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ABSTRACT

This application report provides a system-level functional description of the bq78PL114 circuitry and
describes recommended system design and printed-circuit board layout techniques to ensure best
performance.
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1 Introduction

The purpose of this document is to communicate the important technical details to design engineers
creating Battery Management Units (BMU) based on the bq78PL114 controller by Texas Instruments. This
allows the designer to make application-specific decisions regarding the design of the BMU printed-circuit
board (PCB) and pack construction. The report includes system level design, BMU subcircuit descriptions
and PCB design and layout guidelines. The example system consists of a four-series cell pack. These
recommendations can be applied to high-number-series cell count where one or more bq76PL102
dual-cell, Li-ion battery monitors are added.

CAUTION

Two firmware versions are available for the bq78PL114. The differences in
circuit design between the two versions are subtle. The orderable device is
called bq78PL114 and includes firmware (FW) 4452 installed. The bq78PL114
can be upgraded by the user to FW5000 and then is referred to as
bq78PL114S12. The part name bq78PL114 is used when common features are
described. Differences are identified by the use of separate part numbers. The
major differences that affect hardware design involve maximum cell count,
sense resistor selection, temperature sensor operation, and SOCi display
options. Consult Section 5 for additional information to supplement this
material.

2 System Design

The design of the connections from the BMU PCB to the battery pack is important to ensure the desired
level of performance. The following text discusses power, cell voltage sense, and temperature sensor
connections.
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Figure 1. Battery to BMU Power, Cell Voltage, and Temperature Connections

2.1 Battery Power Connections

The connection to the top and bottom of the battery is called BATTERY+ and BATTERY–, respectively.
Both connections require a very low impedance to minimize voltage drop. Typical connection impedances
attempt to equal that of the pack disconnect MOSFETs and current sense resistor. These are typically in
the tens of milliohms. The impedance created by the BATTERY± connections, particularly the inductive
component, can create large voltage swings when connected to high-frequency switched loads. Properly
minimizing this connection inductance reduces the level of transient voltage suppression devices required
on the BMU PCB and throughout the host system.

The bq78PL114 does not connect directly to BATTERY+. The design of the BATTERY+ connection and
related performance is up to the user’s discretion and typical industry practices.

The BATTERY– connection does have a specific design criterion relating to the bq78PL114 operation.
The voltage drop developed along the connection from BATTERY– to the sense resistor must not exceed
100 mV under charge current conditions. This 100 mV includes the voltage drop associated with the
battery wires or straps and PCB copper traces and any PCB connections. The voltage drop just described
is drawn as voltage Vab in Figure 2. Va specifies the connection location of Vss. In other words, the voltage
drop from Vss to the BATTERY- side of the sense resistor is less that 100 mV during charge periods.
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Figure 2. Battery–Connection Voltage Drop Requirements: Vab < 100 mV During Charge

2.2 Cell Temperature Sensing

The bq78PL114 BMU permits individual sensing of cell temperatures using a low-cost dual diode and a
filter capacitor. Dual diode MMBD4148SE by Fairchild Semiconductor and others is the diode that has
been characterized for use with the bq78PL114. Avoid using other diodes because they may have a
different performance curve over temperature.

Pack temperature information is used for gas gauging and safety-monitoring functions. The number of
temperature sensors can vary based on individual application requirements. At least one temperature
sensor measurement point is required for the bq78PL114 BMU to function properly.

Distributing sensors throughout the pack on a per-cell basis has the benefit of being able to detect
extreme temperature fluctuations faster than using a single pack sensor. This can result in the detection
and avoidance of a catastrophic cell failure event before it happens.

Cell temperature sensors can be physically implemented in a few different ways. For instance, a flexible
PCB array can be created to conveniently distribute the sensors throughout the pack without complicated
wire harnesses. This flexible circuit array then can terminate back at the main BMU PCB. This is shown in
Figure 1.

Although temperature sensors are referenced to a cell voltage, VSS or V2, for instance, avoid creating a
temperature sensor design that terminates the cathode of the sensor at the cell tab of its reference. This
creates a large signal loop area that can conduct noise on the temperature sensor signal. The
recommended method is to have both sensor signal lines travel closely in parallel from the bq78PL114 all
the way to the measurement location (cells). The best way to do this is to include both the sensor source
(XT1, 2, 3, or 4) and the return (VSS or V2) on the temperature sensor PCB.

2.3 Cell Voltage Sense Connections

Measurement accuracy of individual cell voltages has a direct impact on BMU performance. Cell voltages
are used to determine certain gas gauging parameters as well as determine fault and safety conditions.
Monitoring these critical voltages requires a physical connection to each cell terminal that ensures highest
measurement accuracy. Any voltage drop induced by the method and/or physical location of the
connections to the cells is interpreted as a part of the total cell voltage.

