bq27546-G1

Technical Reference Manual

Literature Number: SLUUB74 May 2015

Contents

Prefa			cription	
			Description	
2	2.1		auging	
	2.1			
			Fast Qmax Update	
			Resistance Update Qualification	
			Fast Resistance Scaling	
		2.1.3	3 · · · · · · · · · · · · · · · · · · ·	
		2.1.3		
			StateOfCharge() Smoothing	
		2.1.4	· · · · · · · · · · · · · · · · · · ·	
		2.1.4	5 · · · · · · · · · · · · · · · · · · ·	
		2.1.4		
			StateOfCharge() Hold at 99%	
			StateOfCharge() Hold at 1%	
			Trace and Downstream Resistance Compensation	
			Imax Calculation	
	2.2		Protection	
			Firmware Protection	
		2.2.1		
			ANALOG SHUTDOWN State	
	2.3		Data Logging Parameters	
	2.4	•	Control Function	
			SHUTDOWN Mode	
			Interrupt Mode	
			Low Capacity	
			Battery Level	
			Safety Conditions	
			Battery Trip Point Interrupt Function	
	2.5		rature Measurement and the TS Input	
	2.6		Charging Features	
			JEITA Charging Profile	
			Charge Suspend	
			Charge Inhibit	
			Full Charge Termination Detection	
	2.7		Modes	
			NORMAL Mode	_
			SLEEP Mode	
			FULLSLEEP Mode	
			HIBERNATE Mode	
	2.8		Control	
			Reset Functions	
			Wake-Up Comparator	
			Flash Updates	
	2.9	Coulor	nb Counter Autocalibration	31

www.ti.com

3	Com	ımunications	33
	3.1	Authentication	
	3.2	Key Programming (Data Flash Key)	
	3.3	Key Programming (Secure Memory Key)	
	3.4	Executing an Authentication Query	
	3.5	HDQ Single-Pin Serial Interface	
	3.6	HDQ Host Interruption Feature	
	0.0	3.6.1 Low Battery Capacity	
		3.6.2 Temperature	
	3.7	I ² C Interface	
	0.7	3.7.1 I ² C Time Out	
		3.7.2 I ² C Command Waiting Time	
		3.7.3 I ² C Clock Stretching	
	5 4	•	
4		Commands	
	4.1	Standard Data Commands	
		4.1.1 Control(): 0x00 and 0x01	
		4.1.1.1 CONTROL_STATUS: 0x0000	
		4.1.1.2 DEVICE_TYPE: 0x0001	
		4.1.1.3 FW_VERSION: 0x0002	
		4.1.1.4 HW_VERSION: 0x0003	
		4.1.1.5 RESET_DATA: 0x0005	
		4.1.1.6 PREV_MACWRITE: 0x0007	
		4.1.1.7 CHEM_ID: 0x0008	
		4.1.1.8 BOARD_OFFSET: 0x0009	
		4.1.1.9 CC_OFFSET: 0x000A	
		4.1.1.10 DF_VERSION: 0x000C	
		4.1.1.11 SET_FULLSLEEP: 0x0010	
		4.1.1.12 SET_HIBERNATE: 0x0011	
		4.1.1.13 CLEAR_HIBERNATE: 0x0012	
		4.1.1.14 SET_SHUTDOWN: 0x0013	
		4.1.1.15 CLEAR_SHUTDOWN: 0x0014	
		4.1.1.16 SET_HDQINTEN: 0x0015	
		4.1.1.17 CLEAR_HDQINTEN: 0x0016	
		4.1.1.18 STATIC_CHEM_CHKSUM: 0x0017	
		4.1.1.19 ALL_DF_CHKSUM: 0x0018	
		4.1.1.20 STATIC_DF_CHKSUM: 0x0019	
		4.1.1.21 SYNC_SMOOTH: 0x001E	
		4.1.1.22 SEALED: 0x0020	
		4.1.1.23 IT ENABLE: 0x0021	
		4.1.1.24 IMAX_INT_CLEAR: 0x0023	
		4.1.1.25 CAL_ENABLE: 0x002D	
		4.1.1.26 RESET: 0x0041	43
		4.1.1.27 EXIT_CAL: 0x0080	
		4.1.1.28 ENTER_CAL: 0x0081	
		4.1.1.29 OFFSET_CAL: 0x0082	
		4.1.2 AtRate(): 0x02 and 0x03	43
		4.1.3 UnfilteredSOC(): 0x04 and 0x05	43
		4.1.4 Temperature(): 0x06 and 0x07	43
		4.1.5 Voltage(): 0x08 and 0x09	43
		4.1.6 Flags(): 0x0A and 0x0B	43
		4.1.7 NomAvailableCapacity(): 0x0C and 0x0D	44
		4.1.8 FullAvailableCapacity(): 0x0E and 0x0F	44
		4.1.9 RemainingCapacity(): 0x10 and 0x11	44

		.1.10 FullChargeCapacity(): 0x12 and 0x13	. 44
		.1.11 AverageCurrent(): 0x14 and 0x15	. 45
		.1.12 TimeToEmpty(): 0x16 and 0x17	. 45
		1.13 FilteredFCC(): 0x18 and 0x19	. 45
		.1.14 UnfilteredFCC(): 0x1C and 0x1D	. 45
		.1.15 Imax(): 0x1E and 0x1F	45
		.1.16 UnfilteredRM(): 0x20 and 0x21	
		.1.17 FilteredRM(): 0x22 and 0x23	
		.1.18 BTPSOC1Set(): 0x24 and 0x25	
		.1.19 BTPSOC1Clear(): 0x26 and 0x27	
		1.20 InternalTemperature(): 0x28 and 0x29	
		1.21 CycleCount(): 0x2A and 0x2B	
		1.22 StateOfCharge(): 0x2C and 0x2D	
		1.23 StateOfHealth(): 0x2E and 0x2F	
		1.24 ChargingVoltage(): 0x30 and 0x31	
		1.25 ChargingCurrent(): 0x32 and 0x33	
		1.26 PassedCharge(): 0x34 and 0x35	
		1.27 DOD0(): 0x36 and 0x37	
		1.28 SelfDischargeCurrent(): 0x38 and 0x39	
	4.2	xtended Data Commands	
		.2.1 PackConfiguration(): 0x3A and 0x3B	
		2.2 DesignCapacity(): 0x3C and 0x3D	
		.2.3 DataFlashClass(): 0x3E	
		.2.4 DataFlashBlock(): 0x3F	
		2.5 BlockData(): 0x40 Through 0x5F	
		.2.6 BlockDataCheckSum(): 0x60	
		.2.7 BlockDataControl(): 0x61	
		.2.8 DODatEOC(): 0x62 and 0x63	
		2.9 Qstart(): 0x64 and 0x65	
		2.10 FastQmax(): 0x66 and 0x67	
		2.11 Reserved – 0x68 to 0x6C	
		2.12 Reserved – 0x6E and 0x6F	
		2.13 Reserved – 0x70 and 0x71	
		2.14 Reserved – 0x72 and 0x73	
		.2.15 AveragePower(): 0x76 and 0x77	
		2.16 AN_COUNTER: 0x79	
		2.17 AN_CURRENT_LSB: 0x7A	
		2.18 AN_CURRENT_MSB: 0x7B	
		2.19 AN_VCELL_LSB: 0x7C	
		2.20 AN_VCELL_MSB: 0x7D	
		2.21 AN_TEMP_LSB: 0x7E	
		2.22 AN_TEMP_MSB: 0x7F	
_	Dete		
5		ash Summary	
	5.1	ata Flash Interface	
		1.1 Accessing The Data Flash	
		1.2 Manufacturer Information Blocks	
		1.3 Access Modes	
	5 0	1.4 Sealing or Unsealing Data Flash	
	5.2	ata Flash Summary Tables	
	5.3	onfiguration Class	
		3.1 Safety Subclass	
		5.3.1.1 Charging Overtemperature Threshold, Delay Time, and Recovery	
		5.3.1.2 Discharging Overtemperature Threshold, Delay Time, and Recovery	. 61

5.3.2 Cha	rge Subclass	
5.3.2.1	Charging Voltage	62
5.3.3 Cha	rge Termination Subclass	62
5.3.3.1	Taper Current, Minimum Taper Capacity, Taper Voltage, and Current Taper Window	62
5.3.3.2	Terminate Charge Alarm Set % and Clear %	63
5.3.3.3	Full Charge Set % and Clear %	63
5.3.3.4	DOD at EOC Delta Temperature	64
5.3.4 JEI7	ΓΑ	64
5.3.5 Data	a Subclass	65
5.3.5.1	Design Voltage	65
5.3.5.2	Cycle Count	65
5.3.5.3	Cycle Count Threshold	65
5.3.5.4	Design Capacity	65
5.3.5.5	Design Energy	65
5.3.5.6	State of Health Load I	66
5.3.5.7	TDD State Of Health Percent	66
5.3.5.8	ISD Current Threshold	66
5.3.5.9	ISD Current Filter	66
5.3.5.10	Minimum ISD Detection Time	67
5.3.5.11	Design Energy Scale	67
5.3.6 Disc	charge Subclass	67
5.3.6.1	State of Charge 1 Set and Clear Threshold	67
5.3.6.2	State of Charge Final Set and Clear Threshold	68
5.3.6.3	Battery Low Set Voltage Threshold, Time, and Clear	
5.3.6.4	Battery High Set Voltage Threshold, Time, and Clear	
5.3.7 Mar	nufacturer Data Subclass	
5.3.7.1	Pack Lot Code	
5.3.7.2	PCB Lot Code	69
5.3.7.3	Firmware Version	69
5.3.7.4	Hardware Revision	
5.3.7.5	Cell Revision	
5.3.7.6	Data Flash Configuration Version	
5.3.8 Inte	grity Data Subclass	
5.3.8.1	All Data Flash Checksum	70
5.3.8.2	Static Chem Data Flash Checksum	71
5.3.8.3	Static Data Flash Checksum	
5.3.9 Lifet	time Data Subclass, Lifetime Resolution Subclass	72
5.3.9.1	Maximum Temperature, Minimum Temperature, Temperature Resolution	72
5.3.9.2	Maximum Pack Voltage, Minimum Pack Voltage, Voltage Resolution	73
5.3.9.3	Maximum Charge Current, Maximum Discharge Current, Current Resolution	
5.3.10 Life	etime Temp Samples Subclass	73
5.3.10.1	Flash Write Count	73
	gisters Subclassgisters Subclass	
5.3.11.1	Pack Configuration Register	74
5.3.11.2	Pack Configuration B Register	75
	Pack Configuration C Register	
	Pack Configuration D	
5.3.12 Life	etime Resolution Subclass	
5.3.12.1	Lifetime Update Time	76
5.3.13 Po	wer Subclass	76
5.3.13.1	Valid Update Voltage	76
5.3.13.2	Sleep Current Threshold	76
5.3.13.3	Hibernate Current/Voltage	77

	5.3.13.4	Full Sleep Wait Time	77
5.4	System Dat	ta Class	77
	5.4.1 Mar	nufacturer Information Subclass	77
	5.4.1.1	Block A and Block B	
5.5	Gas (Fuel)	Gauging Class	
		Efg Subclass	
	5.5.1.1	Load Select	
	5.5.1.2	Load Mode	
	5.5.1.3	Maximum and Minimum Resistance Factor	
	5.5.1.4	Ra Filter	
	5.5.1.5	Resistance Update Voltage Drop	
	5.5.1.6	Fast Qmax Start DOD Percent, Fast Qmax Start Voltage Delta, Fast Qmax Current Threshold	
	5.5.1.7	Fast Qmax End DOD Percent	
	5.5.1.8	Qmax Capacity Error	
	5.5.1.9	Maximum Qmax Change	
	5.5.1.10	Termination Voltage	
	5.5.1.11	Termination Voltage Delta and Fast Scale Start SOC	
	5.5.1.12	Simulation Res Relax Time	81
	5.5.1.13	User-Defined Rate-Current	82
	5.5.1.14	User-Defined Rate-Power	82
	5.5.1.15	Reserve Capacity	82
	5.5.1.16	Maximum and Minimum Delta Voltage	83
	5.5.1.17	Maximum and Minimum Simulation Rate	83
	5.5.1.18	Ra Maximum Delta	83
	5.5.1.19	Trace Resistance	83
	5.5.1.20	Downstream Resistance	
	5.5.1.21	Qmax Maximum Delta Percent	
	5.5.1.22	Qmax Upper Bound Percent	
	5.5.1.23	Delta V Maximum Delta	
	5.5.1.24	Maximum and Minimum Resistance Scale	
	5.5.1.25	Fast Scale Load Select	
	5.5.1.26	Charge Hysteresis Voltage Shift	
	5.5.1.27	Ra Scale OCV Reset Temperature Threshold	
	5.5.1.28	Maximum Allowed Current	
	5.5.1.29	Maximum Current Pulse Duration	
	5.5.1.30	Maximum Current Interrupt Step	
	5.5.1.31		86
	5.5.1.32	•	
	5.5.1.33	Terminate Voltage Valid Time	
		rent Thresholds Subclass	
	5.5.2.1	Discharge and Charge Detection Threshold	
	5.5.2.2	Quit Current	
	5.5.2.3	Discharge and Charge Relax Time	
	5.5.2.4	Maximum IR Correct	88
	5.5.3 Stat	e Subclass	88
	5.5.3.1	Qmax Cell 0	88
	5.5.3.2	Update Status	89
	5.5.3.3	Voltage at Charge Termination	89
	5.5.3.4	Average Current Last Run	89
	5.5.3.5	Average Power Last Run	90
	5.5.3.6		90
	5.5.3.7	Thermal Rise Factor	90
	5.5.3.8	Thermal Time Constant	90

www.ti.com

	5.6	OCV Table Class	91
		5.6.1 OCVa Table Subclass	91
		5.6.1.1 Chemistry Identification	91
	5.7	Ra Table Class	91
		5.7.1 Ra0 Subclass	92
		5.7.2 Ra0x Subclass	93
	5.8	Calibration Class	93
		5.8.1 Data Subclass	93
		5.8.1.1 CC Sense Resistor Gain	93
		5.8.1.2 Coulomb Counter Delta	94
		5.8.1.3 Coulomb Counter Offset	94
		5.8.1.4 Board Offset	94
		5.8.1.5 Internal and External Temperature Offset	95
		5.8.1.6 Pack Voltage Offset	
		5.8.2 Current Subclass	
		5.8.2.1 Filter	95
		5.8.2.2 Deadband	95
		5.8.2.3 CC Deadband	96
	5.9	Security Class	96
		5.9.1 Codes Subclass	
		5.9.1.1 Sealed to Unsealed	96
		5.9.1.2 Unsealed to Full Access	
		5.9.1.3 Authentication Keys	97
Α	Facto	ory Calibration	
^	A.1	General I ² C Command Information	
	A.2	Calibration	
	7 1.2	A.2.1 Method	
		A.2.2 Sequence	
	A.3	Enter CALIBRATION Mode	100
	A.4	Exit CALIBRATION Mode	101
	A.5	CC Offset	102
	A.6	Board Offset	103
	A.7	Obtain Raw Calibration Data	105
	A.8	Current Calibration	107
	A.9	Voltage Calibration	108
	A.10	Temperature Calibration	100
	A.10	•	110
ь		•	
В	GIOSS	sary	112

List of Figures

2-1.	BTP Algorithm Flow	21
2-2.	BTP Configuration with Multiple Thresholds	22
2-3.	BTP Configuration with Shared Thresholds	23
2-4.	BTP Configuration with Separate Thresholds	24
2-5.	JEITA Charging Current Profile	25
2-6.	JEITA Charging Voltage Profile	26
2-7.	Temperature Hysteresis for Charging Current	27
2-8.	Temperature Hysteresis for Charging Voltage	27
2-9.	Power Mode Diagram—System Sleep	29
3-1.	Supported I ² C Formats	35
	List of Tables	
2-1.	SE and HDQ Pin Functions	18
2-2.	SE Pin State	18
2-3.	SE Pin in Interrupt Mode ([INTSEL] = 0)	18
2-4.	HDQ Pin in Interrupt Mode ([INTSEL] = 1)	
2-5.	Interrupt Trigger Events	
2-6.	I _{WAKE} Threshold Settings	31
4-1.	Standard Commands	
4-2.	Control() Subcommands	39
4-3.	CONTROL_STATUS Flags	40
4-4.	Flags Bit Definitions	44
4-5.	Extended Commands	47
5-1.	Data Flash Access	52
5-2.	Data Type Decoder	53
5-3.	Data Flash Summary	53
5-4.	Data Flash to EVSW Conversion	60
5-5.	Data Flash Parameter Unit/Scale Based on Design Energy Scale	67
5-6.	All Data Flash Checksum Exclusions	70
5-7.	All Chemistry Data Checksum Inclusions	71
5-8.	All Static Data Flash Checksum Exclusions	71
5-9.	Pack Configuration Bit Definition	74
5-10.	Pack Configuration B Bit Definition	75
5-11.	Pack Configuration C Bit Definition	75
5-12.	Pack Configuration D Bit Definition	75
5-13.	Constant-Current Model Used When Load Mode = 0	78
5-14.	Constant-Power Model Used When Load Mode = 1	78

Preface

This document is a detailed Technical Reference Manual (TRM) for using and configuring the bq27546-G1 battery fuel gauge. This TRM document is intended to complement but not supersede information in the bq27546-G1 Single Cell Li-Ion Battery Fuel Gauge Data Sheet (SLUSC53).

Formatting Conventions Used in This Document

Notational Conventions

Information Type	Formatting Convention	Example
Commands	Italics with parentheses and no breaking spaces	RemainingCapacity() command
Data Flash	Italics, bold, and breaking spaces	Design Capacity data
Register bits and flags	Brackets and italics	[TDA] bit
Data Flash bits	Brackets, italics, and bold	[LED1] bit
Modes and states	ALL CAPITALS	UNSEALED mode

Related Documentation from Texas Instruments

To obtain a copy of any of the following TI documents TI Web site at www.ti.com.

- 1. bq27546-G1 Single Cell Li-Ion Battery Fuel Gauge with Integrated Protection Data Sheet (SLUSC53)
- 2. HDQ Communication Basics Application Report (SLUA408)
- 3. Theory and Implementation of Impedance Track™ Battery Fuel-Gauging Algorithm in bq2750x Family Application Report (SLUA450)
- 4. How to Generate Golden Image for Single-Cell Impedance Track™ Devices Application Report (SLUA544)
- bq27742EVM Single Cell Impedance Track™ Technology Evaluation Module User's Guide (SLUUAH1)

Trademarks

Impedance Track is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

General Description

The bq27546-G1 fuel gauge accurately predicts the battery capacity and other operational characteristics of a single Li-based rechargeable cell. It can be interrogated by a system processor to provide cell information, such as state-of-charge (SOC), time-to-empty (TTE), and time-to-full (TTF).

Information is accessed through a series of commands, called *Standard Commands*. Further capabilities are provided by the additional *Extended Commands* set. Both sets of commands, indicated by the general format *Command()*, read and write information contained within the control and status registers, as well as its data flash locations. Commands are sent from system to fuel gauge using the serial communications engine, and can be executed during application development, pack manufacture, or end-equipment operation.

Cell information is stored in the non-volatile flash memory. Many of these data flash locations are accessible during application development. They cannot, generally, be accessed directly during end-equipment operation. Access to these locations is achieved by either use of the companion evaluation software, through individual commands, or through a sequence of data-flash-access commands. To access a desired data flash location, the correct data flash subclass and offset must be known.

The fuel gauge provides 64 bytes of user-programmable data flash memory, partitioned into two 32-byte blocks: *Manufacturer Info Block A* and *Manufacturer Info Block B*. This data space is accessed through a data flash interface. For specifics on accessing the data flash, see Section 5.1.2, *Manufacturer Information Blocks*.

The key to the high-accuracy fuel gauging prediction is Texas Instruments proprietary Impedance Track™ algorithm. This algorithm uses cell measurements, characteristics, and properties to create state-of-charge predictions that can achieve less than 1% error across a wide variety of operating conditions and over the lifetime of the battery.

The fuel gauge measures charge and discharge activity by monitoring the voltage across a small-value series sense resistor $(5-m\Omega$ to $20-m\Omega$ typical) located between the CELL+ and PACK+ terminals of the battery pack. When a cell is attached to the fuel gauge and Impedance TrackTM is enabled, cell impedance is calculated based on the selected load profile, open-circuit voltage (OCV) at present depth-of-discharge (DOD), and measured cell voltage under load. In addition, the maximum chemical capacity (Qmax) of the cell is updated after the fuel gauge records two qualified OCV measurements (taken when the battery pack is in a well relaxed state) and the accumulated charge between them is large enough. Update of these parameters allows the fuel gauge to maintain accurate capacity prediction over the life of the battery despite increasing impedance and chemical capacity loss due to Li-Ion aging effects.

External temperature sensing is supported with the use of a high-accuracy negative temperature coefficient (NTC) thermistor with R25 = 10 k Ω ± 1% and B25/85 = 3435 k Ω ± 1% (for example, Semitec 103AT-2) for measurement. The fuel gauge can also be configured to use its internal temperature sensor. The fuel gauge monitors cell temperature in order to accurately compensate open-circuit voltage and resistance values used in remaining capacity simulations as well as provide overtemperature protection for the cell and temperature-dependent charging parameter (for example, JEITA charging profile) reporting to the host system.

To minimize power consumption, the fuel gauge has three different power modes: NORMAL, SLEEP, FULLSLEEP, and HIBERNATE. The fuel gauge passes automatically between these modes, depending upon the occurrence of specific events, though a system processor can initiate entry into some of these modes directly. More details can be found in Section 2.7, Power Modes.

Functional Description

2.1 Fuel Gauging

The bq27546-G1 fuel gauge measures the cell voltage, current, and temperature to determine battery SOC based on outputs from the Impedance Track algorithm (see the *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm Application Report* [SLUA450] for more information). The fuel gauge monitors charge and discharge activity by sensing the voltage across a small-value resistor (5-m Ω to 20-m Ω typical) between the SRN and SRP pins and in series with the cell. By integrating charge passing through the battery, the SOC is accurately adjusted during charge or discharge operation. The total chemical capacity of the battery (Qmax) is found by comparing states of charge before and after applying a discharge that results in charge passed of at least 37% of **Design Capacity**.

