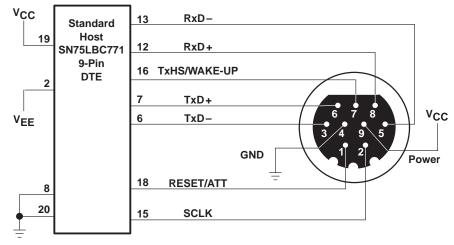

NOTE A: For the input waveform t_r , $t_f < = 10$ ns

Figure 6. Receiver Propagation and Transition Times Test Circuit and Waveform


TEST CIRCUIT



NOTE A: For the input waveform t_r , $t_f < = 10$ ns

Figure 7. Receiver Enable and Disable Test Circuit and Waveforms

APPLICATION INFORMATION

 $[\]dagger$ USART = universal synchronous asynchronous receiver transmitter

Figure 8. GeoPort 9-Pin DTE Connection Application

generator characteristics

PARAMETER		TEST O	TEST CONDITIONS		232/V.28		423/V.10		562	
	FARAMETER		CNDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
		Open circuit			25	4	6		13.2	V
IVOI	Output voltage magnitude	$3 \text{ k}\Omega \leq \text{RL} \leq 7$	7 kΩ	5	15	NA		3.7		V
		R _L = 450 Ω		NA		3.6		NA		V
los	Short-circuit output current	V _O = 0			100		150		60	mA
R(OFF)	Power-off source resistance	$V_{CC} = 0$,	VO < 2 V	300		NA		300		Ω
I _{O(OFF)}	Power-off output current	$V_{CC} = 0$,	VO < 6 V	NA			±100	NA		μΑ
SR	Output voltage slew rate				30	NA		4	30	V/μs
		±3.3 V to ±3.3	3 V	NA		NA		0.22	2.1	μs
t _t	Output transition time	±3 V to ±3 V			0.04	NA		NA		ui‡
		10% to 90%	·	NA			0.3	NA		ui‡
VO(RING)	Output voltage ring		·	NA			10%		5%	·

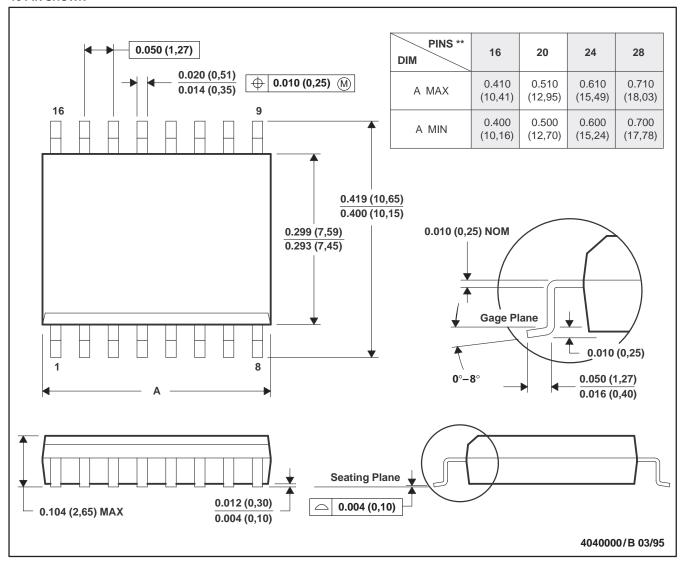
[‡] ui is the unit interval and is the inverse of the signaling rate (bit time).

SLLS226A - APRIL 1996 - REVISED NOVEMBER 1997

APPLICATION INFORMATION

receiver characteristics

	PARAMETER	TEST CONDITIONS	232/V.28		423/V.10		562		UNIT
	PARAMETER	TEST CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _I	Input voltage			25		10		25	V
VIT	Input voltage threshold	V _I < 15 V	-3	3	NA		-3	3	V
	input voitage tilleshold	V _I < 10 V	NA		-0.2	0.2	NA		V
Rį	Innut registance	3 V < V _I < 15 V	3	7	NA		3	7	kΩ
	Input resistance	V _I < 10 V	NA		4		NA		kΩ


SLLS226A - APRIL 1996 - REVISED NOVEMBER 1997

MECHANICAL INFORMATION

DW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

16 PIN SHOWN

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
 - D. Falls within JEDEC MS-013

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN75LBC771DW	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75LBC771
SN75LBC771DW.A	Active	Production	SOIC (DW) 20	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75LBC771

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

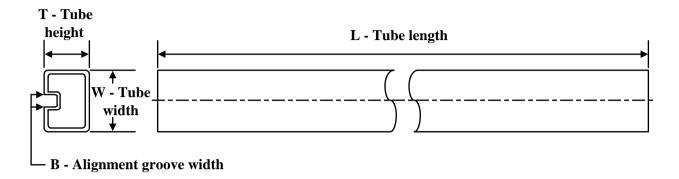
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN75LBC771DW	DW	SOIC	20	25	506.98	12.7	4826	6.6
SN75LBC771DW	DW	SOIC	20	25	507	12.83	5080	6.6
SN75LBC771DW.A	DW	SOIC	20	25	507	12.83	5080	6.6
SN75LBC771DW.A	DW	SOIC	20	25	506.98	12.7	4826	6.6

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025