Highest accuracy cell voltage sensing requires connections to the cell terminals that minimize the series
voltage drop due to battery current. This is commonly referred to as a Kelvin Connection (see Figure 3).
For optimum performance in almost all applications, the bq78PL114 BMU requires n+3 connections,
where n is equal to the number of series connected cells in the pack. The physical location of the
connection point in the pack usually has the most impact on cell voltage accuracy. See Figure 3.
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Figure 3. Schematic of Battery Sense Connections and System Impedances

Consider the ideal case where CELLs 1–4 always have the same internal impedance and the impedances
shown as R1– R8 also are equal and approach zero. (The impedances in the diagram are shown as
lumped parameters. Physical battery packs have connections that typically have uniformly distributed
impedances.) All the cell voltage measurements are of equal value at any battery current in this ideal
case. Practical designs strive to mimic the ideal case but fall short by some degree. Impedances R0 and
R9 usually have values that are higher than R1–R8 due to physical and possibly material cost constraints.

The impedances R1–R8 produce the undesirable effect of increasing the measured cell voltages during
charge and lowering the measured cell voltages during discharge. Observe the following simple analysis
(Figure 4).

Figure 4. Effect of Impedance on V1 Voltage Measurement
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The measured voltage at cell 1 is determined to be:

(1)

The sign of battery current is positive during charge: Battery Current (IB = +I).

(2)

This shows that the impedances R1 and R2 result in a positive cell voltage error. The sign of the battery
current is negative during discharge: Battery Current (IB = –I). So, using this in Equation 1 results in,

(3)

This shows that the impedances R1 and R2 contribute to a negative cell voltage error during battery
discharge.

In almost all cases, the middle cells are connected with a short length of metal strapping. For these, locate
the cell sense point in the middle of the metal strap as shown in Figure 1. This splits the voltage drop due
to the strap impedance equally between the two cell voltage measurements. Equalizing the cell voltage
error between cells due to strap impedance ensures the best discharge and charge performance at the
pack level. This can be done, for example, by making impedances R1 to R8 in Figure 3 all equal and as
close to zero as possible.

The impedance of the Kelvin sense wire connection is not considered here because the current flowing in
these connections is usually many orders of magnitude lower than the battery current and produces
negligible errors. In addition, cell voltage measurement does not occur during the time when
PowerPump™ balancing is active.

Here is a small case study of trade-offs in system design:
It may seem advantageous to minimize the number of connections for the sake of cost. For instance,
the BATTERY+ connection is at the top cell in the stack and passes load current to the BMU circuit to
be switched on/off by the pack disconnect MOSFETs. Material cost can be saved by using this single
connection also as the top cell input to the bq78PL114 (pin V4) in place of a second, Kelvin-style
connection. The resistive and inductive drops that are seen by this load-carrying connection (wire or
strap) can be in the range of 10 s to 100 s of millivolts. As a result of this cost-saving measure, the top
cell voltage reading can have a voltage measurement offset proportional to pack current. Some
low-current applications may produce a tolerable error.

3 Circuit Description

Two reference schematics are used to demonstrate the functionality of the bq78PL114. One is based on
firmware 5000 and is referred to as the bq78PL114S12. The second is based on firmware 4452 and is
referred to as bq78PL114. Both schematics appear in Appendix A. See the reference schematics and the
bq78PL114 data sheet for recommended component values when not listed in the circuit descriptions.

3.1 Device Ground Connection (VSS)

The ground reference for the bq78PL114 is VSS, located on pin 48, as well as the metal pad under the
QFN-48 package. This is likely the most important circuit net in the BMU. VSS must be connected directly
to the voltage reference of the lowest cell in the battery. See the preceding discussion on cell connections
for details. A separate connection point must be used to bring this VSS reference to the BMU circuit. It is
not recommended to tap off of the BATTERY– PCB connection to make the VSS connection.
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3.2 Power to Device and Decoupling Capacitors

The four pins labeled V1, V2, V3, and V4 are used for cell voltage sensing as well as powering the
bq78PL114. Unused cell inputs must be shorted to the connection below it. Each cell input requires a
capacitance local to the bq78PL114 to provide power supply decoupling. Typical low ESR, low-cost,
ceramic SMD capacitors are suitable in this application.

3.3 VLDO Circuits

Two internally generated reference voltages called VLDO1 and VLDO2 are brought external for
connection to bypass capacitors. VLDO1 is referenced to VSS and VLDO2 is referenced to V2. A local
capacitance is required across each VLDO pin for correct operation. Typical low ESR, low-cost, ceramic
capacitors are suitable in this application. VLDO1 can be used to provide power to external circuits, such
as logic circuits, requiring only a few milliamps of current.