The initial **Qmax Cell 0** and **Design Capacity** are set based on values from the applicable cell manufacturers' data sheet multiplied by the number of parallel cells. When a system load is applied, the impedance of the cell is calculated from the OCV, the measured voltage under load, and the discharge current or power as configured in **Load Select**. The **Load Select** parameter can be set to various options such as average discharge current from the last cycle (**Avg I Last Run**), present average discharge current, 14s-filtered **AverageCurrent()**, **Design Capacity** / 5 discharge rate, a user-defined discharge rate written to **AtRate()**, or the value programmed in **User Rate-mA**.

The **Load Mode** parameter extends this further by supporting the same options with respect to power instead of current. During battery discharge, the fuel gauge simulates an iterative discharge based on the selected load profile and sums the resulting charge it takes to reach Terminate Voltage, the charge passed since the last OCV measurement, and the starting charge passed that is required to reach the last OCV point in order to determine *FullChargeCapacity()*, which is the total capacity that can be extracted from a fully charged battery based on the present load profile and temperature. The predicted capacity left in the battery, or *RemainingCapacity()*, is simply the summed charge from present SOC to Terminate Voltage as determined by the simulation result. The fuel gauge uses the battery impedance and OCV profiles, Qmax, and present SOC to achieve this accurate prediction.

During battery charge, the fuel gauge coulomb counts up from where the last discharge ended and stores the battery voltage once charge termination is detected ($\it Vat Chg Term$) in order to compute the depth-of-discharge (DOD) at end of charge (DOD@EOC). This provides a more accurate 100% SOC reference point for deriving starting charge passed (Qstart) since most systems do not charge the battery to absolutely full. In addition to $\it RemainingCapacity()$ and $\it FullChargeCapacity()$, the fuel gauge also reports uncompensated (that is, <C/20) versions of capacity in $\it NominalAvailableCapacity()$ and $\it FullChargeCurrent()$ | < $\it Quit Current$ for $\it Chg Relax Time$ or $\it Dsg Relax Time$, depending on previous state), the fuel gauge waits 60 seconds before beginning to take OCV measurements in order to check that the battery is in a well-relaxed state ($\it dV/dt < 1 \mu V/s$) and to update the reported SOC every hour (although accumulated charge can result in change to SOC between these updates).

Once the dV/dt prerequisite is met, additional OCV measurements are taken every 100 seconds thereafter and can be qualified for use in a Qmax update if additional criteria are fulfilled. More specifically, measurements must have been taken within the supported temperature range between 10°C and 40°C and outside of the flat region of the battery voltage curve (varies based on chemistry). If two DOD points (that is, DOD0 and DOD1) are available from two separate relaxation cycles and the accumulated coulomb count between them is at least 37% of **Design Capacity**, then a Qmax update is performed to update the battery chemical capacity. If the dV/dt condition is not met and the fuel gauge continues to reside in RELAX mode, then a forced OCV measurement and subsequent DOD computation occurs after 5 hours have elapsed, however, a Qmax update is still subject to the temperature, voltage, and minimum

Fuel Gauging www.ti.com

passed charge requirements before an update can occur. If *AverageCurrent()* > *Deadband* is detected during the OCV measurement, then IR correction is used to compensate the value prior to using it to compute a new DOD. The value programmed in *Max IR Correct* determines the maximum allowed correction voltage based on detected charge current. If discharge current is detected instead, then no cap is applied.

2.1.1 Fast Qmax Update

In certain applications, it can be especially difficult to achieve traditional Qmax updates for systems with noisy standby currents that prohibit the dV/dt requirement from being met and whose total time in relax never reaches 5 hours, or for systems that rarely enter relaxation at all. The Fast Qmax feature provides a complement to traditional Qmax updates in order to more reliably account for aging effects in such systems by allowing Qmax updates to achieved with only one or no qualified DOD points from a battery relaxation state. The feature is enabled via the *Pack Configuration C [FastQmax]* bit and uses several conditional checks to determine when fast Qmax-specific DOD point collection is allowed to start and when these are qualified for use in a fast Qmax update.

NOTE: The Fast Qmax Update algorithm is not used during a learning cycle if *Update Status* ≠ 2.

The algorithm begins taking new discharge-based fast Qmax DOD points every 30 seconds once the following conditions are detected:

- DOD > Fast Qmax Start DOD% or Voltage < Terminate Voltage + Fast Qm Start V Delta, and , and
- Current ≤ C / Fast Qmax Current Threshold

The algorithm qualifies and saves the discharge-based fast Qmax DOD point when the following conditions are met:

- DOD > Fast Qmax End DOD% or Voltage ≤ Terminate Voltage + Fast Qmax Volt Buffer, and
- Number of Fast Qmax measurements ≥ Fast Qmax Min Points

The algorithm also qualifies and saves a charge-based fast Qmax DOD point when full charge termination is achieved (that is, *Flags()[FC]* is set).

NOTE: The *Pack Configuration C [FastQmax]* bit only controls enable/disable of DOD point collection in the near end of discharge region. DOD points at end of charge are always recorded for fast Qmax purposes.

As a result, it is possible to get fast Qmax updates with DOD points from relaxation, end of discharge, and end of charge. However, a fast Qmax update will not happen immediately upon end of charge, and will only be enforced if an attempt to record a new OCV has failed during battery relaxation following a full charge event. As with traditional Qmax updates, a fast Qmax update is disqualified if the intended DOD points were captured outside of the allowed 10°C to 40°C temperature range or if the passed charge accumulated between them is less than 37% × **Design Capacity**.

2.1.2 Resistance Update Qualification

Resistance measurements are conducted over the course of a discharge cycle but are only qualified for an update if the applied discharge current exceeds a **Design Capacity**/10 rate. An additional qualifier allows resistance updates to be permitted on the basis of IR drop between cell open-circuit voltage and measured voltage under load. The IR drop is configured in **Res V Drop** and allows higher potential for resistance updates in applications with low-rate discharges.

2.1.3 Fast Resistance Scaling

Fast Resistance Scaling provides improved SOC convergence to 0% (that is, *Terminate Voltage*) by scaling resistance values used in capacity prediction simulations instead of using interpolated resistance table values as-is. The algorithm becomes active once $StateOfCharge() \le Fast Scale Start SOC$ or Voltage() < (Terminate Voltage + Term V Delta) and begins scaling resistance values every 30 seconds based on the ratio of most recent measured resistance (R_{new}) to stored resistance (R_{old}) at the present SOC. This allows the predicted remaining capacity to gradually converge to the cell's empty point and

www.ti.com Fuel Gauging

avoids potential for SOC jumps to empty near the end of discharge. The minimum and maximum scaling factors that can be employed in the Fast Resistance Scaling algorithm are stored in *Min Res Scale* and *Max Res Scale*, respectively, where a value of 1000 corresponds to 1x and 200 corresponds to 0.2x. For most applications, the default value of *Term V Delta* and *Fast Scale Start SOC* are recommended. Further, it is typically best to keep (*Terminate Voltage + Term V Delta*) below 3.6 V for most battery applications. The feature itself is enabled via the *[FConvEn]* bit in *Pack Configuration B*.

2.1.3.1 Load Select in Fast Resistance Scaling Mode

An independently configurable load profile selection for fast resistance scaling is supported in Fast Scaling Load Select and can be used to improve convergence to empty for systems that exhibit significant load changes near the end of discharge. If typical load behavior is consistent throughout the entirety of the battery discharge curve, then the feature can be disabled by setting *Fast Scaling Load Select* to the same value as *Load Select*.

2.1.3.2 Thermal Modeling in Fast Resistance Scaling Mode

Thermal modeling is designed to estimate cell heating based on current flow through the battery and compensates the predicted *RemainingCapacity()* based on the true cell temperature output from the model. However, it is possible to overestimate cell self-heating in particular cases and this could result in overestimation of *RemainingCapacity()*. As a result, thermal modeling is disabled by default in the Fast Resistance Scaling region but can be enabled for a given application using the *Pack Configuration C* [FConvTempEn] configuration bit.

2.1.4 StateOfCharge() Smoothing

2.1.4.1 SOC Smoothing in Charge/Discharge

It is common for sudden changes in operating conditions such as temperature and discharge load to cause drastic but legitimate changes in the amount of capacity that can be extracted from a given Li-Ion cell or pack. These changes are typically perceived as jumps in reported SOC and can sometimes be alarming to end equipment users who may not understand how environmental conditions impact available battery capacity. SOC smoothing solves this by gradually equalizing the difference in reported SOC vs "true" SOC over the present cycle. The method for accomplishing this differs depending on whether or not the current cycle is a charge or discharge. During discharge, the algorithm adds or removes delta charge (deltaQ) from the present coulomb count to accelerate or decelerate change in *RemainingCapacity()* until it is able to converge to the true value by the time the battery reaches empty. During charge, *FilteredFCC()* is modified to account for deltas in the true and reported versions of Remaining Capacity as well as the true and reported versions of Full Charge Capacity. Since *FilteredFCC()* is continuously modified to ensure SOC convergence in charge, it is not a real determinant of the total available battery capacity and *UnfilteredFCC()* should instead be referred to for this purpose. The *[SmoothEn]* bit in *Pack Configuration C* determines whether unfiltered or filtered values are mapped to *RemainingCapacity()*, *FullChargeCapacity()*, and *StateOfCharge()* for reporting to the system host, as shown in the table below.

Pack Configuration C [SmoothEn]	RemainingCapacity()	FullChargeCapacity()	StateOfCharge()
0	UnfilteredRM()	UnfilteredFCC()	UnfilteredRM()/UnfilteredFCC()
1	FilteredRM()	FilteredFCC()	FilteredRM()/FilteredFCC()

2.1.4.2 SOC Smoothing in Relaxation

In relaxation state, temperature changes and applied currents below **Quit Current** can still trigger changes in the reported *StateOfCharge()*. Similarly, other scenarios can cause differences in true vs reported *RemainingCapacity()* and *FullChargeCapacity()* when entering a battery relaxation state. In order to enable convergence between true and reported SOC values, a similar smoothing algorithm is also supported during cell relaxation and can be enabled with the **[RIxSmEn]** bit in **Pack Configuration C**. The feature can be configured to equalize the SOC difference over time or instantly, depending on the configured setting in the **Pack Configuration D [SMSYNEN]** bit (1 = instant convergence, 0 = convergence over time). **[RIxSmEn]** must be set to 1 for instant convergence to be selectable/supported.

Fuel Gauging www.ti.com

2.1.4.3 SOC Smoothing in Overcharged and Overdischarged Scenarios

In cases where the cell is in an overcharged or overdischarged state, *FilteredRM()* will begin decrementing or incrementing immediately when a load or charger is applied, respectively. However, this behavior can be overridden to hold *FilteredRM()* at full charge (100%) or empty (0%) until the charge surplus (overcharged state) or charge deficit (overdischarged state) is equalized, at which point it is then allowed to change. The hold at full in overcharged state and hold at empty in overdischarged state options can be enabled via the *Pack Configuration [SOCHoldOvrChg]* and *Pack Configuration [SOCHoldOvrDsg]* bits, respectively.

2.1.5 StateOfCharge() Hold at 99%

The *StateOfCharge()* hold at 99% feature prohibits the fuel gauge from reporting 100% until full charge termination is detected and the *Flags()[FC]* bit is set. It is enabled using the *[SOCHold99]* bit in Pack Configuration.

2.1.6 StateOfCharge() Hold at 1%

The *StateOfCharge()* hold at 1% feature prohibits the fuel gauge from reporting 0% until *Terminate Voltage* is reached. It is enabled using the *[SOCHold1]* bit in Pack Configuration.

2.1.7 Trace and Downstream Resistance Compensation

Prediction accuracy for remaining capacity simulations can be further improved in systems with excessive trace lengths between cell and fuel gauge or fuel gauge and system point of load by setting a nominal value in *Trace Resistance* or *Downstream Resistance*, respectively. The fuel gauge adds the *Trace Resistance* and *Downstream Resistance* to the cell resistance values used in capacity simulations in order to obtain a more realistic voltage drop under load in simulated discharges when faced with nontrivial trace parasitics in a given pack design. Likewise, trace resistance is removed from any resistance measurements made during discharge prior to storing in data flash.

2.1.8 Imax Calculation

The Imax feature allows a system to determine how much load it can apply for *Max Current Pulse Duration* without causing an instant drop to *Terminate Voltage*. It is extremely useful for systems that require intelligent load throttling at various points of operation. The fuel gauge computes the *Imax()* current based on the programmed *Max Allowed Current* and *Max Current Pulse Duration* when *Pack Configuration D [IMAXEN]* = 1 and triggers an interrupt on the (SE or HDQ) pin if *Imax()* changes by more than *Max Current Interrupt Step. Reserve Capacity* is factored into the *Imax()* calculation if *Pack Configuration D [IMAXRESRVEN]* = 1.

2.2 Li-Ion Protection

Li-lon protection is supported in the form of several firmware and hardware-based safety features to provide an optimal balance between accuracy and flexibility as well as allow for a tiered, two-level protection scheme for increased reliability. Firmware-based safety checking includes detection of overvoltage (OVP), undervoltage (UVP), overtemperature in charge (OTC), overtemperature in discharge (OTD), internal short (ISD), and tab disconnect (TDD) conditions. The fuel gauge monitors for each of these safety events and responds with setting a notification flag. Additionally, some of these protections, specifically OTC, OTD, ISD, and TDD, can be configured to trigger an interrupt on HDQ if the *Pack Configuration [INTPOL]* bit is set and the BTP feature is not enabled (*Pack Configuration C [BTP_EN]* = 0).

2.2.1 Firmware Protection

2.2.1.1 Tab Disconnect Detection

A tab disconnect condition is detected and the *SafetyStatus()[TDD]* flag set when the ratio of current *StateofHealth()* to previous *StateofHealth()* is less than *TDD SOH percent*. An interrupt can be configured to trigger on the (SE or HDQ) pin when a tab disconnect condition is detected. Enable/disable of the tab disconnect detection feature is controlled via the *[SE_TDD]* bit in *Pack Configuration B*.

www.ti.com Li-Ion Protection

2.2.2 ANALOG SHUTDOWN State

In this mode, the fuel gauge is completely powered down and no portions of the device are functional. Once the charger is connected, the fuel gauge will transition into either LOW VOLTAGE CHARGING mode (if below the power-on reset voltage) or NORMAL mode (if above the POR voltage and no faults are detected).

2.3 Lifetime Data Logging Parameters

The Lifetime Data logging function helps development and diagnosis with the fuel gauge. The *IT_ENABLE* subcommand needs to be enabled (command 0x0021) for lifetime data logging functions to be active. The fuel gauge logs the lifetime data as specified in the *Lifetime Data* and *Lifetime Temp Samples* data flash subclasses. The data log recordings are controlled by the *Lifetime Resolution* data flash subclass.

The Lifetime Data Logging can be started by setting the *IT_ENABLE* subcommand and setting the Update Time register to a non-zero value.

Once the Lifetime Data Logging function is enabled, the measured values are compared to what is already stored in the data flash. If the measured value is higher than the maximum or lower than the minimum value stored in the data flash by more than the Resolution set for at least one parameter, the entire Data Flash Lifetime Registers are updated after at least LTUpdateTime.

LTUpdateTime sets the minimum update time between DF writes. When a new maximum or minimum is detected, a LT Update window of [update time] seconds is enabled and the DF writes occur at the end of this window. Any additional maximum or minimum value detected within this window is also updated. The first new maximum or minimum value detected after this window triggers the next LT Update window.

Internal to the fuel gauge, there exists a RAM maximum/minimum table in addition to the DF maximum/minimum table. The RAM table is updated independent of the resolution parameters. The DF table is updated only if at least one of the RAM parameters exceeds the DF value by more than resolution associated with it. When DF is updated, the entire RAM table is written to DF. Consequently, it is possible to see a new maximum/minimum value for a certain parameter even if the value of this parameter never exceeds the maximum or minimum value stored in the data flash for this parameter value by the resolution amount.

The Life Time Data Logging of one or more parameters can be reset or restarted by writing new default (or starting) values to the corresponding data flash registers through SEALED or UNSEALED access as described below. However, when using UNSEALED access, new values take effect only if the device is reset within *LT Update Time* after the DF is loaded with new values.

The logged data in *Lifetime Data* subclass (subclass ID = 59) can be read and written in both SEALED and UNSEALED modes. However, in SEALED mode, access to this subclass is using a process identical to accessing *Manufacturer Info Block B*. The *DataFlashBlock()* command code is 4. See Section 5.1.2, *Manufacturer Information Blocks*, for details of this sequence.

The subclasses *Lifetime Resolution* (subclass ID = 66) and *Lifetime Temp Samples* (subclass ID = 59) that contain settings for lifetime data logging can be configured only in UNSEALED mode using the regular DF access method.

The Lifetime resolution registers contain the parameters which set the limits related to how much a data parameter must exceed the previously logged maximum/minimum value to be updated in the lifetime log. For example, V must exceed MaxV by more than Voltage Resolution to update MaxV in the data flash.

2.4 System Control Function

The fuel gauge provides system control functions which allows the fuel gauge to enter shutdown mode in order to power-off with the assistance of external circuit or provides interrupt function to the system. Table 2-1 shows the configurations for SE and HDQ pins.

System Control Function www.ti.com

Table 2-1. SE and HDQ Pin Functions

[INTSEL]	COMMUNICATION MODE	SE PIN FUNCTION	HDQ PIN FUNCTION
0 (default)	I ² C	Interrupt Mode (1)	Not Used
o (derauit)	HDQ	interrupt Mode	HDQ Mode ⁽²⁾
4	I ² C	Shutdown Mode	Interrupt Mode
1	HDQ	Shalaowh Mode	HDQ Mode ⁽²⁾

^{(1) [}SE_EN] bit in *Pack Configuration* can be enabled to use [SE] and [SHUTDWN] bits in CONTROL_STATUS() function; The SE pin shutdown function is disabled.

2.4.1 SHUTDOWN Mode

In the shutdown mode, the SE pin is used to signal external circuit to power-off the fuel gauge. This feature is useful to shutdown the fuel gauge in a deeply discharged battery to protect the battery. By default, the Shutdown Mode is in normal state. By sending the SET_SHUTDOWN subcommand or setting the [SE_EN] bit in Pack Configuration register, the [SHUTDWN] bit is set and enables the shutdown feature. When this feature is enabled and [INTSEL] is set, the SE pin can be in normal state or shutdown state. The shutdown state can be entered in HIBERNATE mode (only if HIBERNATE mode is enabled due to low cell voltage), all other power modes will default SE pin to normal state. Table 2-2 shows the SE pin state in normal or shutdown mode. The CLEAR_SHUTDOWN subcommand or clearing [SE_EN] bit in the Pack Configuration register can be used to disable shutdown mode.

The SE pin will be high impedance at power-on reset (POR). The [SE_POL] does not affect the state of SE pin at POR. Also, [SE_PU] configuration changes will only take effect after POR. In addition, the [INTSEL] only controls the behavior of the SE pin; it does not affect the function of [SE] and [SHUTDWN] bits.

Table 2-2. SE Pin State

		SHUTDOWN Mode [INTSEL] = 1 and ([SE_EN] or [SHUTDOWN] = 1)		
[SE_PU]	[SE_POL]	NORMAL State	SHUTDOWN State	
0	0	High Impedance	0	
0	1	0	High Impedance	
1	0	1	0	
1	1	0	1	

2.4.2 Interrupt Mode

By utilizing the interrupt mode, the system can be interrupted based on detected fault conditions as specified in Table 2-5. The SE or HDQ pin can be selected as the interrupt pin by configuring the *[INTSEL]* bit based on Table 2-1. In addition, the pin polarity and pullup (SE pin only) can be configured according to the system needs as described in Table 2-3 or Table 2-4.

Table 2-3. SE Pin in Interrupt Mode ([INTSEL] = 0)

[SE_PU]	[INTPOL]	INTERRUPT CLEAR	INTERRUPT SET
0	0	High Impedance	0
0	1	0	High Impedance
1	0	1	0
1	1	0	1

⁽²⁾ HDQ pin is used for communication and HDQ Host Interrupt Feature is available.

www.ti.com System Control Function

Table 2-4. HDQ Pin in Interrupt Mode ([INTSEL] = 1)

[INTPOL]	INTERRUPT CLEAR	INTERRUPT SET
0	High Impedance	0
1	0	High Impedance

Table 2-5. Interrupt Trigger Events

Interrupt Condition	Flags() Status Bit	Enable Condition	Comment
SOC1 Set	[SOC1]	Always	This interrupt is raised when the [SOC1] flag is set.
Battery High	[BATHI]	Always	This interrupt is raised when the [BATHI] flag is set.
Battery Low	[BATLOW]	Always	This interrupt is raised when the [BATLOW] flag is set.
Over-Temperature Charge	[OTC]	OT Chg Time ≠ 0	This interrupt is raised when the [OTC] flag is set.
Over-Temperature Discharge	[OTD]	OT Dsg Time ≠ 0	This interrupt is raised when the [OTD] flag is set.
Internal Short Detection	[ISD]	[SE_ISD] = 1 in Pack Configuration B	This interrupt is raised when the [ISD] flag is set.
Tab Disconnect Detection	[TDD]	[SE_TDD] = 1 in Pack Configuration B	This interrupt is raised when the [TDD] flag is set.
Imax	[IMAX]	[IMAXEN] = 1 in Pack Configuration D	This interrupt is raised when the [IMAX] flag is set.
Battery Trip Point (BTP)	[SOC1]	[BTP_EN] = 1 in Pack Configuration C. The BTP interrupt supersedes all other interrupt sources, which are unavailable when BTP is active.	This interrupt is raised when RemainingCapacity() ≤ BTPSOC1Set() or RemainingCapacity() ≥ BTPSOC1Clear() during battery discharge or charge, respectively. The interrupt remains asserted until new values are written to both the BTPSOC1Set() and BTPSOC1Clear() registers.

