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About This Manual

The TI USB device controllers TUSB2136, TUSB3210, TUSB3410, and
TUSB5052 do not support in-circuit emulation (ICE) for debugging. However,
there are alternative methods that can be used by the firmware developer to
aid the coding process.  This document describes these alternative methods.

How to Use This Manual

This document contains the following chapters:

Chapter 1, Introduction, provides a general overview of the debugging process
and environment.

Chapter 2, Debug Strings, has basic instructions and examples for outputting
from the microcontroller strings containing information that is useful for
debugging purposes.

Chapter 3, In-System Debugging Using Keil’s ISD51 Feature,  gives general
information and specific pointers for the use of Keil debugging software with
the TUSBxxxx.

Chapter 4, File List, contains a source code listing for each C routine and
header file used for debugging.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011  0005  0001         .field    1, 2
0012  0005  0003         .field    3, 4
0013  0005  0006         .field    6, 3
0014  0006               .even
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Here is an example of a system prompt and a command that you might
enter:

C: csr −a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ”section name”, address

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

� Square brackets ( [ and ] ) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here is an example of an instruction
that has an optional parameter:

LALK 16−bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this
syntax shows, if you use the optional second parameter, you must
precede it with a comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

� Braces ( { and } ) indicate a list. The symbol | (read as or) separates items
within the list. Here is an example of a list:

{ * | *+ | *− }

This provides three choices: *, *+, or *−.

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.
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Related Documentation From Texas Instruments

TUSB2136 Universal Serial Bus Keyboard Hub Controller Data Manual, TI
literature number SLLS442

TUSB3210 Universal Serial Bus General-Purpose Device Controller Data
Manual, TI literature number SLLS466

Trademarks

Hyperterminal is a trademark of Hilgraeve, Incorporated.

IAR Embedded Workbench is a trademark of IAR Systems AB, Sweden.

Windows is a trademark of Microsoft Corporation.

Other trademarks are the property of their respective owners.
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TI’s TUSB2136, TUSB3210, TUSB3410, and TUSB5052 are based on 8052
microcontroller cores, allowing the system designer much flexibility. There are
many advantages to this. The 8052 is a common architecture, and therefore
many programmers are already familiar with it. Also, many existing resources
are available for the 8051/8052 architecture, including sample code. Any
existing 8051/8052 development environment can be used to write and
compile firmware for these devices, such as Keil’s PK51 environment and
IAR’s Embedded Workbench.

Despite the simplicity of the 8052, it is still necessary to debug the code and
to have the necessary tools and techniques for this task. Because of their
customized pinout and lack of JTAG or hardwired debug capability, it is not
possible to use existing in-circuit emulation (ICE) tools with TUSBxxxx.
However,  alternative methods can be used.

The first level of debug is the use of debug output strings on the UART
interface. The second and more sophisticated approach is the use of the
ISD51 feature included with Keil’s 8051/8052 development tools. This
document describes techniques for doing so.

Chapter 1
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A simple technique is to use the serial interface to output values and strings
to the PC, which can help determine the status of the microcontroller unit
(MCU) and internal memory.

To use this technique, the unit under test must have a serial port interface that
is attached to a terminal (such as a PC running the Windows Hyperterminal
application). Simple function routines that output values to the UART are
added to the code and are called periodically within the code.

For example, to output the port-1 status of the 8052:

rs232PutHex(P1);

To print a string:

rs232PutString(”Hello World!”);

Source code for these routines is shown in Chapter 4. Note that the necessary
header files must be included in the project file.

Chapter 2
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The ISD51 in-system debugger feature in Keil’s 8051 development tools
provides a complete suite of debug functions for TUSBxxxx. This includes the
following features:

� Single-step through the code
� Set breakpoints
� View/change CPU registers and memory
� Access the special function registers (SFRs)

ISD51 is available in Keil’s C51 environment, version 6.23 and later. It is
available only in the PK51 Professional Developer’s Kit.

Keil provides full documentation for the feature, and this documentation
should serve as the ultimate reference. For more details on ISD51 operation
and additional features, see http://www.keil.com.

Topic Page

3.1 Operation 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Resource Requirements 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.3 Limitations 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 3
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3.1 Operation

Use of ISD51 is straightforward.

1) Copy the ISD51.A51 and ISD51.H files, provided by Keil, to your project
folder.

2) Add ISD51.A51 to the µVision2 project.
3) Add ISD51.H to the C module that contains the main C function.
4) Check the configuration settings in ISD51.H and modify them if necessary.
5) Add serial port and baud rate initialization code for the on-chip UART to

your C main function.
6) Add an appropriate ISD51 startup function to your C code.

With ISD51, a serial interrupt function for the TUSBxxxx UART is added to your
user program. When code is executed with the µVision2 debugger, the 8052
enters this interrupt function. While program execution is stopped, the 8052
program runs only the ISD51 interrupt, allowing communication with the
debugger. When the debugger commands the interrupt function to resume,
the 8052 exits the ISD51 interrupt function and executes the user program.

Code execution can be controlled using software breakpoints. If breakpoints
are set, the 8052 enters the interrupt routine after each instruction, which
checks whether a breakpoint address has been reached. If so, it connects to
the µVision2 debugger; otherwise, it returns execution to the program.