3.4 Reset Circuit

The hardware reset input of the bq78PL114, RSTN, is an active-low type input. The signal requires an RC
filter network connected to VLDO1 to maintain a stable, high-logic level to the device during operation.
The RC filter time constant primarily depends on the level of noise that can be exposed to the VLDO1
circuit net in each specific application.

3.5 PowerLAN™ Circuit

The dual cell-monitoring circuitry inside the bq78PL114 needs to be capacitively coupled to the internal
gateway controller of the bq78PL114 to create an internal PowerLAN™ network (see Figure 5).

Figure 5. PowerLAN™ Circuitry

First, the SDO0 pin is pulled up to VLDO1 through a 100-kΩ resistor. This resistor initializes the bus after
a device reset. Then, each PowerLAN™ node is connected through a 1000-pF capacitor. This allows
circuitry of different reference voltages to communicate.

Larger series cell count systems require that the P-LAN pin be capacitively coupled up to an external
bq76PL102 through a 1000-pF capacitor to expand the PowerLAN™ network to above four cells.
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3.6 Current Sense for Gauging and Safety

The current sense circuits monitor the battery current via a sense resistor for the purposes of gas gauging
and safety.

Figure 6. Current Measurement Circuit

A voltage in the millivolt range is generated across the sense resistor that is proportional to the discharge
or charge current. The generated voltage is sampled at inputs CCBAT and CCPACK and converted to an
instantaneous current value and coulomb reading by the bq78PL114. The CCBAT and CCPACK pins
must each have a nominal 4.7-kΩ series resistor for signal conditioning. This input may also need a
differential filter capacitor depending on the frequency content of the sampled signal. The digital sampling
frequency of the gas gauge is approximately 13 kHz. Choose a capacitor value that provides an
appropriate level of attenuation of signals at this frequency to avoid signal aliasing.

The voltage drop across the sense resistor is also monitored by the bq78PL114 at inputs CSBAT and
CSPACK to provide SmartSafety™ features like short-circuit protection and others. These fast-acting
inputs have user-configurable trip-delay-times and consequently do not require any signal filtering.

The choice of sense resistor type has an influence on BMU current measurement performance. The
FW4452 permits the use of a 5-mΩ resistor. In FW5000, the value of the sense resistor is programmable
by the user over a wide range of values. A ±1% tolerance resistor is recommended for most applications.
Also, the resistor’s temperature coefficient (ppm/°C) causes the resistance, and consequently the voltage
measured, to change as the temperature changes. A resistor with a low-temperature coefficient is less
influenced by changes in ambient temperature. System-level calibration of battery current via the
bqWizard™ or similar software is then performed prior to use to achieve measurement performance
values listed in bq78PL114 data sheet.

3.7 Pack Disconnect Switches and Control

Pack disconnect switches are needed to block battery current in both directions — charge and discharge.
The intended circuit topology to do this is two P-channel MOSFETs in a common drain configuration. See
Figure 7 for details.
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Figure 7. Pack Disconnect Switches

The discharge and charge control switches are discussed first. The precharge switch is discussed later.

A description of how the bq78PL114 controls charge, discharge, and precharge current is shown in
Table 1. Logic levels are HIGH = VLDO1 and LOW = VSS. The table shows the logic used to control each
state independently. All possible operating states are not shown. For example, a valid operating state
occurs where discharge current is allowed to flow, and the charge switch is either HIGH or LOW.

Table 1. Pack Disconnect Control Summary

DSG (1) CHG (1) PRE (1)

Stop Discharge LOW X X

Allow Discharge HIGH X X

Stop Charge X LOW X

Allow Charge X HIGH X

Stop Precharge X X LOW

Allow Precharge X X HIGH
(1) X = May be HIGH or LOW.

Important design criteria for the selection of the switches are series resistance, called RDSOn, power
dissipation, and switching time, particularly turnoff time. The power loss in the switch circuit is entirely up
to the discretion of the designer. An RDSOn rating of less than 10 mΩ is desirable.

The turnoff time of the discharge switch is of particular importance because it needs to stop fault
conditions, like a short circuit, quickly before any damage to the BMU, external equipment, and/or the
battery occurs. Because RDSOn is generally inversely proportional to gate capacitance and consequently
turnoff time, additional steps were taken in the gate drive circuit to achieve a fast turnoff time. This refers
to the use of JFETs Q8 and Q11. This topology can achieve turnoff times in the 10s to 100s of
microseconds for MOSFETs having 1000s of picofarads of gate capacitance (Ciss). All of the resistor
values can be adjusted away from the nominal values listed to achieve different levels of current
consumption and switching performance.