2.4.3 Low Capacity

The fuel gauge has two flags available in the Flags() register that warn when the SOC of the battery has fallen to critically low levels. The Flags()[SOC1] flag is set when RemainingCapacity() falls below the **SOC1 Set Threshold** and is cleared once RemainingCapacity() rises above the **SOC1 Clear Threshold**. The Flags()[SOCF] flag is set when RemainingCapacity() falls below the **SOCF Set Threshold** and is cleared once RemainingCapacity() rises above the **SOCF Clear Threshold**.

The [SOC1] flag can be configured to control an interrupt pin (SE or HDQ) by enabling interrupt mode. See Interrupt Mode for details.

2.4.4 Battery Level

The fuel gauge can indicate when battery voltage has fallen below or risen above predefined thresholds. The [BATHI] of Flags() is set high to indicate Voltage() is above the **BH Set Volt Threshold** for a predefined duration configured in **BH Volt Time**. This flag returns to low once battery voltage is below or equal the **BH Clear Volt threshold**. It is recommended that the **BH Set Volt Threshold** is configured higher than the **BH Clear Volt threshold** to provide proper voltage hysteresis.

The [BATLOW] of Flags() is set high to indicate Voltage() is below the **BL Set Volt Threshold** for a predefined duration set in **BL Volt Time**. This flag returns to low once battery voltage is above or equal the **BL Clear Volt threshold**. It is recommended that the **BL Set Volt Threshold** is configured lower than the **BL Clear Volt threshold** to provide proper voltage hysteresis.

Both the [BATHI] and [BATLOW] flags can be configured to control an interrupt pin (SE or HDQ) by enabling interrupt mode. See Interrupt Mode for details.

System Control Function www.ti.com

2.4.5 Safety Conditions

The fuel gauge can indicate detection of overtemperature in charge, overtemperature in discharge, internal short, and tab disconnect events. To enable overtemperature interrupts, OT Cha Time and OT Dsg Time must be configured to non-zero values and Pack Configuration [HOST IE] should be set to 1. To enable internal short and tab disconnect interrupts, Pack Configuration B [SE_ISD] and Pack Configuration B [SE TDD] must be set, respectively.

The [ISD] and [TDD] flags can be configured to control an interrupt pin (SE or HDQ) by enabling interrupt mode. See Interrupt Mode for details.

2.4.6 Battery Trip Point Interrupt Function

To provide increased flexibility for capacity-based interrupts to the host, the fuel gauge incorporates a Battery Trip Point (BTP) function that allows the system to dynamically update the traditional SOC1 Set Threshold and SOC1 Clear Threshold at runtime using the BTPSOC1Set() and BTPSOC1Clear() standard commands. These thresholds are used to trigger an interrupt on the HDQ pin whenever the set or clear thresholds are crossed following update to the BTPSOC1Set() and BTPSOC1Clear() values. Configuration of the interrupt polarity and enable/disable of the feature is provided via the Pack Configuration [INTPOL] and Pack Configuration C [BTP EN] bits, respectively, while initialization values for the interrupt set and clear thresholds are programmed in SOC1 Set Threshold and SOC1 Clear Threshold as normal.

NOTE: Enabling the BTP feature automatically disables all other interrupt sources on the HDQ pin; therefore, care must be taken in configuring the fuel gauge for each particular end application, especially if non-BTP interrupts such as overtemperature, internal short detection, tab disconnect detection, and battery low and high indications are required in the svstem.

When BTP is enabled, the fuel gauge continuously compares RemainingCapacity() with the values programmed in BTPSOC1Set() and BTPSOC1Clear() to determine whether or not it has crossed below the set or above the clear threshold. Once a threshold is crossed, additional conditions are verified to guard against an unintended interrupt trigger. For the BTP set threshold, the direction of current flow is checked to confirm that a discharge event is occurring. If true, the Flags()[SOC1] bit is set to 1 and an interrupt asserts on the HDQ pin. For the BTP clear threshold, the device again checks the direction of current flow to ensure that a charge event is occurring. Afterwards, an internal variable is examined to determine whether or not a change in the state of Flags()[SOC1] has already occurred due to a prior clear threshold crossing. If true, no change is made and a new interrupt will not fire, however, it is implied that a pre-existing interrupt will still be asserted. If false, the current state of Flags()[SOC1] is flipped to its opposite value and an interrupt subsequently triggered on the HDQ pin. In this way, the correct behavior is guaranteed in cases where the host updates the BTP set and clear thresholds diligently based on HDQ interrupts but also when there is a failure to update the thresholds. If, at any time, new values are written to either BTPSOC1Set() or BTPSOC1Clear() then the [SOC1] flag automatically reinitializes to 0 and the HDQ pin de-asserts to its default state. The entire functional flow of the BTP feature is illustrated in Figure 2-1, BTP Algorithm Flow.

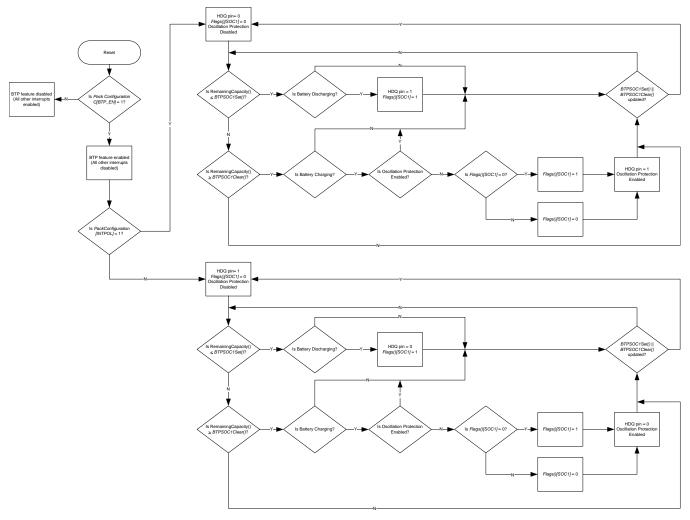


Figure 2-1. BTP Algorithm Flow

In normal usage, the BTP thresholds are continuously updated by the host system at predetermined increments, each time reinitializing the <code>Flags()[SOC1]</code> bit to 0 and waiting for the crossing of the next threshold to trigger a new interrupt. If the thresholds are always updated after each interrupt, then it is implied that the crossing of a set or clear threshold always triggers a new interrupt. This is highlighted below in <code>Figure 2-2</code>, <code>BTP Configuration with Multiple Thresholds</code>.

System Control Function www.ti.com

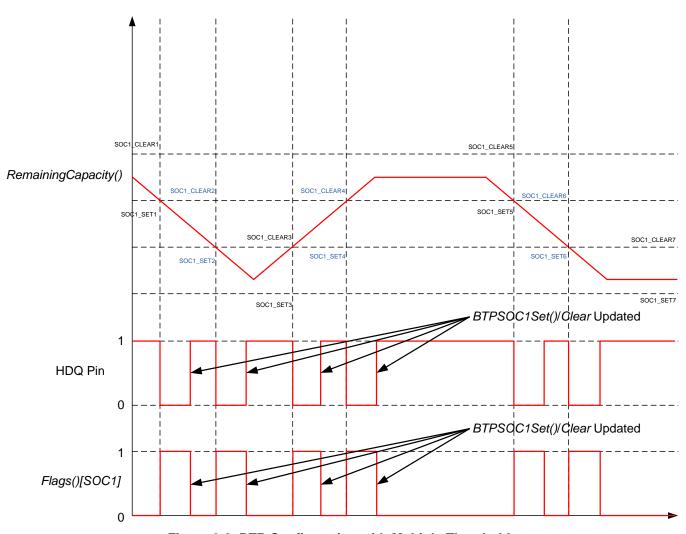


Figure 2-2. BTP Configuration with Multiple Thresholds

However, it is possible that the host may fail to write new thresholds or experience a significant delay in attempting to do so. In this case, there could be an occurrence where the clear threshold is crossed after an interrupt due to a prior set threshold crossing. Thus, the [SOC1] bit would experience a change but a new interrupt would not be triggered on HDQ. Thus, continued crossings without updates to BTPSOC1Set() or BTPSOC1Clear() will only result in changes to Flags()[SOC1]. Figure 2-3, BTP Configuration with Shared Thresholds, shows the case where identical thresholds are written to BTPSOC1Set() or BTPSOC1Clear(). Figure 2-4, BTP Configuration with Separate Thresholds, shows the alternate case where unique thresholds are written to BTPSOC1Set() or BTPSOC1Clear().

www.ti.com System Control Function

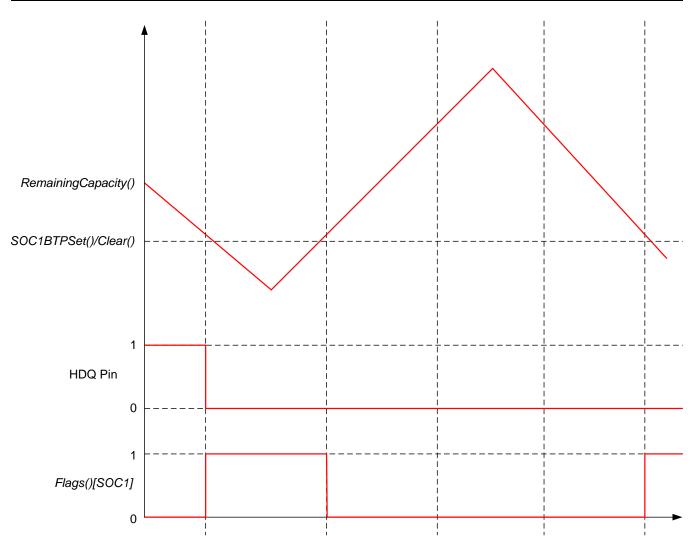


Figure 2-3. BTP Configuration with Shared Thresholds

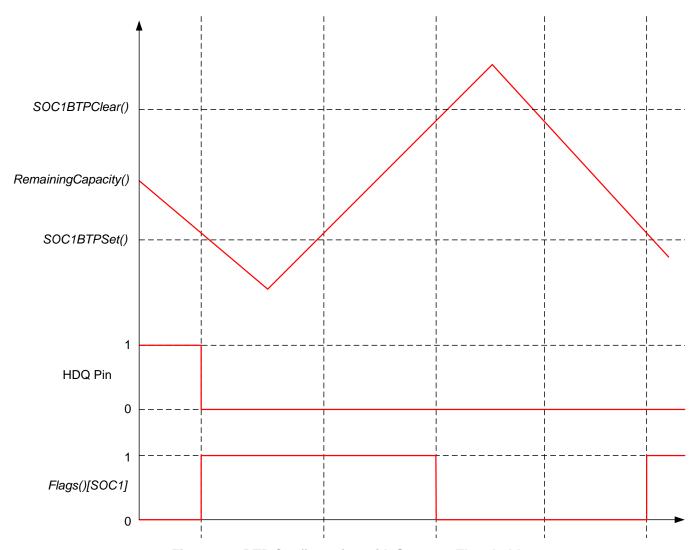


Figure 2-4. BTP Configuration with Separate Thresholds

2.5 Temperature Measurement and the TS Input

The fuel gauge measures battery temperature via the TS input to supply battery temperature status information to the fuel gauging algorithm and charger-control sections of the gauge. Alternatively, the gauge can also measure internal temperature via its on-chip temperature sensor, but only if the **[TEMPS]** bit of **Pack Configuration** is cleared.

Regardless of which sensor is used for measurement, a system processor can request the current battery temperature by reading the *Temperature()* register (see Section 4.1, *Standard Data Commands*, for specific information).

The thermistor circuit requires the use of an external negative temperature coefficient (NTC) thermistor with R25 = 10 k Ω ± 1% and B25/85 = 3435 k Ω ± 1% (such as Semitec 103AT–2) that connects between the REG25 and TS pins.

2.6 Li-Ion Charging Features

2.6.1 JEITA Charging Profile

The fuel gauge provides full support for the JEITA charging algorithm, which employs separate constant-current constant-voltage (CCCV) charging parameters, depending on the measured *Temperature()*. The allowable charging range is divided into four regions defined by *T1 Temp*, *T2 Temp*, *T3 Temp*, *T4 Temp*, and *T5 Temp*, each with its own dedicated *ChargingCurrent()* and *ChargingVoltage()* values.

- If Temperature() < T1 Temp, ChargingCurrent() and ChargingVoltage() are set to 0.
- If T1 Temp ≤Temperature() ≤ T2 Temp, T1-T2 Chg Current and T1-T2 Chg Voltage are reported.
- If T2 Temp < Temperature() ≤ T3 Temp, T2-T3 Chg Current and T2-T3 Chg Voltage are reported.
- If T3 Temp < Temperature() ≤ T4 Temp, T3-T4 Chg Current and T3-T4 Chg Voltage are reported.
- If **T4 Temp** < Temperature() ≤ **T5 Temp**, **T4-T5 Chg Current** and **T4-T5 Chg Voltage** are reported.
- If Temperature() > T5 Temp, ChargingCurrent() and ChargingVoltage() are set to 0.

The diagrams in Figure 2-5, *JEITA Charging Current Profile*, and Figure 2-6, *JEITA Charging Voltage Profile*, provide a visual depiction of the JEITA charging algorithm.

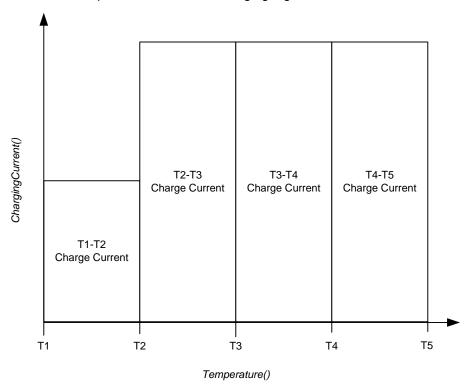


Figure 2-5. JEITA Charging Current Profile

Li-lon Charging Features www.ti.com

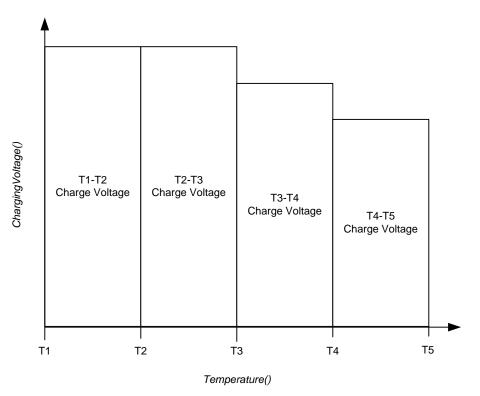


Figure 2-6. JEITA Charging Voltage Profile

Temperature hysteresis (*Temp Hys*) is also applied to movement between various ranges in order to prevent charging parameter oscillation when *Temperature()* continuously changes by a few degrees right on the edge of a temperature boundary. When moving from cooler to warmer temperatures, positive hysteresis is applied to the *T1 Temp* and *T2 Temp* thresholds. On the contrary, when moving from warmer to cooler temperatures, negative hysteresis is applied to the *T3 Temp*, *T4 Temp*, and *T5 Temp* thresholds. In order to convert the four-range JEITA profile to a classic, notebook-style three-range version, simply set T4 Temp = T3 Temp.

The diagrams in Figure 2-7, *Temperature Hysteresis for Charging Current*, and Figure 2-8, *Temperature Hysteresis for Charging Voltage*, illustrate how temperature hysteresis is applied depending on transition direction.

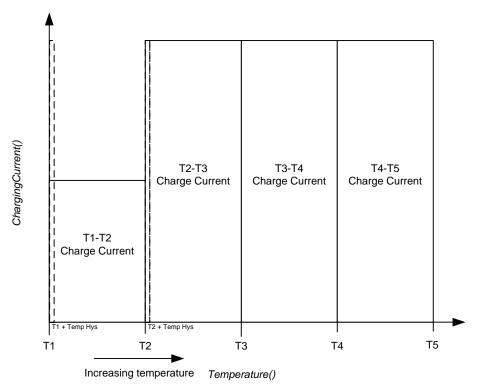


Figure 2-7. Temperature Hysteresis for Charging Current

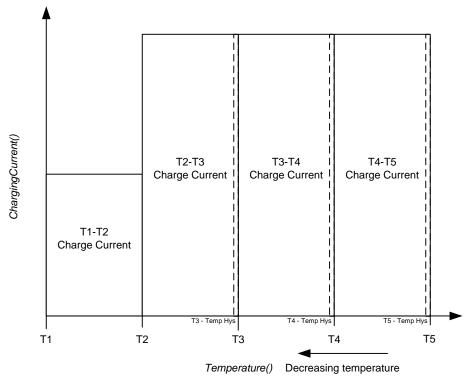


Figure 2-8. Temperature Hysteresis for Charging Voltage

2.6.2 Charge Suspend

If *Temperature()* < T1 Temp or > T5 Temp during active charging, a charge suspend condition is indicated by setting the *Flags()[CHG_SUS]* bit to 1 and clearing *ChargingCurrent()* and *ChargingVoltage()* to 0.

2.6.3 Charge Inhibit

If *Temperature()* < T1 Temp or > T4 Temp without active charging, a charge inhibit condition is indicated by setting the *Flags()[CHG_INH]* bit to 1 and clearing *ChargingCurrent()* and *ChargingVoltage()* to 0.

2.6.4 Full Charge Termination Detection

Full charge termination is detected on the basis of voltage-, current-, and capacity-based conditions or SOC level, depending on the setting configured in *FC Set* %. If set to −1, then the following conditions are used as to qualify successful full charge termination detection:

- 1. Voltage() ≥ Charging Voltage Taper Voltage, and
- During two consecutive periods of Current Taper Window, the AverageCurrent() is < Taper Current, and
- During two consecutive periods of *Current Taper Window*, the accumulated change in capacity > 0.25 mAh

Else, setting *FC Set* % to some non-zero and non-negative value will result in charge termination being detected at that *StateOfCharge()*. Once full charge termination conditions are met, the *Flags()[FC]* bit is set to indicate charge termination to the host. Additionally, if *Pack Configuration [RMFCC]* = 1, then *RemainingCapacity()* is set equal to *FullChargeCapacity()* upon full charge termination. The fuel gauge exits charge termination and associated flags are cleared when SOC decreases below *FC Clear* %. A separate *[CHG]* bit in *Flags()* can be cleared to provide an earlier nearly full charge warning to the system based on the SOC threshold configured in TCA Set. Similar to *FC Set* %, if *TCA Set* % is programmed to –1, the *[CHG]* bit state will be dependent on the voltage-, current-, and capacity-based full charge termination detection conditions instead of an SOC level. Likewise, the *[CHG]* bit is re-set once SOC decreases below *TCA Clear* %.

2.7 Power Modes

The fuel gauge has three power modes: NORMAL, SLEEP, FULLSLEEP, and HIBERNATE. In NORMAL mode, the fuel gauge is fully powered and continually refreshes its dataset every 1 second. In SLEEP mode, the fuel gauge CPU is halted and frequency of data measurement is reduced to 20-second intervals for increased power savings when the system is in a standby state. In FULLSLEEP mode, the fuel gauge disables its high frequency oscillator (HFO) for highest operating power savings. The relationship between these modes is shown in Figure 2-9. Details are described in Section 2.7.1 through Section 2.7.3.

www.ti.com Power Modes

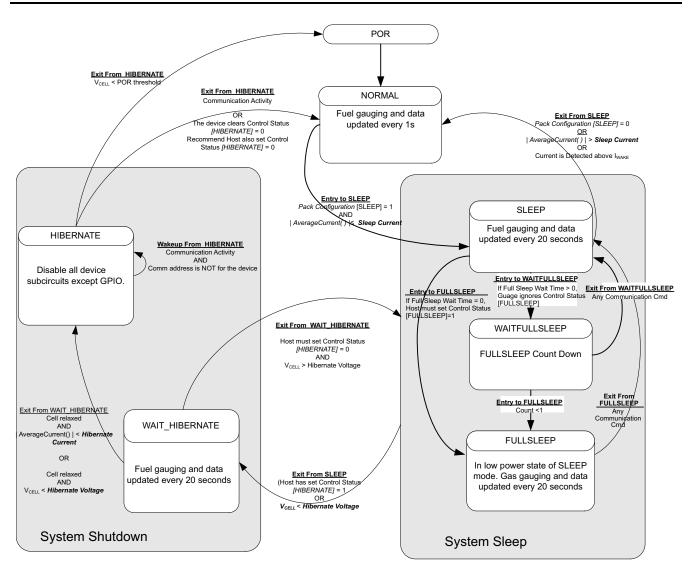


Figure 2-9. Power Mode Diagram—System Sleep

2.7.1 NORMAL Mode

NORMAL mode is the fuel gauge's standard operational mode where *Voltage()*, *AverageCurrent()*, and *Temperature()* measurements are taken and the full interface dataset is updated. Because the gauge consumes the most power in NORMAL mode, the Impedance Track algorithm minimizes the time the fuel gauge remains in this mode.

2.7.2 SLEEP Mode

SLEEP mode is entered automatically if the feature is enabled via the *Pack Configuration [SLEEP]* bit and *AverageCurrent()* < *Sleep Current*. Once entry into SLEEP mode has been qualified, but prior to entering it, the fuel gauge performs an ADC auto-calibration to minimize offset. In SLEEP mode, the fuel gauge takes data measurements and updates its data set every 20 seconds. However, a majority of its time is spent in an idle condition.

The fuel gauge exits SLEEP if any of the following conditions are detected:

- AverageCurrent() > Sleep Current, or
- |Current| > I_{WAKE} through R_{SENSE} is detected when the I_{WAKE} comparator is enabled, or
- Pack Configuration [SLEEP] is cleared to 0

Power Modes www.ti.com

2.7.3 FULLSLEEP Mode

If **Full Sleep Wait Time** > 0, then FULLSLEEP mode is entered automatically when the fuel gauge is in SLEEP mode and its counter decrements from **Full Sleep Wait Time** to 0. Manual entry into FULLSLEEP mode can be commanded from the host if **Full Sleep Wait Time** = 0 and the **SET_FULLSLEEP** command is issued, which sets the **CONTROL_STATUS [FULLSLEEP]** bit and immediately transitions the fuel gauge into this mode. In **FULLSLEEP** mode, the fuel gauge also takes data measurements and updates its data set every 20 seconds, but also disabled its HFO for additional power savings. As a result, the fuel gauge may hold the serial communication lines low for as long as 4 ms when transitioning out of **FULLSLEEP** mode in order to allow sufficient time for its HFO frequency to stabilize. The fuel gauge exits **FULLSLEEP** mode when serial communication activity is detected.