3.2 Resource Requirements

ISD51 requires some of the system resources to execute:

� One of the on-chip UARTs
� About one-half Kbyte program code
� Six bytes stack space
� One byte of IDATA RAM
� Two bytes of IDATA RAM for each software breakpoint, defined top down

from 0xFF

An effect of running ISD51 is a slowdown in execution speed. Software
breakpoints, when used, slow execution on the order of 100×. For portions of
code that are negatively affected by this slowdown or are speed-critical, ISD51
can be enabled/disabled programmatically, thereby allowing selective use of
the feature.



Limitations

3-3In-System Debugging Using Keil’s ISD51 Feature

3.3 Limitations

The ISD51 feature has a few limitations:

� Code banking is not supported.
� PDATA variables cannot be reviewed.
� Breakpoints and single-stepping do not work in interrupt service routines.
� Only part of the SFR can be changed in the ISD debugger; see ISD51.A51

for the details.
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This chapter contains a source code listing for each C routine and header file
used in TUSB2136/TUSB3210/TUSB3410/TUSB5052 firmware debugging.

Topic Page

4.1 C Source Code 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4.2 Header Files 4-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4
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4.1 C Source Code

4.1.1 VOID rs232Initialization(VOID);

Initialize the 8052 serial interface, including timer mode, baud rate, serial
mode, and so on.

VOID rs232Initialization(VOID)

{

// take care of TMOD, SCON setting, because Timer 0&1 use 
// them together

TMOD &= 0x0F; // Mask Timer 1 high nibble
TMOD |= 0x20; // Set Timer 1 to mode 2 (AUTO RELOAD)
SCON = 0x40; // Set serial port for mode 1

// 11.0592MHz uses & SMOD = 0, 24MHz or above uses & SMOD 
// = 1

PCON = 0x80; // Set SMOD = 1
TH1 = RS232_BAUDRATE; // reference header
TR1 = 1; // enable Timer 1
TI = 1; // Set Transmit Interrupt flag 1 

// to transmit ready
RI = 0; // Set Receive Interrupt flag 0 

// to receive ready

}

4.1.2 VOID rs232PutChar(BYTE bData);

Send an unsigned character to the 8052 serial interface. Based on this routine,
you can create a print string routine and call the C standard library sprintf() to
do any translation.

VOID rs232PutChar(BYTE bData)

{

while(TI!=1); // wait until last byte transfer
// complete

TI=0; // clear Transmit Interrupt flag
SBUF=bData; // transmit c to 8052’s Serial Buffer

}

4.1.3 VOID rs232PutHex(BYTE bData);

Send two hexadecimal digits to the 8052 serial interface.

VOID rs232PutHex(BYTE bData)

{

BYTE hexValue;
hexValue = (bData & 0xF0)>> 4;
if(hexValue < 10 )

rs232PutChar(hexValue + ’0’);
else

rs232PutChar(hexValue + 55);
hexValue = (bData & 0x0F);
if(hexValue < 10 )

rs232PutChar(hexValue + ’0’);
else

rs232PutChar(hexValue + 55);
}
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4.1.4 VOID rs232PutString(char *str);

Send a string which is terminated by \0 to the 8052 serial interface.

void rs232PutString(char *str)
{

while(*str != ’\0’) rs232PutChar(*str++);

}

4.1.5 char rs232GetChar(void);

Get one byte from the 8052 serial interface.

char rs232GetChar(void)
{

while(!RI);
RI = 0;
RETURN (SBUF);

}
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4.2 Header Files

4.2.1 RS232DBG.h

#ifndef _RS232DBG_H_
#define _RS232DBG_H_
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Include files                                          |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Function Prototype                                     |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
VOID rs232Initialization(VOID);
VOID rs232PutChar(BYTE bData);

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Type Definition & Macro                                |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
// replace follow as desire baud rate
#define RS232_BAUD RATE BAUD4800_12000

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Constant Definition                                    |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
// 11.0592MHz & SMOD = 0
#define BAUD4800_11059 256−(28800/4800)  // 250
#define BAUD9600_11059 256−(28800/9600)  // 253

// 24, 48, 96MHz & SMOD = 1
#define BAUD4800_12000 256−(62500/4800)  // 242.9791666
#define BAUD4800_24000 256−(125000/4800) // 229.9583333
#define BAUD9600_12000 256−(62500/9600)  // 249.4895833
// don’t use
#define BAUD9600_24000 256−(125000/9600) // 242.9791666
#define BAUD9600_48000 256−(250000/9600) // 229.9583333
#define BAUD9600_96000 256−(500000/9600) // 203.9166666
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4.2.2 Types.h

#ifndef _TYPES_H_
#define _TYPES_H_

#ifdef __cplusplus
extern ”C”
{
#endif
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Include files                                          |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Function Prototype                                     |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Type Definition & Macro                                |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
typedef char CHAR;
typedef unsigned char UCHAR;
typedef int INT;
typedef unsigned int UINT;
typedef short SHORT;
typedef unsigned short USHORT;
typedef long LONG;
typedef unsigned long ULONG;
typedef void VOID;
typedef unsigned long HANDLE;
typedef char * PSTR;
typedef int BOOL;
typedef double DOUBLE;
typedef unsigned char BYTE;
typedef unsigned char * PBYTE;
typedef unsigned int WORD;
typedef unsigned long DWORD;
/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Constant Definition                                    |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
#define YES 1
#define NO  0
#define TRUE  1
#define FALSE 0
#define NOERR 0
#define ERR   1
#define NO_ERROR 0
#define ERROR    1
#define DISABLE 0
#define ENABLE  1

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| End of header file                                     |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
#ifdef __cplusplus
}
#endif
#endif /* _TYPES_H_ */
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