The precharge switch is used to provide a conditioning charge current to a depleted battery. This switch
has much lower performance standards when it comes to turnoff time and RDSOn rating compared to the
discharge and charge switches. The circuit centered around MOSFET Q16 is controlled by the bq78PL114
to be active up to approximately 3 VDC per cell. After this point, the full-charge current is applied through
the charge switch. This performance is user configurable through a programmable parameter (precharge
voltage).
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A design consideration of the precharge switch circuit is that it be operational when the bq78PL114 is in
shutdown mode so that it provides the conditioning charge current specified by the cell manufacturer
(typically C/20 to C/10 A). The PRE pin is high Z in shutdown mode. Given the logic of the PRE pin, an
N-channel MOSFET was used to achieve this function. It may be necessary, particularly in systems that
are four series cells and higher, to add a Zener diode to clamp the voltage across the gate to source
terminals of the precharge MOSFET. This can be seen in Figure 7 as the device labeled ZR3. A heavily
depleted battery can be at 2 V/cell, whereas the charger voltage is at 4.2 V/cell. The gate-to-source
voltage in a 12-series cell system can momentarily be as high as [(4.2 - 2) x 12] = 26.4 VDC. This is
typically in excess of the VGS rating of many low-cost N-CH MOSFETs.

The PRE pin is set high to enable precharge. Assuming that the bq78PL114 does not shut off precharge,
the gate threshold voltage (Vgsth) of the N-channel MOSFET determines when the device can no longer
provide precharge current. For instance, a typical VGSth of 2 VDC means that precharge current is available
from a battery voltage from zero up to within 2 V of the charger voltage.

Resistor R18 sets the maximum precharge current. The maximum precharge current occurs when the
battery is at zero volts and the charger voltage is applied. Note, it is generally not recommended to let the
battery voltage go to zero voltage for any appreciable length of time.

3.8 SPROT (Fuse) Control

The SPROT pin is an active-high output pin that is at the VLDO1 logic level, 2.5 V (see Figure 8). This
output is set high when the safety logic of the bq78PL114 determines that a condition(s) exists whereby
the best course of action is to permanently disrupt the flow of battery current. The SPROT pin is intended
to drive a buffer circuit which in turn activates a chemical fuse, trigger a crowbar circuit, or simply provide
a logic signal to another battery power control mechanism. Notice that a solder bridge was added between
the fuse and the switch (Q5). This allows circuit testing of the fuse blow circuit in production without
actually opening the fuse. After testing is complete, the solder bridge is closed prior to shipment.

Figure 8. Chemical Fuse Circuit

The chemical or thermal fuse option is commonly available in applications up to maximum voltage of 32
VDC and currents up to 12 A. Higher power applications requiring the ability to activate a fuse need an
alternative approach such as using a high-power device (TRIAC perhaps) to crowbar (short-circuit) the
battery fuse to disrupt battery current. Details of this circuit are not discussed in this report.

3.9 PowerPump™ Cell Balancing

The Texas Instruments application report PowerPump™ Balancing (SLUA524) provides a detailed
explanation of the active cell-balancing circuitry. The cell-balancing circuitry in both reference designs is
configured to achieve 75 mA to 100 mA of average balancing current. The FW5000 has the ability to
make adjustments to the cell-balancing performance through user configuration. The FW4452 is fixed at
one level of performance.
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Device power for the bq78PL114 and the bq76PL102 is sourced from certain cell voltages within the
battery. This creates a current drain on some cells and not others, typically in the 100s of µA during active
mode. It is recommended that the PowerPump™ cell balancing be activated in all applications to
safeguard against this minor current draw.

3.10 SOCi Display and Pushbutton

The relative state of charge of the pack can be visually indicated to the user if desired. If no display is
desired, do not connect to the display-related pins (LED1-5, LEDEN, PSH, BP, TP, and FIELD). The SOCi
(State of Charge indication) display is commonly implemented using five LEDs. The bq78PL114S12 can
support a segmented LCD or a segmented EPD. In the case of the LED display, a pushbutton is used to
activate the LEDs. The LCD and EPD do not use the pushbutton to activate the display.

3.11 Pushbutton/LED Enable (Pin 31)

Operation of pin 31 depends on the firmware installed in the bq78PL114. In the case of the FW5000 for
bq78PL114S12, this pin is a straight-forward, active-low pushbutton input. When it is pressed, the SOCi
LEDs illuminate to show state of charge.

In the case of the bq78PL114 with FW4452, this pin has two uses. First, it is a capacitively sensed,
active-low pushbutton input to activate the SOCi LED display. Capacitor C4 in Figure 9 must be 0.1 µF for
proper operation of the circuit. Second, it is an LED enable output that is held high (VLDO1 level) to shut
off transistors Q14 and Q17 and consequently any LED indication during temperature measurements.
Temperature measurements occur approximately every second. Without the LEDEN function, LED1 and
LED2 blink during temperature measurements. Temperature multiplexing in the bq78PL114 (FW4452) is
explained in the temperature sensor subcircuit section that follows.