2.7.4 HIBERNATE Mode

HIBERNATE mode should be used for long-term pack storage or when the host system needs to enter a low power state, and minimal gauge power consumption is required. This mode is ideal when the host is set to its own HIBERNATE, SHUTDOWN, or OFF mode. The gauge waits to enter HIBERNATE mode until it has taken a valid OCV measurement (cell relaxed) and the magnitude of the average cell current has fallen below Hibernate Current. When the conditions are met, the fuel gauge can enter HIBERNATE due to either low cell voltage or by having the [HIBERNATE] bit of the CONTROL_STATUS register set. The gauge will remain in HIBERNATE mode until any communication activity appears on the communication lines and the address is for bq27545. In addition, the SE pin shutdown mode function is supported only when the fuel gauge enters HIBERNATE due to low cell voltage.

When the gauge wakes up from HIBERNATE mode, the [HIBERNATE] bit of the CONTROL_STATUS register is cleared. The host is required to set the bit in order to allow the gauge to re-enter HIBERNATE mode if desired.

Because the fuel gauge is dormant in HIBERNATE mode, the battery should not be charged or discharged in this mode, because any changes in battery charge status will not be measured. If necessary, the host equipment can draw a small current (generally infrequent and less than 1 mA, for purposes of low-level monitoring and updating); however, the corresponding charge drawn from the battery will not be logged by the gauge. Once the gauge exits to NORMAL mode, the IT algorithm will take about 3 seconds to re-establish the correct battery capacity and measurements, regardless of the total charge drawn in HIBERNATE mode. During this period of reestablishment, the gauge reports values previously calculated prior to entering HIBERNATE mode. The host can identify exit from HIBERNATE mode by checking if *Voltage() < Hibernate Voltage* or [HIBERNATE] bit is cleared by the gauge.

If a charger is attached, the host should immediately take the fuel gauge out of HIBERNATE mode before beginning to charge the battery. Charging the battery in HIBERNATE mode will result in a notable gauging error that will take several hours to correct. It is also recommended to minimize discharge current during exit from Hibernate.

2.8 Power Control

2.8.1 Reset Functions

When the fuel gauge detects a software reset by sending *Control()* [*RESET*] subcommand, it resets the firmware and increments the reset counter. This counter is accessible by issuing the command *Control()* function with the *RESET DATA* subcommand.

2.8.2 Wake-Up Comparator

The wake-up comparator indicates a change in cell current while the fuel gauge is in SLEEP modes. *Pack Configuration* uses bits *[RSNS1, RSNS0]* to set the sense resistor selection. *Pack Configuration* also uses the *[IWAKE]* bit to select one of two possible voltage threshold ranges for the given sense resistor selection. An internal interrupt is generated when the threshold is breached in either charge or discharge directions. Setting both *[RSNS1]* and *[RSNS0]* to 0 disables this feature.

www.ti.com Power Control

Table 2-6. I_{WAKE} Threshold Settings⁽¹⁾

IWAKE	RSNS1	RSNS0	Vth(SRP-SRN)
0	0	0	Disabled
1	0	0	Disabled
0	0	1	1.0 mV or –1.0 mV
1	0	1	2.2 mV or –2.2 mV
0	1	0	2.2 mV or –2.2 mV
1	1	0	4.6 mV or –4.6 mV
0	1	1	4.6 mV or -4.6 mV
1	1	1	9.8 mV or –9.8 mV

The actual resistance value vs the setting of the sense resistor is not important just the actual voltage threshold when calculating the configuration. The voltage thresholds are typical values under room temperature.

2.8.3 Flash Updates

Data flash can only be updated if $Voltage() \ge Flash Update OK Voltage$. Flash programming current can cause an increase in LDO dropout. The value of *Flash Update OK Voltage* must be selected such that the V_{PWR} voltage does not fall below its minimum of 2.45 V during flash write operations.

2.9 Coulomb Counter Autocalibration

The fuel gauge provides an autocalibration feature that measures the voltage offset error across SRP and SRN from time-to-time as operating conditions change. It subtracts the resulting offset error from normal sense resistor voltage, V_{SR}, for maximum measurement accuracy.

Autocalibration of the CC begins on entry to SLEEP mode, except if Temperature() is $\leq 5^{\circ}$ C or $Temperature() \geq 45^{\circ}$ C, but will not occur more than once per every 10 hours.

The fuel gauge also performs autocalibration offset calibration any time the following conditions are detected:

- 1. The condition of *AverageCurrent()* ≤ 100 mA, and
- 2. Voltage change since last offset calibration ≥ 256 mV or Temperature change since last offset calibration is greater than 8°C for ≥ 60 seconds.

Capacity and current measurements continue at the last measured rate during the offset calibration when these measurements cannot be performed. If the battery voltage drops more than 32 mV during the offset calibration, the load current has likely increased considerably; hence, the offset calibration is aborted.

Communications

3.1 Authentication

The fuel gauge supports a SHA–1-based authentication protocol that allows a host to securely verify battery pack authenticity. Sending a 160-bit random challenge initiates the authentication process wherein the fuel gauge computes a response digest using a double SHA–1 transform. The transmitted challenge is appended to a secret 128-bit authentication key and run through the transform. Afterwards, the resulting hash is then re-appended to the same key and a second hash is computed, resulting in the final 160-bit digest that is returned to the host. The host reproduces the same digest calculation on its side, using the shared key, and compares to the one read from the fuel gauge. If they match, the authentication process is successful.

3.2 Key Programming (Data Flash Key)

By default, the fuel gauge contains a default plain-text authentication key of 0x0123456789ABCDEFFEDCBA9876543210. This default key is intended for development purposes. It must be changed to a secret key and the part immediately SEALED, before putting a pack into operation. Once written, a new plain-text key cannot be read again from the fuel gauge while in SEALED mode.

Once the fuel gauge is UNSEALED, the authentication key can be changed from its default value by writing to the *Authenticate()* Extended Data Command locations. A 0x00 is written to BlockDataControl() to enable the authentication data commands. The DataFlashClass() is issued 112 (0x70) to set the Security class. Up to 32 bytes of data can be read directly from the BlockData() (0x40 through 0x5F) and the authentication key is located at 0x48 (0x40 + 0x08 offset) to 0x57 (0x40 + 0x17 offset). The new authentication key can be written to the corresponding locations (0x48 through 0x57) using the BlockData() command. The data is transferred to the data flash when the correct checksum for the whole block (0x40 through 0x5F) is written to BlockData() (0x40 through 0x5F) on a byte-by-byte basis. Once the authentication key is written, the gauge can then be SEALED again.

3.3 Key Programming (Secure Memory Key)

As the name suggests, the secure-memory authentication key is stored in the secure memory of the fuel gauge. If a secure-memory key has been established, only this key can be used for authentication challenges (the programmable data flash key is not available). The selected key can only be established or programmed by special arrangements with TI, using the TI Secure B-to-B Protocol. The secure-memory key can never be changed or read from the fuel gauge.

3.4 Executing an Authentication Query

To execute an authentication query in UNSEALED mode, a host must first write 0x01 to the *BlockDataControl()* command to enable the authentication data commands. If in SEALED mode, 0x00 must be written to *DataFlashBlock()*.

Next, the host writes a 20-byte authentication challenge to the *Authenticate()* address locations (0x40 through 0x53). After a valid checksum for the challenge is written to *AuthenticateChecksum()*, the fuel gauge uses the challenge, in conjunction with the programmed authentication key, in its SHA–1 computations. After completion, the resulting digest is stored in the *Authenticate()* register, overwriting the pre-existing challenge. The host must wait at least 45 ms to read the resulting digest. The host may then read this response and compare it against the result created by its own parallel computation.

33

3.5 HDQ Single-Pin Serial Interface

The HDQ interface is an asynchronous return-to-one protocol where a processor sends the command code to the fuel gauge. With HDQ, the least significant bit (LSB) of a data byte (command) or word (data) is transmitted first. Note that the DATA signal on pin 12 is open-drain and requires an external pullup resistor. The 8-bit command code consists of two fields: the 7-bit HDQ command code (bits 0:6) and the 1-bit RW field (MSB bit 7). The RW field directs the fuel gauge either to:

- Store the next 8 or 16 bits of data to a specified register, or
- Output 8 bits of data from the specified register

The HDQ peripheral can transmit and receive data as either an HDQ master or slave.

HDQ serial communication is normally initiated by the host processor sending a break command to the fuel gauge. A break is detected when the DATA pin is driven to a logic-low state for a time $t_{(B)}$ or greater. The DATA pin should then be returned to its normal ready high logic state for a time $t_{(BR)}$. The fuel gauge is now ready to receive information from the host processor.

The fuel gauge is shipped in the I²C mode. TI provides tools to enable the HDQ peripheral. The SLUA408 application report provides details of HDQ communication basics.

3.6 HDQ Host Interruption Feature

The default fuel gauge behaves as an HDQ slave only device when HDQ mode is enabled. If the HDQ interrupt function is enabled, the fuel gauge is capable of mastering and also communicating to a HDQ device. There is no mechanism for negotiating who is to function as the HDQ master and care must be taken to avoid message collisions. The interrupt is signaled to the host processor with the fuel gauge mastering an HDQ message. This message is a fixed message that will be used to signal the interrupt condition. The message itself is 0x80 (slave write to register 0x00) with no data byte being sent as the command is not intended to convey any status of the interrupt condition. The HDQ interrupt function is disabled by default and needs to be enabled by command and *Pack Configuration [HOST_IE]* should be set to 1.

When the SET_HDQINTEN subcommand is received, the fuel gauge will detect any of the interrupt conditions and assert the interrupt at 1-second intervals until the CLEAR_HDQINTEN command is received or the count of HDQHostIntrTries has lapsed.

The number of tries for interrupting the host is determined by the data flash parameter named *HDQHostIntrTries*.

3.6.1 Low Battery Capacity

This feature will work identically to SOC1. It will use the same data flash entries as SOC1 and will trigger interrupts as long as SOC1 = 1 and HDQIntEN = 1.

3.6.2 Temperature

This feature will trigger an interrupt based on the OTC (Over-Temperature in Charge) or OTD (Over-Temperature in Discharge) condition being met. It uses the same data flash entries as OTC or OTD and will trigger interrupts as long as either the OTD or OTC condition is met and HDQIntEN = 1.

3.7 I²C Interface

The fuel gauge supports the standard I²C read, incremental read, one-byte write quick read, and functions. The 7-bit device address (ADDR) is the most significant 7 bits of the hex address and is fixed as 1010101, or 0x55. The 8-bit device address is therefore 0xAA or 0xAB for write or read, respectively.

www.ti.com PC Interface

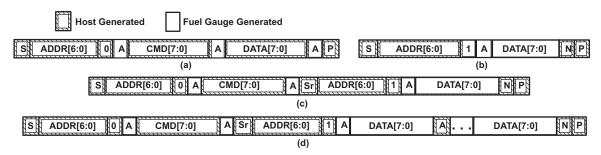
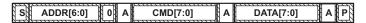
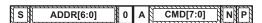
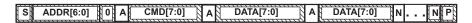
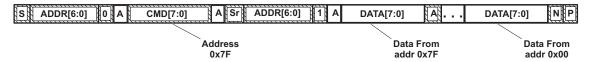



Figure 3-1. Supported I²C Formats


- (a) 1-byte write
- (b) Quick read
- (c) 1-byte read
- (d) Incremental read (S = Start, Sr = Repeated Start, A = Acknowledge, N = No Acknowledge, and P = Stop).

The quick read returns data at the address indicated by the address pointer. The address pointer, a register internal to the I²C communication engine, increments whenever data is acknowledged by the fuel gauge or the I²C master. Quick writes function in the same manner and are a convenient means of sending multiple bytes to consecutive command locations (such as two-byte commands that require two bytes of data).


Attempt to write a read-only address (NACK after data sent by master):

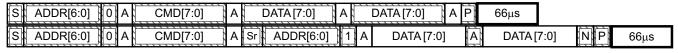

Attempt to read an address above 0x7F (NACK command):

Attempt at incremental writes (NACK all extra data bytes sent):

Incremental read at the maximum allowed read address:

The I^2C engine releases both SDA and SCL if the I^2C bus is held low for $t_{(BUSERR)}$. If the fuel gauge was holding the lines, releasing them frees the master to drive the lines. If an external condition is holding either of the lines low, the I^2C engine enters the low-power SLEEP mode.

3.7.1 PC Time Out


The I²C engine releases both SDA and SCL if the I²C bus is held low for about 2 seconds. If the fuel gauge was holding the lines, releasing them frees the master to drive the lines.

FC Interface www.ti.com

3.7.2 fC Command Waiting Time

To make sure the correct results of a command with the 400-kHz I²C operation, a proper waiting time must be added between issuing command and reading results. For subcommands, the following diagram shows the waiting time required between issuing the control command the reading the status with the exception of the checksum command. A 100-ms waiting time is required between the checksum command and reading result. For read-write standard commands, a minimum of 2 seconds is required to get the result updated. For read-only standard commands, there is no waiting time required, but the host must not issue all standard commands more than two times per second. Otherwise, the gauge could result in a reset issue due to the expiration of the watchdog timer.

Waiting time between control subcommand and reading results

Waiting time between continuous reading results

3.7.3 PC Clock Stretching

 I^2C clock stretches can occur during all modes of fuel gauge operation. In the SLEEP mode, a short clock stretch occurs on all I^2C traffic as the device must wake-up to process the packet. In NORMAL and SLEEP modes, clock stretching only occurs for packets addressed for the fuel gauge. The timing of stretches varies as interactions between the communicating host and the gauge are asynchronous. The I^2C clock stretches may occur after start bits, the ACK/NAK bit and first data bit transmit on a host read cycle. The majority of clock stretch periods are small (≤ 4 ms) as the I^2C interface peripheral and CPU firmware perform normal data flow control. However, less frequent but more significant clock stretch periods may occur when data flash (DF) is being written by the CPU to update the resistance (Ra) tables and other DF parameters such as Qmax. Due to the organization of DF, updates need to be written in data blocks consisting of multiple data bytes.

An Ra table update requires erasing a single page of DF, programming the updated Ra table and a flag. The potential I^2C clock stretching time is 24 ms maximum. This includes 20-ms page erase and 2-ms row programming time (x2 rows). The Ra table updates occur during the discharge cycle and at up to 15 resistance grid points that occur during the discharge cycle.

A DF block write typically requires a maximum of 72 ms. This includes copying data to a temporary buffer and updating DF. This temporary buffer mechanism protects from power failure during a DF update. The first part of the update requires 20 ms to erase the copy buffer page, 6 ms to write the data into the copy buffer and the program progress indicator (2 ms for each individual write). The second part of the update is writing to the DF and requires 44-ms DF block update time. This includes a 20-ms each page erase for two pages and 2 ms each row write for two rows.

In the event that a previous DF write was interrupted by a power failure or reset during the DF write, an additional 44-ms maximum DF restore time is required to recover the data from a previously interrupted DF write. In this power failure recovery case, the total I²C clock stretching is 116 ms maximum.

Another case where I²C clock stretches is at the end of discharge. The update to the last discharge data goes through the DF block update twice because two pages are used for the data storage. The clock stretching in this case is 144 ms maximum. This occurs if there has been a Ra table update during the discharge.

www.ti.com FC Interface

Data Commands

4.1 Standard Data Commands

The bq27546-G1 fuel gauge uses a series of 2-byte standard commands to enable system reading and writing of battery information. Each standard command has an associated command-code pair, as indicated in Table 4-1. Each protocol has specific means to access the data at each Command Code. Data RAM is updated and read by the gauge only once per second. Standard commands are accessible in the NORMAL operation mode.

Table 4-1. Standard Commands

Command Name	Command Code	Unit	SEALED Access
Control()	0x00 and 0x01	_	RW
AtRate()	0x02 and 0x03	mA	RW
UnfilteredSOC()	0x04 and 0x05	%	R
Temperature()	0x06 and 0x07	0.1°K	R
Voltage()	0x08 and 0x09	mV	R
Flags()	0x0A and 0x0B	_	R
NomAvailableCapacity()	0x0C and 0x0D	mAh	R
FullAvailableCapacity()	0x0E and 0x0F	mAh	R
RemainingCapacity()	0x10 and 0x11	mAh	R
FullChargeCapacity()	0x12 and 0x13	mAh	R
AverageCurrent()	0x14 and 0x15	mA	R
TimeToEmpty()	0x16 and 0x17	min	R
FullIChargeCapacityFiltered()	0x18 and 0x19	mAh	R
SafetyStatus()	0x1A and 0x1B	_	R
FullChargeCapacityUnfiltered()	0x1C and 0x1D	mAh	R
Imax()	0x1E and 0x1F	mA	R
RemainingCapacityUnflitered()	0x20 and 0x21	mAh	R
RemainingCapacityFiltered()	0x22 and 0x23	mAh	R
BTPSOC1Set()	0x24 and 0x25	mAh	RW
BTPSOC1Clear()	0x26 and 0x27	mAh	RW
InternalTemperature()	0x28 and 0x29	0.1°K	R
CycleCount()	0x2A and 0x2B	Counts	R
StateOfCharge()	0x2C and 0x2D	%	R
StateofHealth()	0x2E and 0x2F	%/num	R
ChargingVoltage()	0x30 and 0x31	mV	R
ChargingCurrent)	0x32 and 0x33	mA	R
PassedCharge()	0x34 and 0x35	mAh	R
DOD0()	0x36 and 0x37	hex	R
SelfDischargeCurrent()	0x34 and 0x35	mA	R

4.1.1 Control(): 0x00 and 0x01

Issuing a *Control()* command requires a subsequent 2-byte subcommand. These additional bytes specify the particular control function desired. The *Control()* command allows the system to control specific features of the fuel gauge during normal operation and additional features when the fuel gauge is in different access modes, as described in Table 4-2.

Table 4-2. Control() Subcommands

Subcommand Name	Subcommand Code	SEALED Access	Description
CONTROL_STATUS	0x0000	Yes	Reports the status of DF Checksum, Impedance Track, etc.
DEVICE_TYPE	0x0001	Yes	Reports the device type of 0x0541 (indicating bq27546-G1).
FW_VERSION	0x0002	Yes	Reports the firmware version on the device type.
HW_VERSION	0x0003	Yes	Reports the hardware version on the device type.
RESET_DATA	0x0005	Yes	Returns reset data.
PREV_MACWRITE	0x0007	Yes	Returns previous Control() subcommand code.
CHEM_ID	0x0008	Yes	Reports the chemical identifier of the Impedance Track configuration.
BOARD_OFFSET	0x0009	No	Forces the device to measure and store the board offset.
CC_OFFSET	0x000A	No	Forces the device to measure the CC offset.
DF_VERSION	0x000C	Yes	Reports the data flash version of the device.
SET_FULLSLEEP	0x0010	Yes	Sets the CONTROL_STATUS[FULLSLEEP] bit to 1.
SET_HIBERNATE	0x0011	Yes	Forces CONTROL_STATUS[HIBERNATEn]to 1
CLEAR_HIBERNATE	0x0012	Yes	Forces CONTROL_STATUS[HIBERNATE] to 0
SET_SHUTDOWN	0x0013	Yes	Sets the CONTROL_STATUS[SHUTDWN] bit to 1.
CLEAR_SHUTDOWN	0x0014	Yes	Clears the CONTROL_STATUS[SHUTDWN] bit to 1.
SET_HDQINTEN	0x0015	Yes	Forces CONTROL_STATUS[HDQIntEn]to 1
CLEAR_HDQINTEN	0x0016	Yes	Forces CONTROL_STATUS[HDQIntEn] to 0
STATIC_CHEM_CHKSUM	0x0017	Yes	Calculates chemistry checksum.
ALL_DF_CHKSUM	0x0018	Yes	Reports checksum for all data flash excluding device specific variables.
STATIC_DF_CHKSUM	0x0019	Yes	Reports checksum for static data flash excluding device specific variables.
SYNC_SMOOTH	0x001E	Yes	Synchronizes RemCapSmooth() and FCCSmooth() with RemCapTrue() and FCCTrue()
SEALED	0x0020	No	Places the fuel gauge in SEALED access mode.
IT_ENABLE	0x0021	No	Enables the Impedance Track algorithm.
IMAX_INT_CLEAR	0x0023	Yes	Clears an Imax interrupt that is currently asserted on the (SE or HDQ) pin.
CAL_ENABLE	0x002D	No	Toggle CALIBRATION mode.
RESET	0x0041	No	Forces a full reset of the fuel gauge.
EXIT_CAL	0x0080	No	Exit CALIBRATION mode.
ENTER_CAL	0x0081	No	Enter CALIBRATION mode.
OFFSET_CAL	0x0082	No	Reports internal CC offset in CALIBRATION mode.

Standard Data Commands www.ti.com

4.1.1.1 CONTROL STATUS: 0x0000

Instructs the fuel gauge to return status information to control addresses 0x00 and 0x01. The status word includes the following information.

Table 4-3. CONTROL_STATUS Flags

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	SE_EN	FAS	SS	CALMODE	CCA	BCA	QMAXUPD ATE	HOSTIE
Low Byte	SHUTDN_EN	HIBERNATE	FULLSLEEP	SLEEP	LDMD	RUP_DIS	VOK	QEN

High Byte

OCVTAKEN = Status bit indicating if shutdown is active

FAS = Status bit indicating the fuel gauge is in FULL ACCESS SEALED state. Active when set (no data flash

SS = Status bit indicating the fuel gauge is in the SEALED state. Active when set (no ROM access).

CALMODE = Status bit indicating the calibration function is active. True when set. Default is 0.

CCA = Status bit indicating the Coulomb Counter Calibration routine is active. The CCA routine takes place approximately 1 minute after the initialization and periodically as gauging conditions change. Active when set.