Figure 9. Pushbutton Circuit and LED SOCi Display for bq78PL114 With FW4452

3.12 LEDs

The state of charge of the pack (SOCi) is available on the five LED pins. Each pin is an open-drain output
that is current limited. Each LED output is pulled to ground to illuminate the LED connected to it.
Depending on the aesthetic requirements of the application, a common anode current-limiting resistor, like
R2 shown in Figure 9, may be needed to reduce the brightness of the LEDs. The LED pins can tolerate up
to 5 V, so powering the LEDs from cell 1 voltage affords a low component-count solution.
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The LED SOCi display circuit for the FW5000 is shown in Figure 10. The LED pins and pin 31 are single
purpose and require fewer parts to implement the SOCi and temperature sensor functions.

3.13 LCD

For details on the LCD option in the bq78PL114S12, see the bq78PL114 data sheet (SLUS850) and
technical reference manual (SLUU330), or contact Texas Instruments application support for assistance.

3.14 EPD

For details on the EPD option in the bq78PL114S12, see the bq78PL114 data sheet and technical
reference manual, or contact Texas Instruments application support for assistance.

Figure 10. LED-Based SOCi Indicator Circuit Using bq78PL114S12 With FW5000

3.15 Temperature Sensors

The circuit design for the two versions of the bq78PL114 relating to the temperature sensors are different.
Default temperature sensor configurations for FW4452 and FW5000 are summarized in the Table 2.

Table 2. Temperature Sensor Mapping

FW4452 FW5000
Temperatures bq78PL114 bq78PL114S12

Anode / Cathode Anode / Cathode

Cell 1 XT1 / LED1 XT1 / VSS

Cell 2 XT2 / LED1 XT2 / VSS

Cell 3 XT1 / LED2 XT3 / V2

Cell 4 XT2 / LED2 XT4 / V2

Device XT3 / V2 Internal

BMU PCB XT4 / V2 Internal

FW4452 in the bq78PL114 does not use the internal temperature sensor for device and PCB temperature
monitoring. Consequently, it dedicates XT3 and XT4 to those functions and multiplexes the four cell
temperatures with the LED1 and LED2 functions. Temperature sensor mapping is fixed in FW4452 and is
user configurable in FW5000. For instance, FW5000 allows all temperature measurement mappings to be
assigned to the single internal sensor for a reduced part count solution.
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Figure 11 shows a side-by-side comparison of the two temperature sensor circuits. Temperature
sensor/LED multiplexing is on the left.

Figure 11. Temperature Sensor Multiplexing vs Nonmultiplexing (S12)

3.16 SMBus

The SMBus interface is used to communicate with a host device in a smart battery style implementation
during normal operation. It is also used to configure the device during production and download firmware
in the case of the bq78PL114S12. The Zener diode and series resistance on each pin is intended for ESD
protection if the connector is going to be exposed in the application.

Figure 12. SMBus Interface Circuit

3.17 External FET Control Interface (EFCIx)

The EFCIx pins (EFCID, EFCIC) are inputs that allow the host system to override the status of the pack
disconnect switch control pins CHG and DSG. The signal polarity for these pins is user configurable via a
control register. Figure 13 shows a recommended design for the active-high polarity setting. The Zener
diode and series resistance on each pin is intended for ESD protection if the connector is going to be
exposed in the application. These inputs also may be used during production testing to verify operation of
the pack disconnect switches. A single, high-value resistor must be used to pull down both pins when not
in use.
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Figure 13. EFCIx Interface Circuit

3.18 ESD/Transient Protection

ESD protection capacitors are located in two areas of the BMU circuit. The purpose of the capacitors in
both cases is to route ESD pulses to the high capacitance of the battery to be attenuated. First, two series
capacitors are located differentially across the PACK+ and PACK– connections. Second, two series
capacitors are located in parallel to the pack disconnect switches. A pair of series capacitors is used in
place of a single capacitor to avoid a single fault possibility.

The level of ESD protection required varies based on application. In general, any pin of the bq78PL114
that may be exposed to ESD pulses from the outside must have some level of protection beyond the
intrinsic protection of the device.

4 Printed-Circuit Board Layout Recommendations

The typical PCB layout for portable power applications requires high density and high performance at a
minimum cost. The following PCB layout guidelines can assist in achieving these goals. The underlying
layout design goals are:

• Separate the noisy, high-power signals from the critical µA/mV precision signals of the measurement
system.

• Establish a star ground for VSS that minimizes the noise of the system ground (GND).
• Provide sufficient thermal dissipation for power components.
• Use techniques that minimize the affects of ESD strikes.

The PCB layout figures consist of partially or incrementally laid-out circuits. The intention of each figure is
to demonstrate one or more layout recommendations. The conclusion of the report shows a completed
layout that demonstrates the recommendations.

4.1 Introduction

The BMU circuit contains precision measurement circuitry, high-current disconnect switches, and
high-frequency switching circuits for PowerPump™ cell balancing. A four-layer PCB construction is
generally recommended for most applications to ensure signal integrity. The two additional layers are
usually reserved for large copper planes that can be used for VSS, cell voltages, and passing battery
current. Each application dictates the circuit density required, and this has an impact on the number of
copper layers used.

The QFN-48 package of the bq78PL114 has a center-to-center 0,5-mm pin spacing, approximately 20
mils. Many of the signal levels in the bq78PL114 operate differentially at 5 V or less. Because designs can
go up to 12 cells in series, or over 50 VDC, care must be taken to identify and group the different nets by
voltage level and assign appropriate clearances and widths to each.
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4.2 Single-Point BMU Ground Scheme (VSS)

The ground of the bq78PL114 BMU is called VSS. The PCB layout must be set up so that all VSS signals
return to a single point via a star ground configuration. The location of the star point on the PCB is where
the reference to cell 1 enters the board; see Figure 14. This figure has a portion of the layout obscured to
focus attention on the area under discussion. VSS enters the PCB at the fifth terminal of the connector
labeled CELLS.

Note that the VSS copper plane (green color) does not extend all over the PCB. It is only in areas where
circuitry is referenced to VSS. The VSS plane is purposefully separated from the high-current path of the
system ground net and away from the BATTERY+ net. The PowerPump™ balancing circuitry is located
close to the VSS star ground so that any switching noise and pumping current can be quickly routed to
VSS and off the PCB.

Table 3. PCB Layer Colors

Design Layer Color

Top Side (1) Red

Internal Layer 1 (2) Green

Internal Layer 2 (3) Grey

Bottom Side (4) Blue

Top Silkscreen Black

Board Outline Green

Figure 14. VSS Star Ground and Internal Copper Plane

4.3 VLDO1, VLDO2, and RSTN Nets

The VLDO1, VLDO2, and RSTN nets must be kept local to the bq78PL114. Although VLDO1 and VLDO2
are considered a VDD-like net, it is not recommended to devote a large copper plane to them. Keeping
these nets and their decoupling capacitors as close as possible to the bq78PL114 and using at least
10-mil to 20-mil trace widths up to the pins is all that is required.
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The RSTN net controls the device reset. As such, avoid routing this signal and its filter capacitor far from
the bq78PL114. See Figure 14 for details that show how all of the ancillary components are kept close to
the bq78PL114 to support short-trace lengths.

4.4 PowerLAN™ Signals

In this design, the PowerLAN™ signals (SDIx, SDOx, and PLAN) are local to the bq78PL114 because it is
only a four-cell system. Bus capacitance is not a problem because signal paths are close to the
bq78PL114. When larger series cell count systems are developed, care must be taken to not introduce too
much distributed capacitance on the communication bus. Designs must avoid creating bus capacitance
between devices, bq78PL114 and bq76PL102, that create in excess of 100 pF of load capacitance.

4.5 Current Sense Circuit Layout

Figure 15 shows the recommended method to connect the bq78PL114 current sense circuitry to the sense
resistor R3. Notice that the two signal lines from R28 and R27 connect to R3 on the inside of the SMD
pads. This is also referred to as a Kelvin connection – like the cell tab connections for cell voltage
measurement. This connection has virtually no additional voltage drop due to load current running through
PCB copper.

Consider that a 1-oz ounce copper PCB has a resistance per square mil of approximately 0.5 mΩ. So,
with a load current of 30 A, a sense resistor of 1 mΩ and 1 square mil of copper added to the resistance
of the resistor, the current reading can be as high 45 A, instead of 30 A. System level calibration of the
current measurement circuit, through the bqWizard™ or similar software, is a regular part of BMU
preparation. Although this can calibrate out copper resistance, it is still a highly recommended practice to
use a Kelvin connection for current sense.

The signal paths for the two current sense traces (CCBATT and CCPACK) must run parallel to each other
so that they create the smallest loop area. This minimizes the susceptibility to radiated noise coupling onto
this millivolt level signal.

The CSPACK and CSBATT signals that measure current for the SmartSafety™ features must also create
a minimum loop area when routed. It is best to have the CSBATT and CSPACK signals intersect the
CCBATT and CCPACK signals just after the 4.7-kΩ resistors (R27 and R28), rather than tracking four
traces all the way to the sense resistor R3.

Although CSPACK is really the system ground (GND), it is to be routed as shown in Figure 15. Do not
connect any other GND trace to the trace that connects CSPACK to the GND side of R3. The reason is
that any current flowing in the CSPACK trace can show up as an error in the current reading made
between CSPACK and CSBATT.