BCA = Status bit indicating the Board Calibration routine is active. Active when set.

QMAXUPDATE = Status bit toggling every time there is a QMAX update

HOSTIE = Status bit indicating SET_HDQINTEN subcommand has been received and armed the HDQ Host interrupt

Low Byte

SHUTDN_EN = Control bit indicating that the SET_SHUTDOWN subcommand has been sent and signals an external shutdown of the fuel gauge when conditions permit. See Section 2.4.1, SHUTDOWN Mode.

HIBERNATE = Status bit indicating a request for entry into HIBERNATE from SLEEP mode has been issued. True when set. Default is 0

FULLSLEEP = Status bit indicating the fuel gauge is in FULLSLEEP mode. True when set. The state can be detected by monitoring the power used by the fuel gauge because any communication automatically clears it.

SLEEP = Status bit indicating the fuel gauge is in SLEEP mode. True when set.

LDMD = Status bit indicating the Impedance Track algorithm is using *constant-power* model. True when set. Default is 0 (*constant-current* model).

RUP_DIS = Status bit indicating the Ra table updates are disabled. True when set.

VOK = Status bit indicating cell voltages are OK for Qmax updates. True when set.

QEN = Status bit indicating the Qmax updates are enabled. True when set.

4.1.1.2 DEVICE_TYPE: 0x0001

Instructs the fuel gauge to return the device type to addresses 0x00 and 0x01. The bq27546-G1 device type returns 0x0542.

4.1.1.3 FW_VERSION: 0x0002

Instructs the fuel gauge to return the firmware version to addresses 0x00 and 0x01. The bq27541-G1 firmware version returns 0x0900.

4.1.1.4 HW_VERSION: 0x0003

Instructs the fuel gauge to return the hardware version to addresses 0x00 and 0x01. For bq27546-G1, 0x0000 or 0x0060 is returned.

4.1.1.5 RESET DATA: 0x0005

Instructs the fuel gauge to return the number of resets performed to addresses 0x00 and 0x01.

www.ti.com Standard Data Commands

4.1.1.6 PREV MACWRITE: 0x0007

Instructs the fuel gauge to return the previous *Control()* subcommand written to addresses 0x00 and 0x01. The value returned is limited to less than 0x0020.

4.1.1.7 CHEM ID: 0x0008

Instructs the fuel gauge to return the chemical identifier for the Impedance Track configuration to addresses 0x00 and 0x01.

4.1.1.8 BOARD_OFFSET: 0x0009

Instructs the fuel gauge to perform the board offset calibration. During board offset calibration the CONTROL STATUS [BCA] bit is set.

4.1.1.9 CC OFFSET: 0x000A

Instructs the fuel gauge to perform the coulomb counter offset calibration. During calibration the CONTROL STATUS [CCA] bit is set.

4.1.1.10 DF_VERSION: 0x000C

Instructs the fuel gauge to return the data flash version stored in **DF Config Version** to addresses 0x00 and 0x01.

4.1.1.11 SET_FULLSLEEP: 0x0010

Instructs the fuel gauge to set the CONTROL_STATUS [FULLSLEEP] bit to 1. The gauge enters the FULLSLEEP power mode after the transition to the SLEEP power state is detected. In FULLSLEEP mode less power is consumed by disabling an oscillator circuit used by the communication engines. For HDQ communication one host message is dropped. For I²C communications, the first I²C message incurs a 6-to 8-ms clock stretch while the oscillator is started and stabilized. A communication to the device in FULLSLEEP forces the part back to the SLEEP mode.

4.1.1.12 SET HIBERNATE: 0x0011

Instructs the fuel gauge to force the CONTROL_STATUS [HIBERNATE] bit to 1. This will allow the gauge to enter the HIBERNATE power mode after the transition to SLEEP power state is detected and the required conditions are met. The [HIBERNATE] bit is automatically cleared upon exiting from HIBERNATE mode.

NOTE: HIBERNATE mode is only available in I²C mode and is disabled when HDQ mode is used.

4.1.1.13 CLEAR HIBERNATE: 0x0012

Instructs the fuel gauge to force the CONTROL_STATUS [HIBERNATE] bit to 0. This prevents the gauge from entering the HIBERNATE power mode after the transition to SLEEP power state is detected unless *Voltage()* is less than Hibernate V. It can also be used to force the gauge out of HIBERNATE mode.

4.1.1.14 SET SHUTDOWN: 0x0013

Sets the CONTROL_STATUS [SHUTDWN] bit to 1, thereby enabling the SE pin to change state. The Impedance Track algorithm controls the setting of the SE pin, depending on whether the conditions are met for fuel gauge shutdown or not.

4.1.1.15 CLEAR_SHUTDOWN: 0x0014

Clears the CONTROL_STATUS [SHUTDN_EN] bit to 0. The gas gauge closes the charge and discharge FETs and aborts the shutdown sequence.

Standard Data Commands www.ti.com

4.1.1.16 SET HDQINTEN: 0x0015

Instructs the fuel gauge to set the CONTROL_STATUS [HDQIntEn] bit to 1. This enables the HDQ Interrupt function. When this subcommand is received, the device will detect any of the interrupt conditions and assert the interrupt at 1-s intervals until the CLEAR_HDQINTEN command is received or the count of HDQHostIntrTries has lapsed (default 3).

4.1.1.17 CLEAR HDQINTEN: 0x0016

Instructs the fuel gauge to set the CONTROL_STATUS [HDQIntEn] bit to 0. This disables the HDQ Interrupt function.

4.1.1.18 STATIC CHEM CHKSUM: 0x0017

Instructs the fuel gauge to calculate chemistry checksum as a 16-bit unsigned integer sum of all static chemistry data. The most significant bit (MSB) of the checksum is masked yielding a 15-bit checksum. This checksum is compared with value stored in the data flash *Static Chem DF Checksum*. If the value matches, the MSB is cleared to indicate pass. If it does not match, the MSB is set to indicate failure. The checksum can verify the integrity of the chemistry data stored internally.

NOTE: The Static Chem DF Checksum is programmed by the Chemistry programming tool.

4.1.1.19 ALL_DF_CHKSUM: 0x0018

Instructs the fuel gauge to calculate data flash checksum as a 16-bit unsigned integer sum of all data flash excluding device specific variables. The most significant bit (MSB) of the checksum is masked yielding a 15-bit checksum. This checksum is compared with value stored in the data flash *ALL_DF_Checksum*. If the value matches, the MSB is cleared to indicate pass. If it does not match, the MSB is set to indicate failure. The checksum can verify the integrity of the data flash stored internally.

4.1.1.20 STATIC DF CHKSUM: 0x0019

Instructs the fuel gauge to calculate static data flash checksum as a 16-bit unsigned integer sum of static data flash excluding device specific variables. The most significant bit (MSB) of the checksum is masked yielding a 15-bit checksum. This checksum is compared with value stored in the data flash **Static_DF_Checksum**. If the value matches, the MSB is cleared to indicate pass. If it does not match, the MSB is set to indicate failure. The checksum can verify the integrity of the static data flash stored internally.

4.1.1.21 SYNC SMOOTH: 0x001E

This synchronizes RemCapSmooth() and FCCSmooth() with RemCapTrue() and FCCTrue().

4.1.1.22 SEALED: 0x0020

Instructs the fuel gauge to transition from UNSEALED state to SEALED state. The fuel gauge should always be set to SEALED state for use in customer's end equipment as it prevents spurious writes to most standard commands and blocks access to most data flash.

4.1.1.23 IT ENABLE: 0x0021

Forces the fuel gauge to begin the Impedance Track algorithm, sets bit 2 of *UpdateStatus*, and causes the *[VOK]* and *[QEN]* flags to be set in the *CONTROL_STATUS* register. *[VOK]* is cleared if the voltages are not suitable for a Qmax update. Once set, *[QEN]* cannot be cleared. This command is only available when the fuel gauge is UNSEALED and is typically enabled at the last step of production after system test is completed.

4.1.1.24 IMAX INT CLEAR: 0x0023

Clears an Imax interrupt that is presently asserted on the (SE or HDQ) pin. The command is only applicable if the Imax feature is enabled in *Pack Configuration D [IMAXEN]*.

4.1.1.25 CAL_ENABLE: 0x002D

Toggles entry into/exit out of CALIBRATION mode

4.1.1.26 RESET: 0x0041

Instructs the fuel gauge to perform a full reset. This command is only available when the fuel gauge is UNSEALED.

4.1.1.27 EXIT_CAL: 0x0080

Instructs the fuel gauge to execute raw measurement data collection for host-managed calibration of the fuel gauge.

4.1.1.28 ENTER_CAL: 0x0081

Instructs the fuel gauge to cease raw measurement data collection for host-managed calibration of the fuel gauge.

4.1.1.29 OFFSET_CAL: 0x0082

Instructs the fuel gauge to perform offset calibration when in CALIBRATION mode (CONTROL_STATUS[CALMODE] = 1).

4.1.2 AtRate(): 0x02 and 0x03

The *AtRate()* is a read-write function that reads or sets the load value used in computing load-compensated capacity in the Impedance Track algorithm when *Load Mode* = 0 or 1 and *Load Select* = 5. For configurations employing *Load Mode* = 0, the *AtRate()* register expects the host to write values in terms of mA. With a *Load Mode* of 1, the fuel gauge will expect units of mWh or cWh, depending on the setting for *Design Energy Scale*. The *AtRate()* value is a signed integer, with negative values interpreted as a discharge current value.

4.1.3 UnfilteredSOC(): 0x04 and 0x05

This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as a percentage of *UnfilteredFCC()*, with a range of 0 to 100%.

4.1.4 Temperature(): 0x06 and 0x07

This read-only function returns an unsigned integer value of the battery temperature in units of 0.1°K measured by the fuel gauge and is used for fuel gauging algorithm. It reports either the *InternalTemperature()* or the external thermistor temperature depending on the setting of the *[TEMPS]* bit in *Pack Configuration*.

4.1.5 Voltage(): 0x08 and 0x09

This read-only function returns an unsigned integer value of the measured cell-pack voltage in mV with a range of 0 to 6000 mV.

4.1.6 Flags(): 0x0A and 0x0B

This read-only function returns the contents of the gas-gauge status register, depicting the current operating status.

Standard Data Commands www.ti.com

Table 4-4. Flags Bit Definitions

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
High Byte	RSVD	RSVD	BATHI	BATLOW	CHG_INH	RSVD	FC	RSVD
Low Byte	CHG_SUS	RSVD	RSVD	IMAX	CHG	SOC1	SOCF	DSG

High Byte

RSVD = Reserved RSVD = Reserved

BATHI = Battery High bit indicating a high battery voltage condition. See the parameters in Section 5.3.6.4, Battery High Set Voltage Threshold, Time, and Clear, for threshold settings.

BATLOW = Battery Low bit indicating a low battery voltage condition. See the parameters in Section 5.3.6.3, Battery Low Set Voltage Threshold, Time, and Clear, for threshold settings.

CHG_INH = Charge Inhibit indicates that temperature is < **T1 Temp** or > **T4 Temp** while charging is not active. True when set

RSVD = Reserved

FC = Full-charged state is detected. FC is set when charge termination is reached and **FC Set** % = -1 (see Section 2.6, *Li-lon Charging Features*, for details) or State of Charge is larger than **FC Set** % and **FC Set** % is not -1. True when set.

RSVD = Reserved

Low Byte

CHG_SUS = Charge Suspend indicates that temperature is < **T1 Temp** or > **T5 Temp** while charging is active. True when set.

RSVD = Reserved

RSVD = Reserved

IMAX = Indicates that the computed <math>Imax() value has changed enough to signal an interrupt. True when set.

CHG = (Fast) charging allowed. True when set.

SOC1 = State-of-Charge Threshold 1 (SOC1 Set) reached. True when set.

SOCF = State-of-Charge Threshold Final (SOCF Set %) reached. True when set.

DSG = Discharging detected. True when set.

4.1.7 NomAvailableCapacity(): 0x0C and 0x0D

This read-only command pair returns the uncompensated (less than C/20 load) battery capacity remaining. Units are mAh.

4.1.8 FullAvailableCapacity(): 0x0E and 0x0F

This read-only command pair returns the uncompensated (less than C/20 load) capacity of the battery when fully charged. Units are mAh. *FullAvailableCapacity()* is updated at regular intervals, as specified by the IT algorithm.

4.1.9 RemainingCapacity(): 0x10 and 0x11

This read-only command pair returns the compensated battery capacity remaining (*UnfilteredRM()*) when the **[SmoothEn]** bit in **Pack Configuration C** is cleared or filtered compensated battery capacity remaining (*FilteredRM()*) when **[SmoothEn]** bit is set. Units are mAh.

4.1.10 FullChargeCapacity(): 0x12 and 0x13

This read-only command pair returns the compensated capacity of fully charged battery (*UnfilteredFCC()*) when the *[SmoothEn]* bit in *Pack Configuration C* is cleared or filtered compensated capacity of fully charged battery (*FilteredFCC()*) when *[SmoothEn]* bit is set. Units are mAh. *FullChargeCapacity()* is updated at regular intervals, as specified by the IT algorithm.

www.ti.com Standard Data Commands

4.1.11 AverageCurrent(): 0x14 and 0x15

This read-only command pair returns a signed integer value that is the average current flow through the sense resistor. It is updated every second in NORMAL mode and every 20 seconds in SLEEP and FULLSLEEP modes. Units are mA.

4.1.12 TimeToEmpty(): 0x16 and 0x17

This read-only function returns an unsigned integer value of the predicted remaining battery life at the present rate of discharge, in minutes. A value of 65,535 indicates battery is not being discharged.

4.1.13 FilteredFCC(): 0x18 and 0x19

This read-only command pair returns the modified full charge capacity based on the SOC smoothing algorithm. The value is modified during battery charge and is increased or decreased to achieve SOC convergence by the time end of charge is reached. For reporting of the capacity that can be extracted from a fully charged battery, the host should always refer to *UnfilteredFCC()*. Units are mAh. *FilteredFCC()* is updated at regular intervals, as specified by the IT algorithm.

4.1.14 UnfilteredFCC(): 0x1C and 0x1D

This read-only command pair returns the compensated capacity of the battery when fully charged. Units are mAh. *UnFilteredFCC()* is updated at regular intervals, as specified by the IT algorithm.

4.1.15 Imax(): 0x1E and 0x1F

This read-only function returns the maximum discharge current that the battery can support for **Max Current Pulse Duration** time without prematurely dropping to empty (that is, 0%). It is useful for systems that need to dynamically scale applied load for extended runtime at low states of charge.

4.1.16 UnfilteredRM(): 0x20 and 0x21

This read-only command pair returns the compensated battery capacity remaining. Units are mAh.

4.1.17 FilteredRM(): 0x22 and 0x23

This read-only command pair returns the filtered, compensated battery capacity remaining. Units are mAh.

4.1.18 BTPSOC1Set(): 0x24 and 0x25

This read-write function is used to dynamically update the BTP threshold for detecting *RemainingCapacity()* decreasing below the programmed value in the discharge direction.

4.1.19 BTPSOC1Clear(): 0x26 and 0x27

This read-write function is used to dynamically update the BTP threshold for detecting *RemainingCapacity()* increasing above the programmed value in the charge direction.

4.1.20 InternalTemperature(): 0x28 and 0x29

This read-only function returns an unsigned integer value of the measured internal temperature of the device in units of 0.1°K as measured by the fuel gauge.

4.1.21 CycleCount(): 0x2A and 0x2B

This read-only function returns an unsigned integer value of the number of cycles the battery has experienced with a range of 0 to 65,535. One cycle occurs when accumulated discharge \geq *CC Threshold*.

Standard Data Commands www.ti.com

4.1.22 StateOfCharge(): 0x2C and 0x2D

This read-only function returns an unsigned integer value of the predicted *RemainingCapacity()* expressed as a percentage of *FullChargeCapacity()*, with a range of 0 to 100%. The *StateOfCharge()* can be filtered or unfiltered since *RemainingCapacity()* and *FullChargeCapacity()* can be filtered or unfiltered based on *[SmoothEn]* bit selection in *Pack Configuration C*.

4.1.23 StateOfHealth(): 0x2E and 0x2F

0x2E SOH percentage: this read-only function returns an unsigned integer value, expressed as a percentage of the ratio of predicted *FCC*(25°C, SOH Load I) over the *DesignCapacity()*. The *FCC*(25°C, SOH Load I) is the calculated full charge capacity at 25°C and the SOH current rate which is specified by SOH Load I. The range of the returned SOH percentage is 0x00 to 0x64, indicating 0 to 100%, correspondingly.

4.1.24 Charging Voltage(): 0x30 and 0x31

This read-only function returns the recommended charging voltage output from the JEITA charging profile. It is updated automatically based on the present temperature range.

4.1.25 ChargingCurrent(): 0x32 and 0x33

This read-only function returns the recommended charging current output from the JEITA charging profile. It is updated automatically based on the present temperature range.

4.1.26 PassedCharge(): 0x34 and 0x35

This signed integer indicates the amount of charge passed through the sense resistor since the last IT simulation in mAh.

4.1.27 DOD0(): 0x36 and 0x37

This unsigned integer indicates the depth of discharge during the most recent OCV reading. The reported value is scaled to an integer value per DOD0 = DOD(OCV, Temperature) \times 2¹⁴ and has a range of 0 to 16384.

4.1.28 SelfDischargeCurrent(): 0x38 and 0x39

This read-only command pair returns the signed integer value that estimates the battery self-discharge current.

Extended Data Commands www.ti.com

4.2 **Extended Data Commands**

Extended commands offer additional functionality beyond the standard set of commands. They are used in the same manner; however, unlike standard commands, extended commands are not limited to 2-byte words. The number of command bytes for a given extended command ranges in size from single to multiple bytes, as specified in Table 4-5. For details on the SEALED and UNSEALED states, see Section 5.1.3, Access Modes.

Table 4-5. Extended Commands

Name	Command Code	Unit	SEALED Access ⁽¹⁾⁽²⁾	UNSEALED Access ⁽¹⁾⁽²⁾
PackConfiguration()	0x3A and 0x3B	Hex	R	R
DesignCapacity()	0x3C and 0x3D	mAh	R	R
DataFlashClass() ⁽²⁾	0x3E	NA	NA	RW
DataFlashBlock() ⁽²⁾	0x3F	NA	RW	RW
BlockData()/Authenticate() ⁽³⁾	0x40 to 0x53	NA	RW	RW
BlockData()/AuthenticateCheckSum()(3)	0x54	NA	RW	RW
BlockData()	0x55 to 0x5F	NA	R	RW
BlockDataCheckSum()	0x60	NA	RW	RW
BlockDataControl()	0x61	NA	NA	RW
DODatEOC()	0x62 and 0x63	NA	R	R
Qstart()	0x64 and 0x65	mAh	R	R
FastQmax()	0x66 and 0x67	mAh	R	R
Reserved	0x68 to 0x6C	NA	R	R
Reserved	0x6E and 0x6F	NA	R	R
Reserved	0x70 and 0x71	NA	R	R
Reserved	0x72 and 0x73	NA	R	R
AveragePower()	0x76 and 0x77	mW or cW	R	R
AN_COUNTER	0x79			
AN_CURRENT_LSB	0x7A			
AN_CURRENT_MSB	0x7B			
AN_VCELL_LSB	0x7C			
AN_VCELL_MSB	0x7D			
AN_TEMP_LSB	0x7E			
AN_TEMP_MSB	0x7F			

SEALED and UNSEALED states are entered via commands to Control() 0x00 and 0x01.

4.2.1 PackConfiguration(): 0x3A and 0x3B

SEALED and UNSEALED Access: This command returns the value stored in Pack Configuration and is expressed in hex value.

4.2.2 DesignCapacity(): 0x3C and 0x3D

SEALED and UNSEALED Access: This command returns the value stored in *Design Capacity* and is expressed in mAh. This is intended to be the theoretical or nominal capacity of a new pack, but has no bearing on the operation of the fuel gauge functionality.

47

In SEALED mode, data flash cannot be accessed through commands 0x3E and 0x3F.

The BlockData() command area shares functionality for accessing general data flash and for using Authentication. See Section 3.1, Authentication, for more details.

Extended Data Commands www.ti.com

4.2.3 DataFlashClass(): 0x3E

This command sets the data flash class to be accessed. The subclass ID to be accessed must be entered in hexadecimal.

SEALED Access: This command is not available in SEALED mode.

4.2.4 DataFlashBlock(): 0x3F

UNSEALED Access: This command sets the data flash block to be accessed. When 0x00 is written to *BlockDataControl()*, *DataFlashBlock()* holds the block number of the data flash to be read or written. Example: Writing a 0x00 to *DataFlashBlock()* specifies access to the first 32-byte block and a 0x01 specifies access to the second 32-byte block, and so on.

SEALED Access: This command directs which data flash block is accessed by the *BlockData()* command. Writing a 0x00 to *DataFlashBlock()* specifies the *BlockData()* command transfers authentication data. Issuing a 0x01 or 0x02 instructs the *BlockData()* command to transfer *Manufacturer Info Block A or B*, respectively.

4.2.5 BlockData(): 0x40 Through 0x5F

This command range is used to transfer data for data flash class access. This command range is the 32-byte data block used to access *Manufacturer Info Block A* or *B. Manufacturer Info Block A* is read-only for the SEALED access. UNSEALED access is read-write.

4.2.6 BlockDataCheckSum(): 0x60

The host system must write this value to inform the device that new data is ready for programming into the specified data flash class and block.

UNSEALED Access: This byte contains the checksum on the 32 bytes of block data read from or written to data flash. The least-significant byte of the sum of the data bytes written must be complemented ([255 – x] for x the 8-bit summation of the *BlockData()* (0x40 to 0x5F) on a byte-by-byte basis) before being written to 0x60.

SEALED Access: This byte contains the checksum for the 32 bytes of block data written to **Manufacturer Info Block A**. The least-significant byte of the sum of the data bytes written must be complemented ([255 - x], for x the 8-bit summation of the **BlockData()** (0x40 to 0x5F) on a byte-by-byte basis) before being written to 0x60.

4.2.7 BlockDataControl(): 0x61

UNSEALED Access: This command controls DATA FLASH ACCESS mode. The value determines the data flash to be accessed. Writing 0x00 to this command enables *BlockData()* to access general data flash.

SEALED Access: This command is not available in SEALED mode.

4.2.8 DODatEOC(): 0x62 and 0x63

UNSEALED and SEALED Access: This command reports DOD at the end of charge (EOC).

4.2.9 Qstart(): 0x64 and 0x65

UNSEALED and SEALED Access: This command reports Qstart.

4.2.10 FastQmax(): 0x66 and 0x67

UNSEALED and SEALED Access: This command reports Fast Qmax.

4.2.11 Reserved - 0x68 to 0x6C

4.2.12 Reserved – 0x6E and 0x6F

4.2.13 Reserved – 0x70 and 0x71

4.2.14 Reserved - 0x72 and 0x73

4.2.15 AveragePower(): 0x76 and 0x77

UNSEALED and SEALED Access: This read-word function returns an unsigned integer value of the average power of the current discharge. It is negative during discharge and positive during charge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW (*Design Energy Scale* = 1) or cW (*Design Energy Scale* = 10).

4.2.16 AN_COUNTER: 0x79

UNSEALED and SEALED Access: This command reports AN_COUNTER.

4.2.17 AN_CURRENT_LSB: 0x7A

UNSEALED and SEALED Access: This command reports AN_CURRENT_LSB.

4.2.18 AN_CURRENT_MSB: 0x7B

UNSEALED and SEALED Access: This command reports AN_CURRENT_MSB.

4.2.19 AN VCELL LSB: 0x7C

UNSEALED and SEALED Access: This command reports AN VCELL LSB.

4.2.20 AN_VCELL_MSB: 0x7D

UNSEALED and SEALED Access: This command reports AN_VCELL_MSB.

4.2.21 AN TEMP LSB: 0x7E

UNSEALED and SEALED Access: This command reports AN_TEMP_LSB.

4.2.22 AN TEMP MSB: 0x7F

UNSEALED and SEALED Access: This command reports AN_TEMP_MSB.

Extended Data Commands www.ti.com

Data Flash Summary

5.1 Data Flash Interface

5.1.1 Accessing The Data Flash

The data flash is a non-volatile memory that contains initialization, default, cell status, calibration, configuration, and user information. The data flash can be accessed in several different ways, depending in which mode the bq27546-G1 fuel gauge is operating and what data is being accessed.

Commonly accessed data flash memory locations, frequently read by a system, are conveniently accessed through specific instructions, already described in Chapter 4 Data Commands. These commands are available when the fuel gauge is either in UNSEALED or SEALED modes.

Most data flash locations, however, are only accessible in UNSEALED mode by use of the evaluation software or by data flash block transfers. These locations must be optimized and/or fixed during the development and manufacture processes. They become part of a golden image file and can then be written to multiple battery packs. Once established, the values generally remain unchanged during endequipment operation.

To access data flash locations individually, the block containing the desired data flash location(s) must be transferred to the command register locations, where they can be read to the system or changed directly. This is accomplished by sending the set-up command <code>BlockDataControl()</code> (0x61) with data 0x00. Up to 32 bytes of data can be read directly from the <code>BlockData()</code> (0x40 to 0x5F), externally altered, then rewritten to the <code>BlockData()</code> command space. Alternatively, specific locations can be read, altered, and rewritten if their corresponding offsets are used to index into the <code>BlockData()</code> command space. Finally, the data residing in the command space is transferred to data flash, once the correct checksum for the whole block is written to <code>BlockDataChecksum()</code> (0x60).

Occasionally, a data flash class is larger than the 32-byte block size. In this case, the *DataFlashBlock()* command designates in which 32-byte block the desired locations reside. The correct command address is then given by 0x40 + offset *modulo* 32. For example, to access *Terminate Voltage* in the *Gas Gauging* class, *DataFlashClass()* is issued 80 (0x50) to set the class. Because the offset is 67, it must reside in the third 32-byte block. Hence, *DataFlashBlock()* is issued 0x02 to set the block offset, and the offset used to index into the *BlockData()* memory area is 0x40 + 67 *modulo* 32 = 0x40 + 16 = 0x40 + 0x03 = 0x43.

Reading and writing subclass data are block operations up to 32 bytes in length. If during a write the data length exceeds the maximum block size, then the data is ignored.

None of the data written to memory are bounded by the fuel gauge — the values are not rejected by the fuel gauge. Writing an incorrect value may result in hardware failure due to firmware program interpretation of the invalid data. The written data is persistent, so a power-on reset does not resolve the fault.

5.1.2 Manufacturer Information Blocks

The fuel gauge contains 64 bytes of user programmable data flash storage: **Manufacturer Info Block A** and **Manufacturer Info Block B**. The method for accessing these memory locations is slightly different, depending on whether the device is in UNSEALED or SEALED modes.

Data Flash Interface www.ti.com

When in UNSEALED mode and when 0x00 has been written to *BlockDataControl()*, accessing the Manufacturer Info Blocks is identical to accessing general data flash locations. First, a *DataFlashClass()* command sets the subclass, then a *DataFlashBlock()* command sets the offset for the first data flash address within the subclass. The *BlockData()* command codes contain the referenced data flash data. When writing the data flash, a checksum is expected to be received by *BlockDataChecksum()*. Only when the checksum is received and verified is the data actually written to data flash.

As an example, the data flash location for *Manufacturer Info Block B* is defined as having a Subclass = 58 and an Offset = 32 through 63 (32-byte block). The specification of Class = System Data is not needed to address *Manufacturer Info Block B*, but is used instead for grouping purposes when viewing data flash info in the evaluation software.

When in SEALED mode or when *BlockDataControl()* does not contain 0x00, data flash is no longer available in the manner used in UNSEALED mode. Rather than issuing subclass information, a designated Manufacturer Information Block is selected with the *DataFlashBlock()* command. Issuing a 0x01 or 0x02 with this command causes the corresponding information block (A or B, respectively) to be transferred to the command space 0x40 through 0x5F for editing or reading by the system. Upon successful writing of checksum information to *BlockDataChecksum()*, the modified block is returned to data flash.

NOTE: Manufacturer Info Block A is read-only when in SEALED mode.

5.1.3 Access Modes

The fuel gauge provides three security modes (FULL ACCESS, UNSEALED, and SEALED) that control data flash access permissions according to Table 5-1. Data Flash column refers to those data flash locations that are accessible to the user. Manufacturer Information column refers to the two 32-byte blocks.

 Security Mode
 Data Flash
 Manufacturer Information

 FULL ACCESS
 RW
 RW

 UNSEALED
 RW
 RW

 SEALED
 None
 R (A); RW (B)

Table 5-1. Data Flash Access

Although FULL ACCESS and UNSEALED modes appear identical, only the FULL ACCESS mode allows the fuel gauge to write access mode transition keys stored in the Security class.

5.1.4 Sealing or Unsealing Data Flash

The fuel gauge implements a key-access scheme to transition between SEALED, UNSEALED, and FULL ACCESS modes. Each transition requires that a unique set of two keys be sent to the fuel gauge via the *Control()* command. The keys must be sent consecutively, with no other data being written to the *Control()* register in between. To avoid conflict, the keys must be different from the codes presented in the CNTL DATA column of Table 4-2, *Control()* Subcommands.

When in SEALED mode the *CONTROL_STATUS [SS]* bit is set, but when the Unseal Keys are correctly received by the fuel gauge, the *[SS]* bit is cleared. When the Full-Access Keys are correctly received, the *CONTROL_STATUS [FAS]* bit is cleared.

Both *Unseal Key* and *Full-Access Key* have two words and are stored in data flash. The first word is Key 0 and the second word is Key 1. The order of the keys sent to fuel gauge is Key 1 followed by Key 0. The order of the bytes for each key entered through the *Control()* command is the reverse of what is read from the part. For an example, if the Unseal Key is 0x56781234, key 1 is 0x1234 and key 0 is 0x5678. Then *Control()* must supply 0x3412 and 0x7856 to unseal the part. The *Unseal Key* and the *Full-Access Key* can only be updated when in FULL ACCESS mode.

Data Flash Summary Tables 5.2

Table 5-3 through Table 5-4 summarize the data flash locations available to the user, including their default, minimum, and maximum values.

Table 5-2. Data Type Decoder

Туре	Min Value	Max Value
F4	±9.8603 × 10 ⁻³⁹	±5.707267 × 10 ³⁷
H1	0x00	0xFF
H2	0x00	0xFFFF
H4	0x00	0xFFFF FFFF
I1	-128	127
12	-32768	32767
14	-2,147,483,648	2,147,483,647
Sx	1-byte string	X-byte string
U1	0	255
U2	0	65535
U4	0	4,294,967,295

Table 5-3. Data Flash Summary

Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
Calibration	Data	104	0	F4	CC Gain	1.00E-01	4.00E+01	0.47095	mΩ
Calibration	Data	104	4	F4	CC Delta	2.98E+04	1.19E+06	559500	mΩ
Calibration	Data	104	8	12	CC Offset	-32768	32767	-1200	_
Calibration	Data	104	10	I1	Board Offset	-128	127	0	Counts
Calibration	Data	104	11	I1	Int Temp Offset	-128	127	0	0.1°C
Calibration	Data	104	12	I1	Ext Temp Offset	-128	127	0	0.1°C
Calibration	Data	104	13	I1	Pack V Offset	-128	127	0	mV
Calibration	Current	107	0	U1	Filter	0	255	239	Num
Calibration	Current	107	1	U1	Deadband	0	255	5	mA
Calibration	Current	107	2	U1	CC Deadband	0	255	17	Counts
Configuration	Charge	34	0	12	Charging Voltage	4000	4600	4350	mV
Configuration	Charge Termination	36	0	I2	Taper Current	0	1000	100	mA
Configuration	Charge Termination	36	2	I2	Min Taper Capacity	0	1000	25	0.004 mAh
Configuration	Charge Termination	36	4	12	Taper Voltage	0	1000	100	mV
Configuration	Charge Termination	36	6	U1	Current Taper Window	0	60	40	s
Configuration	Charge Termination	36	7	I1	TCA Set %	-1	100	-1	%
Configuration	Charge Termination	36	8	I1	TCA Clear %	-1	100	98	%
Configuration	Charge Termination	36	9	I1	FC Set %	-1	100	-1	%
Configuration	Charge Termination	36	10	I1	FC Clear %	-1	100	98	%
Configuration	Charge Termination	36	11	12	DODatEOC Delta T	0	1000	50	0.1°C
Configuration	JEITA	39	0	I1	T1 Temp	-128	127	0	°C
Configuration	JEITA	39	1	I1	T2 Temp	-128	127	10	°C
Configuration	JEITA	39	2	I1	T3 Temp	-128	127	45	°C
Configuration	JEITA	39	3	I1	T4 Temp	-128	127	50	°C
Configuration	JEITA	39	4	I1	T5 Temp	-128	127	60	°C
Configuration	JEITA	39	5	I1	Temp Hys	-128	127	1	°C

Close (Configuration) Subclaises (Subclaise) Subclaises (Subclaise) Oblitation (Subclaise) Oblitation (Subclaise) Configuration (Subclaise) Subclaises (Subclaise) Oblitation (Subclaise) Configuration (Subclaise) 38 (Subclaise) OFF (Subclaise) 0.0 46500 (Subclaise) Configuration (Subclaise) Author (Subclaise)					ata i iasii	-	-	-		
Configuration Cell Cell	Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
Configuration Cell Configuration Cell Cel	Configuration	JEITA	39	6	I2	Voltage	0	4600	4350	mV
Configuration JETA 38 12 12 14-15 Chrg 0 4600 4500 mV	Configuration	JEITA	39	8	12		0	4600	4350	mV
Configuration Cell Configuration Cell Cel	Configuration	JEITA	39	10	12		0	4600	4300	mV
Configuration JETA 33	Configuration	JEITA	39	12	I2		0	4600	4250	mV
Configuration Get N Get	Configuration	JEITA	39	14	U1		0	100	50	%
Configuration Seria 39	Configuration	JEITA	39	15	U1		0	100	80	%
Configuration Configuration Registers 64 0 H2 Configuration Registers 64 2 H1 Configuration Registers 64 2 H1 Configuration Configuration Registers 64 3 H1 Configuration Conf	Configuration	JEITA	39	16	U1		0	100	80	%
Configuration Registers Configuration Configuration Registers Configuratio	Configuration	JEITA	39	17	U1		0	100	80	%
Configuration Registers 64 2 H1 Configuration of Configuration 0 ff 87 Flag Configuration Registers 64 3 H1 Configuration of Configuration of Configuration 0 ff b9 Flag Configuration HDQ 64 5 U1 Host Interrupt from State (Market) 0 255 3 Num Configuration Power 68 0 12 Flesh Update (Market) 0 255 3 Num Configuration Power 68 0 12 Sleep Current (Market) 0 2500 2800 mV Configuration Power 68 9 12 Hermana -32768 32767 8 mA Configuration Power 68 11 12 Hermana -32768 32767 8 mA Configuration Dewer 68 11 12 Hermana -32768 32767 2550 mV <	Configuration	Registers	64	0	H2		0	ffff	297f	Flag
Configuration Registers 64 3 H1 Configuration of C or C	Configuration	Registers	64	2	H1	Configuration	0	ff	87	Flag
Configuration Registers 64 4 H1 Configuration D D D ff 57 Flag Configuration HDQ 64 5 U1 Host Interrupt Trees 0 255 3 Num Configuration Power 68 0 12 Flash Update OK Voltage 0 5000 2800 mV Configuration Power 68 2 12 Sleep Current O O 100 15 mA Configuration Power 68 9 12 Hibernate Current O O 100 15 mA Configuration Power 68 11 12 Hibernate O O 1255 0 s Configuration Lifetime Data 59 0 12 Lifetime Max O 1400 0 0.1°C Configuration Lifetime Data 59 2 12 Lifetime Max O 1400 1400 500 0.1°C Configuration Lifetime Data 59 4 12 Lifetime Max O 1400 32767 2800 <td>Configuration</td> <td>Registers</td> <td>64</td> <td>3</td> <td>H1</td> <td>Configuration</td> <td>0</td> <td>ff</td> <td>b9</td> <td>Flag</td>	Configuration	Registers	64	3	H1	Configuration	0	ff	b9	Flag
Configuration Power 68 0 12 Fissh Lydage 0 5000 2800 mV	Configuration	Registers	64	4	H1	Configuration	0	ff	57	Flag
Configuration Power 68	Configuration	HDQ	64	5	U1		0	255	3	Num
Configuration Power 68 9 12 Hibernate Current -32768 32767 8 mA Configuration Power 68 11 12 Hibernate Voltage 0 32767 2550 mV Configuration Power 68 13 U1 FS Wait 0 255 0 s Configuration Lifetime Data 59 0 12 Lifetime Max Temp -600 1400 500 0.1°C Configuration Lifetime Data 59 2 12 Lifetime Min Temp -600 1400 500 0.1°C Configuration Lifetime Data 59 4 12 Lifetime Min Pack Voltage 0 32767 2800 mV Configuration Lifetime Data 59 6 12 Lifetime Max Chy Gurrent -32768 32767 0 mA Configuration Lifetime Data 59 10 12 Lifetime Max Chy Gurrent -32768 32767 0	Configuration	Power	68	0	12		0	5000	2800	mV
Configuration Power 68	Configuration	Power	68	2	12	Sleep Current	0	100	15	mA
Configuration Power 68 11 12 Voltage 0 32767 2550 mV Configuration Lifetime Power 68 13 U1 FS Wait 0 255 0 s Configuration Lifetime Data 59 0 12 Lifetime Min Temp -600 1400 500 0.1°C Configuration Lifetime Data 59 4 12 Lifetime Max Pack Voltage 0 32767 2800 mV Configuration Lifetime Data 59 6 12 Lifetime Max Pack Voltage 0 32767 2800 mV Configuration Lifetime Data 59 8 12 Lifetime Max Chip Current -32768 32767 0 mA Configuration Lifetime Data 59 10 12 Lifetime Max Chip Current -32768 32767 0 mA Configuration Lifetime Data 59 10 12 Lifetime Max Chip Current -32768 32767	Configuration	Power	68	9	12		-32768	32767	8	mA
Configuration Lifetime Data 59 0 12 Lifetime Max Temp -600 1400 0 0.1°C Configuration Lifetime Data 59 2 12 Lifetime Max Temp -600 1400 500 0.1°C Configuration Lifetime Data 59 4 12 Lifetime Max Pack Voltage 0 32767 2800 mV Configuration Lifetime Data 59 6 12 Lifetime Max Chy Coltage 0 32767 5000 mV Configuration Lifetime Data 59 8 12 Lifetime Max Chy Coltage 0 32767 5000 mV Configuration Lifetime Data 59 10 12 Lifetime Max Chy Coltage -32768 32767 0 mA Configuration Lifetime Data 59 10 12 Lifetime Max Chy Coltage Current -32768 32767 0 mA Configuration Lifetime Data 59 12 U2 LT Fissh Cnt 0<	Configuration	Power	68	11	12		0	32767	2550	mV
Configuration Lifetime Data 59 0 12 Temp -600 1400 0 0.1°C	Configuration	Power	68	13	U1	FS Wait	0	255	0	S
Configuration Lifetime Data 59	Configuration	Lifetime Data	59	0	12		-600	1400	0	0.1°C
Configuration Lifetime Data 59 6 12 Lifetime Min Pack Voltage 0 32767 5000 mV	Configuration	Lifetime Data	59	2	I2		-600	1400	500	0.1°C
Configuration Lifetime Data 59 6 12 Pack Voltage 0 32/67 5000 mV	Configuration	Lifetime Data	59	4	l2		0	32767	2800	mV
Configuration Configuratio	Configuration	Lifetime Data	59	6	l2		0	32767	5000	mV
Configuration Lifetime Temp Samples 59 12 U2 LT Flash Cnt 0 32767 0 Num	Configuration	Lifetime Data	59	8	I2		-32768	32767	0	mA
Configuration Samples 39 12 02 Lifestificity 0 32/67 0 Null Configuration Lifetime Resolution 66 0 U1 LT VRes 0 255 10 0.1°C Configuration Lifetime Resolution 66 2 U1 LT VRes 0 255 25 mV Configuration Lifetime Resolution 66 2 U1 LT Update Time 0 65535 60 s Configuration Safety 2 0 12 OT Chg 0 1200 550 0.1°C Configuration Safety 2 2 U1 OT Chg Time 0 60 5 s Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety <td>Configuration</td> <td>Lifetime Data</td> <td>59</td> <td>10</td> <td>I2</td> <td>Lifetime Max Dsg Current</td> <td>-32768</td> <td>32767</td> <td>0</td> <td>mA</td>	Configuration	Lifetime Data	59	10	I2	Lifetime Max Dsg Current	-32768	32767	0	mA
Configuration Resolution 66 0 01 LT emp Res 0 255 10 0.1°C Configuration Lifetime Resolution 66 1 U1 LT V Res 0 255 25 mV Configuration Lifetime Resolution 66 2 U1 LT Update Time 0 65535 60 s Configuration Safety 2 0 12 OT Chg 0 1200 550 0.1°C Configuration Safety 2 2 U1 OT Chg Time 0 60 5 s Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s	Configuration		59	12	U2	LT Flash Cnt	0	32767	0	Num
Configuration Resolution 66 1 01 LT VRes 0 255 25 ITV Configuration Lifetime Resolution 66 2 U1 LT Cur Res 0 255 100 mA Configuration Lifetime Resolution 66 3 U2 LT Update Time 0 65535 60 s Configuration Safety 2 0 12 OT Chg 0 1200 550 0.1°C Configuration Safety 2 2 U1 OT Chg Time 0 60 5 s Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s	Configuration		66	0	U1	LT Temp Res	0	255	10	0.1°C
Configuration Resolution 66 2 01 LT Cur Res 0 255 100 IMA Configuration Lifetime Resolution 66 3 U2 LT Update Time 0 65535 60 s Configuration Safety 2 0 12 OT Chg 0 1200 550 0.1°C Configuration Safety 2 2 U1 OT Chg Time 0 60 5 s Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s	Configuration		66	1	U1	LT V Res	0	255	25	mV
Configuration Resolution 66 3 02 Time 0 65333 60 S Configuration Safety 2 0 12 OT Chg 0 1200 550 0.1°C Configuration Safety 2 2 U1 OT Chg Time 0 60 5 s Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s Configuration Safety 2 7 U1 OT Dsg 0 1200 600 5 s	Configuration		66	2	U1	LT Cur Res	0	255	100	mA
Configuration Safety 2 2 U1 OT Chg Time 0 60 5 s Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s Configuration Safety 2 8 12 OT Dsg 0 1300 550 0.1°C	Configuration		66	3	U2		0	65535	60	s
Configuration Safety 2 3 12 OT Chg Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s Configuration Safety 2 8 12 OT Dsg 0 1300 550 0.1°C	Configuration	Safety	2	0	12	OT Chg	0	1200	550	0.1°C
Configuration Safety 2 3 12 Recovery 0 1200 500 0.1°C Configuration Safety 2 5 12 OT Dsg 0 1200 600 0.1°C Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s Configuration Safety 2 8 12 OT Dsg 0 1200 550 0.1°C	Configuration	Safety	2	2	U1	OT Chg Time	0	60	5	s
Configuration Safety 2 7 U1 OT Dsg Time 0 60 5 s Configuration Safety 2 8 13 OT Dsg 0 1300 550 0.1°C	Configuration	Safety	2	3	12		0	1200	500	0.1°C
Configuration Safety 2 8 12 OT Dsg 0 1200 550 0.1°C	Configuration	Safety	2	5	12	OT Dsg	0	1200	600	0.1°C
	Configuration	Safety	2	7	U1	OT Dsg Time	0	60	5	s
	Configuration	Safety	2	8	l2		0	1200	550	0.1°C