Lastly, the high-current loop formed by the pathway from BATTERY± to PACK± is designed so that it does
not encompass the bq78PL114. This is accomplished by positioning the sense resistor R3 and its
connections to BATTERY– and PACK– above the bq78PL114 circuitry.
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Figure 15. Layout of Current Sense Resistor and Sense Signal Lines (CCBAT, CCPACK, etc.)

4.6 System (Pack) Ground Reference (GND)

The System Ground net (GND) carries battery current and is the system-side reference for signals like
SMBus and EFCIx. The connection to this net is commonly called PACK–. Minimizing impedance of this
net results in low heat generation and a lower voltage drop from battery to system. This net is one of the
primary nets used to direct ESD pulses away from the sensitive measurement circuitry to either the battery
or back into the host system for dissipation. See Figure 15 to see how the GND net is routed from the
sense resistor R3 to the PACK– connector.

4.7 Cell Voltages

The cell voltages are monitored by the bq78PL114 and also used to power the device. The connection of
V1, V2, V3, and V4 to the device must be low impedance. See Figure 14 for an example of direct routing
of these cell voltages to the bq78PL114. Later, these traces are adjusted to accommodate the
PowerPump™ balancing circuitry. Measurement of cell voltages and temperatures and PowerPump™ cell
balancing occur during mutually exclusive intervals. Cell balancing currents can be run on the same path
as the V1–V4 input signals as a result and permits denser system designs.

4.8 Temperature Sensor Layout and Routing

Each temperature sensor signal pair, for instance XT1 and VSS, must be routed so that they enclose the
minimum loop area. See Figure 16 for a close up of this signal routing. This minimizes the susceptibility to
radiated noise signals generated elsewhere in the system. The designer must determine if the VSS
ground plane is sufficient to act as the return path for the XT1 and XT2 currents or if separate VSS traces
must be created to run alongside of the XT1 and XT2 signals to act as a shield.
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Figure 16. Layout of Temperature Sensor Signals

The XT3 and XT4 signals are returned through the V2 net. These must have a separate, parallel V2 return
trace flanking them because it is unlikely that a significant V2 copper plane is on the BMU PCB to act as
the return path. As shown in Figure 16, the V2 return for XT3 and XT4 travels alongside these signals and
terminates at the local V2 connection of the bq78PL114, not back at the CELLS connector.

These techniques also hold for any remote sensors that may be designed using discrete wires, flexible
PCB or rigid PCB.

4.9 PowerPump™ Cell-Balancing Circuitry

The PowerPump™ balancing circuitry is added to the layout. Figure 17 shows each layer of the layout,
excluding the pack disconnect circuit section. Some adjustments to temperature sensor routing, VSS
copper planes, and cell voltage signal routing to the bq78PL114 were made from above. Copper pours
were created for each cell voltage to reduce signal path impedance in the balancing circuit.

Table 4. Cell Voltage Net Colors of Figure 17

Circuit Net Color

VSS Green

V1 Light Blue

V2 Grey

V3 Purple

V4 Brown

PCB layout of the PowerPump™ cell-balancing circuitry must follow the same rules that apply to typical
high-frequency switching power converter circuits. The pulse-width modulated circuit signals have square
edges and consequently have high-frequency components. The inductor signals in particular carry peak
currents that are many times higher than the average pumping current. Peak inductor currents depend on
the inductor value.

To minimize the generation of noise and make the circuit as efficient as possible, the PowerPump™ circuit
components must be placed and routed so that the loop area created by the inductor, capacitor, and
transistor signal loop is as small as possible. The widest possible traces must be used to minimize voltage
drop. The best method of connecting the cell voltages to the PowerPump™ circuit is through a wide
copper plane, on inner or outer layers, that is local to the MOSFET/inductor/capacitor current loop. This is
demonstrated in Figure 17.

The PowerPump™ control signals, P1N, P2S, P3S, P3N, and P4S, must have the shortest possible path
to the gate of their respective MOSFET. The return path for the control signal is best accomplished using
a copper plane connected to the signal reference. The reference for P1N, P2S, and P2N is VSS. The
reference for P3S, P3N, and P4S is V2.
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Heat dissipation in this circuit is generally not a concern due to the use of the high-frequency switching
topology and low on-resistance MOSFETs. As an example, a MOSFET with an RDSon of 0.25 Ω and
junction-to-ambient resistance of 130°C/W operating at average current of 0.250 A only has a temperature
rise of a few degrees. The high efficiency/low heat dissipation of this cell-balancing circuit, compared to an
equivalent resistive bleed balancing circuit, supports a very dense layout. This is an advantage in high
cell-count systems.