Copyright © 2015, Texas Instruments Incorporated

Close (Configuration Ministration of Configuration Ministration Ministration of Configuration Ministration Ministr			1 (abie 5-3. D	ala Fiasii	Summary		•	ı	
Configuration Data Section S	Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
Configuration Data Data	Configuration		56	0	H2	Pack Lot Code	0	ffff	0	Hex
Configuration Data See Part	Configuration		56	2	H2	PCB Lot Code	0	ffff	0	Hex
Configuration Data So	Configuration		56	4	H2		0	ffff	0	Hex
Configuration Desta Se	Configuration		56	6	H2		0	ffff	0	Hex
Configuration Integrity Data 55	Configuration		56	8	H2	Cell Revision	0	ffff	0	Hex
Configuration Integrity Data 57 8 Hz Chocksum 0 7th 10 10 10 10 10 10 10 1	Configuration		56	10	H2		0	ffff	0	Hex
Consignation Integrity Data 57	Configuration	Integrity Data	57	6	H2		0	7fff	0	Hex
Configuration Telegriny Uses S7	Configuration	Integrity Data	57	8	H2		0	7fff	7C23	Hex
Configuration Data 48 8 U2 Cycle Count 0 65535 0 Num Configuration Data 48 10 12 CoThreshold 100 32767 900 mAh Configuration Data 48 12 12 Design Freety Capacity 0 14500 3800 mWh Configuration Data 48 16 12 SOH Load I -32768 0 400 mWh Configuration Data 48 18 U1 PDS SCH 0 100 80 % Configuration Data 48 19 U2 ISD Current 1 32767 10 hours Configuration Data 48 21 U1 Min ISD Time 0 255 7 hours Configuration Data 48 23 U1 PS SCT Sel 1 1 1 1 Num Configuration Discharge	Configuration	Integrity Data	57	10	H2		0	7fff	0	Hex
Configuration Data 48 10 12 CC Threshold 100 32767 900 mAh Configuration Data 48 12 12 Capacity 0 14600 1000 mAh Configuration Data 48 14 12 Design Energy 0 32767 3800 m/N Configuration Data 48 16 12 SOH Load 32768 0 400 mA Configuration Data 48 18 U1 TDS SCH 0 100 80 % Configuration Data 48 21 U1 ISD Tifler 0 255 127 Num Configuration Data 48 21 U1 MIST MIST MIST 0 255 127 Num Configuration Data 48 23 U1 MIST MIST MIST MIST MIST MIST MIST MIST	Configuration	Data	48	0	12	Design Voltage	2000	5000	3800	mV
Configuration Data 48 12 12 Design 0 14500 1000 mAh	Configuration	Data	48	8	U2	Cycle Count	0	65535	0	Num
Configuration Data 48 14 12 Capacity 0 14500 1000 mind Configuration Data 48 14 12 Design Energy 0 32767 3800 mWh Configuration Data 48 18 U1 TDD SOH 0 100 80 % Configuration Data 48 19 U2 ISD Current 1 32767 10 hourtage Configuration Data 48 21 U1 ISD Time 0 255 127 Num Configuration Data 48 22 U1 Min ISD Time 0 255 7 hourtage Configuration Data 48 22 U1 Min ISD Time 0 255 7 hourtage Configuration Discharge 49 0 U2 SOCT Set 1 10 1 Nmh Configuration Discharge 49	Configuration	Data	48	10	12	CC Threshold	100	32767	900	mAh
Configuration Data 48 16 I2 SOH Load I -32768 0 -400 MA Configuration Data 48 18 U1 TDD SOH Percent 0 100 80 % Configuration Data 48 19 U2 ISD Current 1 32767 10 hour rate Configuration Data 48 22 U1 Min ISD Time 0 255 7 hour Configuration Data 48 22 U1 Min ISD Time 0 255 7 hour Configuration Data 48 23 U1 Design Energy 1 10 1 Num Configuration Discharge 49 2 U2 Threshold 0 65535 175 mAh Configuration Discharge 49 8 12 BL Set Volt 0 65535 175 mAh Configuration Discharge 49	Configuration	Data	48	12	12		0	14500	1000	mAh
Configuration Data 48 18 U1 TDD SOH Percent 0 100 80 % Configuration Data 48 19 U2 ISD Current 1 32767 10 hourrate Configuration Data 48 21 U1 Min ISD Filter 0 255 127 Num Configuration Data 48 22 U1 Min ISD Time 0 255 7 hour Configuration Data 48 23 U1 Design Energy Scale 1 10 1 Num Configuration Discharge 49 0 U2 SCCF Set Threshold 0 65535 150 mAh Configuration Discharge 49 4 U2 SCCF Set Threshold 0 65535 75 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 65535 100 mAh Configu	Configuration	Data	48	14	I2	Design Energy	0	32767	3800	mWh
Configuration Data 48 19 U2 SECUNDATION No 32767 10 hourst Configuration Data 48 19 U2 ISD Current 1 32767 10 hourst Configuration Data 48 21 U1 Min ISD Time 0 255 127 Num Configuration Data 48 22 U1 Min ISD Time 0 255 7 hour Configuration Discharge 49 0 U2 SCCT Set 1 10 1 Num Configuration Discharge 49 2 U2 SCCT Clear Threshold 0 65535 175 mAh Configuration Discharge 49 6 U2 SCCT Clear Threshold 0 65535 175 mAh Configuration Discharge 49 8 12 BL Set Volt 0 65535 100 mAt Configuration Disc	Configuration	Data	48	16	12	SOH Load I	-32768	0	-400	mA
Configuration Data 48 21 U1 ISD I Filter 0 255 127 Num Configuration Data 48 22 U1 Min ISD Time 0 255 7 hour Configuration Data 48 23 U1 Design Energy 1 10 1 Num Configuration Discharge 49 0 U2 SCC1 Set Threshold 0 65535 150 mAh Configuration Discharge 49 2 U2 SCC1 Clear Threshold 0 65535 175 mAh Configuration Discharge 49 6 U2 SCCF Clear Threshold 0 65535 100 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 55000 2500 mV Configuration Discharge 49 11 12 BL Set Volt Threshold 0 60 2 s Configurat	Configuration	Data	48	18	U1		0	100	80	%
Configuration Data 48 22 U1 Min ISD Time 0 255 7 hour Configuration Data 48 23 U1 Design Energy Scale 1 10 1 Num Configuration Discharge 49 0 U2 SOC1 Set Threshold 0 65535 150 mAh Configuration Discharge 49 4 U2 SOCF Set Threshold 0 65535 75 mAh Configuration Discharge 49 6 U2 SOCF Clear Threshold 0 65535 75 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 5000 2500 mV Configuration Discharge 49 11 12 BL Clear Volt Threshold 0 5000 2500 mV Configuration Discharge 49 13 12 BH Set Volt Threshold 0 5000 2600 mV <tr< td=""><td>Configuration</td><td>Data</td><td>48</td><td>19</td><td>U2</td><td>ISD Current</td><td>1</td><td>32767</td><td>10</td><td>hourrate</td></tr<>	Configuration	Data	48	19	U2	ISD Current	1	32767	10	hourrate
Configuration Date 48 23 U1 Design Energy Scale 1 10 1 Num Configuration Discharge 49 0 U2 Threshold 0 65535 150 mAh Configuration Discharge 49 2 U2 SOCT Set Threshold 0 65535 175 mAh Configuration Discharge 49 4 U2 SOCF Set Threshold 0 65535 75 mAh Configuration Discharge 49 6 U2 SOCF Clear Threshold 0 65535 100 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 6000 2500 mV Configuration Discharge 49 11 12 BL Set Volt Threshold 0 60 2 s Configuration Discharge 49 13 12 BH Set Volt Threshold 0 5000 2600 mV	Configuration	Data	48	21	U1	ISD I Filter	0	255	127	Num
Configuration Data 49 23 01 Scale 1 10 1 Null Configuration Discharge 49 0 U2 SCC1 Clear Threshold 0 65535 150 mAh Configuration Discharge 49 4 U2 SCCF Clear Threshold 0 65535 75 mAh Configuration Discharge 49 6 U2 SCCF Clear Threshold 0 65535 100 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 65535 100 mV Configuration Discharge 49 10 U1 BL Set Volt Threshold 0 60 2 s Configuration Discharge 49 13 12 BL Set Volt Threshold 0 5000 2600 mV Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s C	Configuration	Data	48	22	U1	Min ISD Time	0	255	7	hour
Configuration Discharge 49 2 U2 Threshold Threshold 0 65535 175 mAh Configuration Discharge 49 4 U2 SOCF Set Threshold 0 65535 75 mAh Configuration Discharge 49 6 U2 SOCF Clear Threshold 0 65535 100 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 65535 100 mAh Configuration Discharge 49 10 U1 BL Set Volt Threshold 0 60 2 s Configuration Discharge 49 11 12 BL Clear Volt Threshold 0 5000 2600 mV Configuration Discharge 49 13 12 BH Set Volt Threshold 0 5000 2600 mV Configuration Discharge 49 15 U1 BH Clear Volt Threshold 0 60 2 s <td>Configuration</td> <td>Data</td> <td>48</td> <td>23</td> <td>U1</td> <td></td> <td>1</td> <td>10</td> <td>1</td> <td>Num</td>	Configuration	Data	48	23	U1		1	10	1	Num
Configuration Discharge 49 4 U2 Threshold Threshold Threshold Threshold O 66535 75 mAh Configuration Discharge 49 6 U2 SOCF Clear Threshold O 0 66535 100 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold O 0 5000 2500 mV Configuration Discharge 49 10 U1 BL Set Volt Time 0 60 2 s Configuration Discharge 49 11 12 BL Clear Volt Time 0 5000 2600 mV Configuration Discharge 49 13 12 BH Set Volt Timeshold 0 5000 2600 mV Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s Configuration Discharge 49 16 12 BH Clear Volt Timeshold 0 5000 4400 mV <td>Configuration</td> <td>Discharge</td> <td>49</td> <td>0</td> <td>U2</td> <td></td> <td>0</td> <td>65535</td> <td>150</td> <td>mAh</td>	Configuration	Discharge	49	0	U2		0	65535	150	mAh
Configuration Discharge 49 6 U2 SOCF Clear Threshold Threshold 0 65535 100 mAh Configuration Discharge 49 8 12 BL Set Volt Threshold 0 5000 2500 mV Configuration Discharge 49 10 U1 BL Set Volt Time 0 60 2 s Configuration Discharge 49 11 12 BL Clear Volt Time 0 60 2 s Configuration Discharge 49 13 12 BH Set Volt Threshold 0 5000 2600 mV Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s Configuration Discharge 49 16 12 BH Clear Volt Time 0 60 2 s Configuration Discharge 49 16 12 BH Clear Volt Time 0 60 2 s	Configuration	Discharge	49	2	U2		0	65535	175	mAh
Configuration Discharge 49 8 12 Threshold Threshold 0 5535 100 mAn Configuration Discharge 49 8 12 BL Set Volt Threshold 0 5000 2500 mV Configuration Discharge 49 11 12 BL Clear Volt Time 0 60 2 s Configuration Discharge 49 13 12 BH Set Volt Threshold 0 5000 2600 mV Configuration Discharge 49 15 U1 BH Set Volt Threshold 0 5000 4500 mV Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s Configuration Discharge 49 16 12 BH Clear Volt Threshold 0 5000 4400 mV Gas Gauging Current Thresholds 81 0 12 Dsg Current Threshold 0 2000 75 mA	Configuration	Discharge	49	4	U2		0	65535	75	mAh
Configuration Discharge 49 10 U1 BL Set Volt Time 0 60 2 s	Configuration	Discharge	49	6	U2		0	65535	100	mAh
Configuration Discharge 49 10 01 Time 0 60 2 s Configuration Discharge 49 11 I2 BL Clear Volt Threshold 0 5000 2600 mV Configuration Discharge 49 13 I2 BH Set Volt Threshold 0 5000 4500 mV Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s Configuration Discharge 49 16 I2 BH Clear Volt Threshold 0 5000 4400 mV Gas Gauging Current Thresholds 81 0 I2 Dsg Current Threshold 0 2000 60 mA Gas Gauging Current Thresholds 81 2 I2 Chg Current Threshold 0 2000 75 mA Gas Gauging Current Thresholds 81 4 I2 Quit Current Timeshold 0 65535 60 s	Configuration	Discharge	49	8	l2		0	5000	2500	mV
Configuration Discharge 49 11 12 Threshold 0 5000 2500 mV Configuration Discharge 49 13 12 BH Set Volt Time 0 5000 4500 mV Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s Configuration Discharge 49 16 12 BH Clear Volt Time 0 60 2 s Configuration Discharge 49 16 12 BH Clear Volt Time 0 5000 4400 mV Gas Gauging Current Thresholds 81 0 12 Dsg Current Threshold 0 2000 60 mA Gas Gauging Current Thresholds 81 4 12 Quit Current Threshold 0 2000 75 mA Gas Gauging Current Thresholds 81 8 U1 Dsg Relax Time 0 65535 60 s	Configuration	Discharge	49	10	U1		0	60	2	s
Configuration Discharge 49 15 U1 BH Volt Time 0 60 2 s	Configuration	Discharge	49	11	l2		0	5000	2600	mV
Configuration Discharge 49 16 12 BH Clear Volt Threshold 0 5000 4400 mV Gas Gauging Current Thresholds 81 0 12 Dsg Current Threshold 0 2000 60 mA Gas Gauging Current Thresholds 81 2 12 Chg Current Threshold 0 2000 75 mA Gas Gauging Current Thresholds 81 4 12 Quit Current 0 1000 40 mA Gas Gauging Current Thresholds 81 6 U2 Dsg Relax Time 0 65535 60 s Gas Gauging Current Thresholds 81 8 U1 Chg Relax Time 0 255 60 s Gas Gauging Current Thresholds 81 9 12 Max IR Correct 0 1000 400 mV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh	Configuration	Discharge	49	13	l2		0	5000	4500	mV
Control	Configuration	Discharge	49	15	U1	BH Volt Time	0	60	2	s
Gas Gauging Thresholds 81 0 12 Threshold 0 2000 60 IMA Gas Gauging Current Thresholds 81 2 12 Chg Current Threshold 0 2000 75 mA Gas Gauging Current Thresholds 81 4 12 Quit Current 0 1000 40 mA Gas Gauging Turrent Thresholds 81 6 U2 Dsg Relax Time 0 65535 60 s Gas Gauging Current Thresholds 81 8 U1 Chg Relax Time 0 255 60 s Gas Gauging Current Thresholds 81 9 12 Max IR Correct 0 1000 400 mV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Configuration	Discharge	49	16	I2		0	5000	4400	mV
Gas Gauging Thresholds 81 2 12 Threshold 0 2000 73 IIIA Gas Gauging Current Thresholds 81 4 12 Quit Current 0 1000 40 mA Gas Gauging Current Thresholds 81 6 U2 Dsg Relax Time 0 65535 60 s Gas Gauging Current Thresholds 81 8 U1 Chg Relax Time 0 255 60 s Gas Gauging Current Thresholds 81 9 12 Max IR Correct 0 1000 400 mV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Gas Gauging		81	0	I2		0	2000	60	mA
Gas Gauging Thresholds 81 4 12 Quit Current 0 1000 40 IIIA Gas Gauging Current Thresholds 81 6 U2 Dsg Relax Time 0 65535 60 s Gas Gauging Current Thresholds 81 8 U1 Chg Relax Time 0 255 60 s Gas Gauging Current Thresholds 81 9 12 Max IR Correct 0 1000 400 mV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Gas Gauging	Current Thresholds	81	2	l2		0	2000	75	mA
Gas Gauging Thresholds 81 8 U1 Chg Relax Time 0 255 60 s Gas Gauging Current Thresholds 81 9 12 Max IR Correct 0 1000 400 mV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Gas Gauging		81	4	I2	Quit Current	0	1000	40	mA
Gas Gauging Thresholds 61 6 01 Time 0 255 60 S Gas Gauging Current Thresholds 81 9 12 Max IR Correct 0 1000 400 mV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Gas Gauging		81	6	U2		0	65535	60	s
Gas Gauging Thresholds 81 9 12 Max in Collect 0 1000 400 IIIV Gas Gauging State 82 0 12 Qmax Cell 0 0 14500 1000 mAh Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Gas Gauging		81	8	U1	Chg Relax Time	0	255	60	s
Gas Gauging State 82 2 H1 Update Status 0 6 0 Hex	Gas Gauging		81	9	l2	Max IR Correct	0	1000	400	mV
	Gas Gauging	State	82	0	I2	Qmax Cell 0	0	14500	1000	mAh
Gas Gauging State 82 3 I2 V at Chg Term 0 5000 4350 mV	Gas Gauging	State	82	2	H1	Update Status	0	6	0	Hex
	Gas Gauging	State	82	3	12	V at Chg Term	0	5000	4350	mV

Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
Gas Gauging	State	82	5	12	Avg I Last Run	-32768	0	-299	mA
Gas Gauging	State	82	7	I2	Avg P Last Run	-32768	0	-1131	pwr
Gas Gauging	State	82	9	12	Delta Voltage	0	32767	2	mV
Gas Gauging	State	82	11	12	T Rise	0	32767	50	Num
Gas Gauging	State	82	13	12	T Time Constant	0	32767	1000	Num
Gas Gauging	IT Cfg	80	0	U1	Load Select	0	6	1	Num
Gas Gauging	IT Cfg	80	1	U1	Load Mode	0	1	1	Num
Gas Gauging	IT Cfg	80	17	U1	Max Res Factor	0	255	15	Num
Gas Gauging	IT Cfg	80	18	U1	Min Res Factor	0	255	5	Num
Gas Gauging	IT Cfg	80	20	U2	Ra Filter	0	1000	800	Num
Gas Gauging	IT Cfg	80	22	12	Res V Drop	0	32767	50	mV
Gas Gauging	IT Cfg	80	39	U1	Fast Qmax Start DOD %	0	100	92	%
	.=				Fast Qmax	_			
Gas Gauging	IT Cfg	80	40	U1	End DOD %	0	100	96	%
Gas Gauging	IT Cfg	80	41	I2	Start Volt Delta	0	4200	200	mV
Gas Gauging	IT Cfg	80	43	U2	Fast Qmax Current Threshold	0	1000	4	hourrate
Gas Gauging	IT Cfg	80	61	U1	Qmax Capacity Err	0	100	15	0.10%
Gas Gauging	IT Cfg	80	62	U1	Max Qmax Change	0	255	30	%
Gas Gauging	IT Cfg	80	64	I2	Terminate Voltage	2800	3700	3000	mV
Gas Gauging	IT Cfg	80	66	I2	Term V Delta	0	4200	200	mV
Gas Gauging	IT Cfg	80	69	U2	ResRelax Time	0	65535	500	s
Gas Gauging	IT Cfg	80	73	12	User Rate-mA	0	32767	0	mA
Gas Gauging	IT Cfg	80	75	12	User Rate-Pwr	0	32767	0	pwr
Gas Gauging	IT Cfg	80	77	I2	Reserve Cap- mAh	0	14500	0	mAh
Gas Gauging	IT Cfg	80	79	I2	Reserve Energy	0	32767	0	egy
Gas Gauging	IT Cfg	80	84	12	Max DeltaV	0	32767	200	mV
Gas Gauging	IT Cfg	80	86	12	Min DeltaV	0	32767	0	mV
Gas Gauging	IT Cfg	80	88	U1	Max Sim Rate	0	255	1	hourrate
Gas Gauging	IT Cfg	80	89	U1	Min Sim Rate	0	255	20	hourrate
Gas Gauging	IT Cfg	80	90	12	Ra Max Delta	0	32767	54	mΩ
Gas Gauging	IT Cfg	80	92	12	Trace Resistance	0	32767	0	mΩ
Gas Gauging	IT Cfg	80	94	12	Downstream Resistance	0	32767	0	mΩ
Gas Gauging	IT Cfg	80	96	U1	Qmax Max Delta %	0	100	5	%
Gas Gauging	IT Cfg	80	97	U1	Qmax Bound %	0	255	130	%
Gas Gauging	IT Cfg	80	98	U2	DeltaV Max Delta	0	65535	10	mV
Gas Gauging	IT Cfg	80	100	12	Max Res Scale	0	32767	5000	Num
Gas Gauging	IT Cfg	80	102	12	Min Res Scale	0	32767	200	Num
Gas Gauging	IT Cfg	80	104	U1	Fast Scale Start SOC	0	100	10	%
Gas Gauging	IT Cfg	80	105	U1	Fast Scale Load Select	0	6	3	Num
Gas Gauging	IT Cfg	80	106	I2	Charge Hys V Shift	0	2000	40	mV
Gas Gauging	IT Cfg	80	108	I1	RaScl OCV Rst Temp Thresh	0	127	15	°C
Gas Gauging	IT Cfg	80	109	I2	Max Allowed Current	0	32767	8500	mA

		1 (abie 5-3. D	ala Fiasii	Summary	(Continue	u)		
Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
Gas Gauging	IT Cfg	80	111	U1	Max Current Pulse Duration	0	255	10	s
Gas Gauging	IT Cfg	80	112	I2	Max Current Interrupt Step	-32768	32767	500	mA
Gas Gauging	IT Cfg	80	116	U2	Predict Outside Temp Time	0	65535	2000	s
Gas Gauging	IT Cfg	80	118	U1	Termination Voltage Valid Time	0	255	2	s
Security	Codes	112	0	H2	Sealed to Unsealed MSB	0	ffff	3672	Hex
Security	Codes	112	2	H2	Sealed to Unsealed LSB	0	ffff	414	Hex
Security	Codes	112	4	H2	Unsealed to Full MSB	0	ffff	ffff	Hex
Security	Codes	112	6	H2	Unsealed to Full LSB	0	ffff	ffff	Hex
Security	Codes	112	8	H2	Authen Key3 MSB	0	ffff	123	Hex
Security	Codes	112	10	H2	Authen Key3 LSB	0	ffff	4567	Hex
Security	Codes	112	12	H2	Authen Key2 MSB	0	ffff	89ab	Hex
Security	Codes	112	14	H2	Authen Key2 LSB	0	ffff	cdef	Hex
Security	Codes	112	16	H2	Authen Key1 MSB	0	ffff	fedc	Hex
Security	Codes	112	18	H2	Authen Key1 LSB	0	ffff	ba98	Hex
Security	Codes	112	20	H2	Authen Key0 MSB	0	ffff	7654	Hex
Security	Codes	112	22	H2	Authen Key0 LSB	0	ffff	3210	Hex
System Data	Manufacturer Info	58	0	H1	Block A 0	0	ff	0	Hex
System Data	Manufacturer Info	58	1	H1	Block A 1	0	ff	0	Hex
System Data	Manufacturer Info	58	2	H1	Block A 2	0	ff	0	Hex
System Data	Manufacturer Info	58	3	H1	Block A 3	0	ff	0	Hex
System Data	Manufacturer Info	58	4	H1	Block A 4	0	ff	0	Hex
System Data	Manufacturer Info	58	5	H1	Block A 5	0	ff	0	Hex
System Data	Manufacturer Info	58	6	H1	Block A 6	0	ff	0	Hex
System Data	Manufacturer Info	58	7	H1	Block A 7	0	ff	0	Hex
System Data	Manufacturer Info	58	8	H1	Block A 8	0	ff	0	Hex
System Data	Manufacturer Info	58	9	H1	Block A 9	0	ff	0	Hex
System Data	Manufacturer Info	58	10	H1	Block A 10	0	ff	0	Hex
System Data	Manufacturer Info	58	11	H1	Block A 11	0	ff	0	Hex
System Data	Manufacturer Info	58	12	H1	Block A 12	0	ff	0	Hex
System Data	Manufacturer Info	58	13	H1	Block A 13	0	ff	0	Hex
System Data	Manufacturer Info	58	14	H1	Block A 14	0	ff	0	Hex
System Data	Manufacturer Info	58	15	H1	Block A 15	0	ff	0	Hex
System Data	Manufacturer Info	58	16	H1	Block A 16	0	ff	0	Hex
System Data	Manufacturer Info	58	17	H1	Block A 17	0	ff	0	Hex
	1	l	l	l	1	l	I.	l .	