Figure 17. Top, Inner 1, Inner 2, and Bottom Layers With PowerPump™ Circuit Added
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4.10 Pack Connections to BMU

Connections of BATTERY+, BATTERY–, PACK+, and PACK– to the BMU must be substantial. The typical
connection rating needs to continually pass tens of amperes (if not more) with a low voltage drop and low
heat dissipation. A common technique is to solder the wire or strap directly to the PCB and then to have
two or more copper planes connect to the connection point. These connections, if positioned near the
pack disconnect switches, can be used to pull heat away from the MOSFETs.

4.11 Pack Disconnect Switches

Because the pack disconnect switches carry battery current, they obviously need to be laid out to
minimize impedance. Any impedance diminishes pack efficiency by reducing run time under load.
Figure 18 through Figure 22 show a completed layout that incorporates the Pack Disconnect switches
(MOSFETs).

The power path through MOSFETs Q10 and Q13 shows the use of copper pours on multiple layers to
carry current at low impedance. Stitching vias were used to link the layers together. This provides a robust
connection of the various parallel copper layers. Most designs require the maximum use of board area to
carry battery current.

4.12 Bypass Capacitors

Bypass capacitors C60, C61, C50, and C42 are used to send energy from noise pulses, either ESD or
load transients, around the BMU circuitry and to either system ground or to the battery for attenuation.
C60 and C61 are across the MOSFETs, and C50 and C42 are across the PACK connection. Physical
location and layout of these capacitors is important. Any impedance reduces the effectiveness of the
capacitors. Use wide copper traces or copper planes to rout these capacitors. For example, C42 is
connected to GND through a copper plane on the bottom layer. See Figure 21 for details of this example.

4.13 Conclusions

NOTE: It is important to note that this application report uses PCB layout figures that were created
for instructional purposes. The fabrication of a physical printed-circuit board was not
performed. The design practices and recommendations herein have been successfully
implemented in other similar BMU designs.

The bq78PL114 BMU layout was presented as a progression to clearly show certain layout techniques
without presenting the reader with multiple layers and traces all at once. Note that some of the design
features of the earlier figures changed in the final layout. The following summary lists some of the
changes.

• Connection between R3 and BATTERY – connection shown in Figure 14 was improved with an
identical copper plane on all layers. These were connected with a field of stitching vias to maximize
effectiveness of parallel planes.

• Connection between R3 and PACK- (GND) connection shown in Figure 14 was improved with an
identical copper plane on all layers. These were connected with a field of stitching vias to maximize
effectiveness of parallel planes.

• The direct traces for cell voltage connections from the CELLS connector to the bq78PL114 were
changed after the PowerPump™ circuitry was added and routed. All four layers were used to create
copper areas for each voltage. These copper areas reduced signal net impedances throughout the
balancing circuit as well as maintaining the connection requirements to the bq78PL114.

• The VSS copper plane was pulled back from underneath the balancing circuitry to allow room for the
cell voltage copper areas.

• Note that the QFN-48 PCB decal of the bq78PL114 has a single oversized via in the center pad to
connect the device to the VSS copper plane. The via was made large to provide a convenient method
for removing the device with a soldering iron tip if damage occurred during experimentation, as well as
a means to re-solder the center pad without using reflow techniques. This large size via is
recommended only in the prototype design stage. The center pad is primarily used to provide a
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connection to VSS, not for thermal dissipation. One standard via in the center of the pad is sufficient to
connect the device to VSS. A via diameter of 0.008 inch reduces the instances of solder paste from
being drawn through the via.

Figure 18. Top Layer of Finished Design

Figure 19. Inner Layer 1 of Finished Design

22 bq78PL114 System Design Guidelines SLUA537–December 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLUA537


www.ti.com Printed-Circuit Board Layout Recommendations

Figure 20. Inner Layer 2 of Finished Design

Figure 21. Bottom Layer of Finished Design
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Figure 22. Drill Drawing

5 References

Related product documentation follows:

1. PowerLAN™ Master Gateway Battery Management Controller with PowerPump™ Cell Balancing
Technology data sheet (SLUS850).

2. PowerPump™ Balancing application report (SLUA524).
3. bq78PL114 and bq78PL114S12 Technical Reference Manual (SLUU330)
4. bq78PL114 8S EVM user’s guide (SLUU335).
5. PowerLAN Dual-Cell Li-Ion Battery Monitor With PowerPump™ Cell Balancing data sheet (SLUS887)
6. Avoiding ESD and EMI Problems in bq20zxx Battery Pack Electronics application report (SLUA368).
7. QFN Layout Guidelines application report (SLOA122)
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Appendix A Reference Design Schematics

Figure 23. Reference Design With Three Series Cells and FW4452
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Figure 24. Reference Design With Four Cells and bq78PL114S12 (FW5000)
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