21			able 5-5. D		-	-	-	5.4	
Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
System Data	Manufacturer Info	58	18	H1	Block A 18	0	ff	0	Hex
System Data	Manufacturer Info	58	19	H1	Block A 19	0	ff	0	Hex
System Data	Manufacturer Info	58	20	H1	Block A 20	0	ff	0	Hex
System Data	Manufacturer Info	58	21	H1	Block A 21	0	ff	0	Hex
System Data	Manufacturer Info	58	22	H1	Block A 22	0	ff	0	Hex
System Data	Manufacturer Info	58	23	H1	Block A 23	0	ff	0	Hex
System Data	Manufacturer Info	58	24	H1	Block A 24	0	ff	0	Hex
System Data	Manufacturer Info	58	25	H1	Block A 25	0	ff	0	Hex
System Data	Manufacturer Info	58	26	H1	Block A 26	0	ff	0	Hex
System Data	Manufacturer Info	58	27	H1	Block A 27	0	ff	0	Hex
System Data	Manufacturer Info	58	28	H1	Block A 28	0	ff	0	Hex
System Data	Manufacturer Info	58	29	H1	Block A 29	0	ff	0	Hex
System Data	Manufacturer Info	58	30	H1	Block A 30	0	ff	0	Hex
System Data	Manufacturer Info	58	31	H1	Block A 31	0	ff	0	Hex
System Data	Manufacturer Info	58	32	H1	Block B 0	0	ff	0	Hex
System Data	Manufacturer Info	58	33	H1	Block B 1	0	ff	0	Hex
System Data	Manufacturer Info	58	34	H1	Block B 2	0	ff	0	Hex
System Data	Manufacturer Info	58	35	H1	Block B 3	0	ff	0	Hex
System Data	Manufacturer Info	58	36	H1	Block B 4	0	ff	0	Hex
System Data	Manufacturer Info	58	37	H1	Block B 5	0	ff	0	Hex
System Data	Manufacturer Info	58	38	H1	Block B 6	0	ff	0	Hex
System Data	Manufacturer Info	58	39	H1	Block B 7	0	ff	0	Hex
System Data	Manufacturer Info	58	40	H1	Block B 8	0	ff	0	Hex
System Data	Manufacturer Info	58	41	H1	Block B 9	0	ff	0	Hex
System Data	Manufacturer Info	58	42	H1	Block B 10	0	ff	0	Hex
System Data	Manufacturer Info	58	43	H1	Block B 11	0	ff	0	Hex
System Data	Manufacturer Info	58	44	H1	Block B 12	0	ff	0	Hex
System Data	Manufacturer Info	58	45	H1	Block B 13	0	ff	0	Hex
System Data	Manufacturer Info	58	46	H1	Block B 14	0	ff	0	Hex
System Data	Manufacturer Info	58	47	H1	Block B 15	0	ff	0	Hex
System Data	Manufacturer Info	58	48	H1	Block B 16	0	ff	0	Hex
System Data	Manufacturer Info	58	49	H1	Block B 17	0	ff	0	Hex
System Data	Manufacturer Info	58	50	H1	Block B 18	0	ff	0	Hex
System Data	Manufacturer Info	58	51	H1	Block B 19	0	ff	0	Hex
	0					1			l

	Table 5-3. Data Flash Summary (continued)											
Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units			
System Data	Manufacturer Info	58	52	H1	Block B 20	0	ff	0	Hex			
System Data	Manufacturer Info	58	53	H1	Block B 21	0	ff	0	Hex			
System Data	Manufacturer Info	58	54	H1	Block B 22	0	ff	0	Hex			
System Data	Manufacturer Info	58	55	H1	Block B 23	0	ff	0	Hex			
System Data	Manufacturer Info	58	56	H1	Block B 24	0	ff	0	Hex			
System Data	Manufacturer Info	58	57	H1	Block B 25	0	ff	0	Hex			
System Data	Manufacturer Info	58	58	H1	Block B 26	0	ff	0	Hex			
System Data	Manufacturer Info	58	59	H1	Block B 27	0	ff	0	Hex			
System Data	Manufacturer Info	58	60	H1	Block B 28	0	ff	0	Hex			
System Data	Manufacturer Info	58	61	H1	Block B 29	0	ff	0	Hex			
System Data	Manufacturer Info	58	62	H1	Block B 30	0	ff	0	Hex			
System Data	Manufacturer Info	58	63	H1	Block B 31	0	ff	0	Hex			
Ra Tables	Ra0 Table	88	0	H2	Ra Flag	0	ffff	ff55	-			
Ra Tables	Ra0 Table	88	2	I2	Ra 0	0	32767	272	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	4	12	Ra 1	0	32767	316	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	6	12	Ra 2	0	32767	374	2-10 Ω			
Ra Tables	Ra0 Table	88	8	I2	Ra 3	0	32767	507	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	10	12	Ra 4	0	32767	360	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	12	12	Ra 5	0	32767	330	2-10 Ω			
Ra Tables	Ra0 Table	88	14	12	Ra 6	0	32767	389	2-10 Ω			
Ra Tables	Ra0 Table	88	16	I2	Ra 7	0	32767	345	2-10 Ω			
Ra Tables	Ra0 Table	88	18	I2	Ra 8	0	32767	352	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	20	12	Ra 9	0	32767	367	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	22	12	Ra 10	0	32767	374	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	24	12	Ra 11	0	32767	397	2 ⁻¹⁰ Ω			
		88	26	12	Ra 12	0		455				
Ra Tables	Ra0 Table						32767		2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	28	12	Ra 13	0	32767	808	2 ⁻¹⁰ Ω			
Ra Tables	Ra0 Table	88	30	12	Ra 14	0	32767	1182	2 ⁻¹⁰ Ω			
Ra Tables Ra Tables	Ra0x Table	89 89	0 2	H2 I2	Ra Flag Ra 0	0	ffff 32767	ffff 272				
				12		0			2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	4		Ra 1		32767	316	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	6	12	Ra 2	0	32767	374	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	8	I2	Ra 3	0	32767	507	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	10	12	Ra 4	0	32767	360	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	12	I2	Ra 5	0	32767	330	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	14	I2	Ra 6	0	32767	389	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	16	I2	Ra 7	0	32767	345	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	18	I2	Ra 8	0	32767	352	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	20	I2	Ra 9	0	32767	367	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	22	12	Ra 10	0	32767	374	2-10 Ω			
Ra Tables	Ra0x Table	89	24	I2	Ra 11	0	32767	397	2 ⁻¹⁰ Ω			
Ra Tables	Ra0x Table	89	26	I2	Ra 12	0	32767	455	2-10 Ω			
Ra Tables	Ra0x Table	89	28	12	Ra 13	0	32767	808	2 ⁻¹⁰ Ω			
	1	1			1			1	L			

Class	Subclass	Subclass ID	Offset	Туре	Name	Min	Max	Default	Units
Ra Tables	Ra0x Table	89	30	12	Ra 14	0	32767	1182	2 ⁻¹⁰ Ω

Table 5-4. Data Flash to EVSW Conversion

Class	Subclass ID	Subclass	Offset	Name	Data Type	Data Flash Default	Data Flash Unit	EVSW Default	EVSW Unit	Data Flash to EVSW Conversion
		Data -	0	CC Gain	F4	0.9536	number	5.00	mΩ	4.768 / DF
Calibration	104		4	CC Delta	F4	11.19e5	number	5.0737	mΩ	5677445 / DF
Calibration	104		8	CC Offset	12	1432	mA	6.8736	mA	DF × 0.0048
			10	Board Offset	I1	88	μA	0.66	μA	DF × 0.0075

www.ti.com Configuration Class

5.3 Configuration Class

5.3.1 Safety Subclass

5.3.1.1 Charging Overtemperature Threshold, Delay Time, and Recovery

Subclass	Subclass	Offset	Name	Data			Unit	
ID	Subciass	Oliset	Name	Type	Min	Max	Default	Oilit
		0	OT Chg	12	0	1200	550	0.1°C
2	Safety	2	OT Chg Time	U1	0	60	5	S
		3	OT Chg Recovery	12	0	1200	500	0.1°C

OT Chg:

When the pack temperature measured by *Temperature()* rises to or above the overtemperature charge (*OT Chg*) threshold while charging (*Current > Chg Current Threshold*), then the *Flags()* [*OTC*] bit is set after *OT Chg Time*. If the OTC condition clears prior to the expiration of the *OT Chg Time* timer, then the *Flags()* [*OTC*] bit is not set.

This setting depends on the environment temperature and the battery specification. Verify battery specification allows temperatures up to this setting during a charge and that this setting is sufficient for the application. The default is 55°C, sufficient for most Li-lon applications.

OT Chg Time:

See *OT Chg*. This is a buffer time allotted for overtemperature in the charge direction condition. The timer starts every time that *Temperature()* is greater than *OT Chg* and during a charge. When the timer expires, the fuel gauge forces an *[OTC]* in *Flags()*. Setting the *OT Chg Time* to 0 disables this function.

Default is set to 2 seconds, sufficient for most applications. Temperature is normally a slow-varying condition that does not need high-speed triggering. It must be set long enough to prevent false triggering of the *Flags()* [OTC] bit, but short enough to prevent damage to the battery pack.

OT Chg Recovery:

OT Chg Recovery is the temperature when the battery recovers from an **OT Chg** fault. This is the only recovery method for an **OT Chg** fault.

The default is 50°C, which is 5°C lower than OT Chg.

5.3.1.2 Discharging Overtemperature Threshold, Delay Time, and Recovery

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID	Subciass	Oliset	Name	Туре	Min	Max	Default	Oilit
		5	OT Dsg	12	0	1200	600	0.1°C
2	Safety	7	OT Dsg Time	U1	0	60	5	S
		8	OT Dsg Recovery	12	0	1200	550	0.1°C

OT Dsg:

When the pack temperature measured by *Temperature()* rises to or above this threshold while discharging (*Current* < (–)*Dsg Current Threshold*), then the *Flags()* [OTD] bit is set after *OT Dsg Time*. If the OTD condition clears prior to the expiration of the *OT Dsg Time* timer, then the [OTD] bit is not set. If the condition does not clear, then the [OTD] bit is set.

This setting depends on the environment temperature and the battery specification. Verify that the battery specification allows temperatures up to this setting while discharging, and verify that these setting are sufficient for the application temperature. The default is 60°C which is sufficient for most Lilon applications. The default *OT Dsg* is higher than the default *OT Chg* because Li-lon can handle a higher temperature in the discharge direction than in the charge direction.

Configuration Class www.ti.com

OT Dsg Time:

See *OT Dsg*. This is a buffer time allotted for overtemperature in the discharge direction condition. The timer starts every time that *Temperature()* measured is greater than *OT Dsg* during a discharge. When the timer expires, then the fuel gauge forces the *Flags()* [OTD] bit to be set. Setting the *OT Dsg Time* to 0 disables this feature.

This is normally set to 2 seconds which is sufficient for most applications. Temperature is normally a slow-acting condition that does not need high-speed triggering. Set *OT Dsg Time* long enough to prevent false triggering of the *[OTD]* bit in *Flags()*, but short enough to prevent damage to the battery pack.

OT Dsg Recovery:

OT Dsg Recovery is the temperature at which the battery recovers from an **OT Dsg** fault. This is the only recovery method for an **OT Dsg** fault.

The default is 55°C, which is 5°C lower than OT Dsg.

5.3.2 Charge Subclass

5.3.2.1 Charging Voltage

Subclass	Subclass	Offset	Name	Data		Value		Unit	
ID	Jubciass	Oliset	Name	Type	Min	Max	Default	Offic	
34	Charge	0	Charging Voltage	12	4000	5000	4350	mV	

The fuel gauge uses this value along with *Taper Voltage* to detect charge termination. During Primary Charge Termination detection, one of the three requirements is that *Voltage* must be above (*Charging Voltage – Taper Voltage*) for the gauge to start trying to qualify a termination. This value depends on the charger that is expected to be used for the battery pack. The default is 4.35 V.

5.3.3 Charge Termination Subclass

5.3.3.1 Taper Current, Minimum Taper Capacity, Taper Voltage, and Current Taper Window

Subclass	Subclass	Offset	Name	Data Value	Value		Unit	
ID	Subciass	Oliset	Name	Type	Min	Max	Default	O.IIC
		0	Taper Current	12	0	1000	100	mA
36	Charge	2	Min Taper Capacity	12	0	1000	25	0.004mAh
30	Termination	4	Taper Voltage	12	0	1000	100	mV
		6	Current Taper Window	U1	0	60	40	s

Taper Current is used in the Primary Charge Termination Algorithm. *AverageCurrent()* is integrated over each of the two *Current Taper Window* periods separately, and then they are averaged separately to give two averages (lavg1, lavg2). Three requirements must be met to qualify for Primary Charge Termination:

- During two consecutive periods of Current Taper Windows: lavg1 < Taper Current and lavg2 < Taper Current
- During the same periods: Accumulated change in capacity > Min Taper Capacity per Current Taper Window
- Voltage > Charging Voltage Taper Voltage

When Primary Charge Termination conditions are met, the Flags() [FC] bit is set and [CHG] bit is cleared. Also, if the **Pack Configuration [RMFCC]** bit is set, then RemainingCapacity() is set equal to FullChargeCapacity().

www.ti.com Configuration Class

This register depends on battery characteristics and charger specifications, but typical values are C/10 to C/20. *AverageCurrent()* is not used for the qualification because its time constant is not the same as the *Current Taper Window*. The reason for making two current taper qualifications is to prevent false current taper qualifications. False primary charge terminations happen with pulse charging and with random starting and stopping of the charge current. This is particularly critical at the beginning or end of the qualification period. It is important to note that as the *Current Taper Window* value is increased, the current range in the second requirement for primary charge termination is lowered. If the *Current Taper Window* is increased, then the current used to integrate to the *Min Taper Capacity* is decreased and this threshold becomes more sensitive.

5.3.3.2 Terminate Charge Alarm Set % and Clear %

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID	Subciass	Oliset	Name	Type	Min	Max	Default	Offic
36	Charge	7	TCA Set %	I1	-1	100	-1	Percent
30	Termination	8	TCA Clear %	I1	-1	100	98	Percent

TCA Set % is the terminate charge alarm set percentage threshold. *TCA Set* % sets a *StateOfCharge()* percentage threshold at which the *Flags()* [*CHG*] bit is cleared. When *TCA Set* % is set to −1, it disables the use of the charge alarm threshold. When *TCA Set* % is set to −1, the [*CHG*] bit is cleared when the taper condition is detected.

TCA Clear % is the terminate charge alarm clear percentage threshold. **TCA Clear** % sets a StateOfCharge() percentage level at which the Flags() [CHG] bit is set.

[CHG] bit is cleared:

- At taper termination if **TCA Set** % is -1.
- When StateOfCharge() ≥ TCA Set % and if TCA Set % is not -1.
- If Flags() [OTC] or [CHG_INH] is set.

[CHG] bit is set:

When any of the conditions for [CHG] bit to be cleared does not exist and StateOfCharge() ≤ TCA
Clear %.

NOTE: *TCA Set* % and *TCA Clear* % only affect the *Flags()* [*CHG*] bit but does not affect the charge termination process or the gauging function.

5.3.3.3 Full Charge Set % and Clear %

Subclass	Subclass	Offset	Name	Data		Value			
ID	Subciass	Oliset	Name	Type	Min	Max	Default	Unit	
36	Charge	9	FC Set %	I1	-1	100	-1	Percent	
30	Termination	10	FC Clear %	I1	-1	100	98	Percent	

FC Set %

FC Set % is the full charge set percentage threshold. **FC Set** % sets a *StateOfCharge()* percentage threshold at which the *Flags()* [FC] bit is set. When **FC Set** % is a value other than -1, the [FC] bit is set based on the amount of passed charge detected by the gauge and not charge termination detection. If **FC Set** % is set to -1, the [FC] bit is set based on charge termination detection (see **Min Taper Capacity**, **Taper Current**, and **Taper Voltage** in Section 5.3.3.1).

NOTE: FC Set % only affects the Flags() [FC] bit which does not affect the charge termination process.

The default value is set to −1%.

Configuration Class www.ti.com

FC Clear %

FC Clear % is the full charge clear percentage threshold. **FC Clear** % sets a StateOfCharge() percentage threshold at which the Flags() [FC] bit is cleared.

NOTE: *FC Clear* % only affects the *Flags()* [FC] bit which does not affect the charge termination process.

The default value is set to 98%.

5.3.3.4 DOD at EOC Delta Temperature

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID	Subciass	Oliset	Name	Type	Min	Max	Default	Oilit
36	Charge Termination	11	DODatEOC Delta T	12	0	1000	50	0.1°C

DODatEOC Delta T

This represents the temperature change threshold to update Q_{start} and RemainingCapacity() due to temperature changes. During relaxation and at the start of charging, the remaining capacity is calculated as $RemainingCapacity() = FullChargeCapacity() - Q_{start}$. As temperature decreases, Q_{start} can become much smaller than that of the old FullChargeCapacity() value, resulting in overestimation of RemainingCapacity(). To improve accuracy, FullChargeCapacity() is updated whenever the temperature change since the last FullChargeCapacity() update is greater than $PodatEOC\ Delta\ T \times 0.1^{\circ}C$.

The default value is 50. Note that the units are a tenth of a °C which means a value of 50 corresponds to 5°C.

5.3.4 **JEITA**

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID	Subciass	Offset	Name	Type	Min	Max	Default	Unit
		0	T1 Temp	I1	-128	127	0	°C
		1	T2 Temp	l1	-128	127	10	°C
		2	T3 Temp	l1	-128	127	45	°C
		3	T4 Temp	l1	-128	127	50	°C
		4	T5 Temp	l1	-128	127	60	°C
		5	Temp Hys	l1	-128	127	1	°C
39	JEITA	6	T1-T2 Chg Voltage	12	0	4600	4350	mV
39	JEIIA	8	T2-T3 Chg Voltage	12	0	4600	4350	mV
		10	T3-T4 Chg Voltage	12	0	4600	4300	mV
		12	T4-T5 Chg Voltage	12	0	4600	4250	mV
		14	T1-T2 Chg Current	U1	0	100	50	Percent
		15	T2-T3 Chg Current	U1	0	100	80	Percent
		16	T3-T4 Chg Current	U1	0	100	80	Percent
		17	T4-T5 Chg Current	U1	0	100	80	Percent

T1 Temp, **T2 Temp**, **T3 Temp**, **T4 Temp**, and **T5 Temp** represent the temperature boundaries for updating the *ChargingCurrent()* and *ChargingVoltage()* values reported as part of the JEITA charging profile.

- If Temperature() < T1 Temp, ChargingCurrent() and ChargingVoltage() are set to 0.
- If T1 Temp ≤Temperature() ≤ T2 Temp, T1-T2 Chg Current and T1-T2 Chg Voltage are reported.
- If **T2 Temp** < Temperature() ≤ **T3 Temp**, **T2-T3 Chg Current** and **T2-T3 Chg Voltage** are reported.

www.ti.com Configuration Class

- If **T3 Temp** < Temperature() ≤ **T4 Temp**, **T3-T4 Chg Current** and **T3-T4 Chg Voltage** are reported.
- If **T4 Temp** < Temperature() ≤ **T5 Temp**, **T4-T5 Chg Current** and **T4-T5 Chg Voltage** are reported.
- If Temperature() > T5 Temp, ChargingCurrent() and ChargingVoltage() are set to 0.

Positive temperature hysteresis (*Temp Hys*) is applied with increasing temperature across the *T1 Temp* or *T2 Temp* thresholds and negative temperature hysteresis is used when moving from right to left across the *T3 Temp*, *T4 Temp*, or *T4 Temp* thresholds. Programmed charging voltage parameters are in terms of mV and charging current is in terms of % *Design Capacity*.

5.3.5 Data Subclass

5.3.5.1 Design Voltage

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID	Subciass	Oliset	Name	Туре	Min	Max	Default	Oilit
48	Data	0	Design Voltage	12	2000	5000	3800	mV

Design Voltage is the nominal voltage of the pack as specified by the battery vendor. The value should be set based on the battery specification.

5.3.5.2 Cycle Count

Subclass	Subclass	Offset	Name	Data		Value		
ID	Jubciass	Oliset	Name	Type	Min	Max Default	Unit	
48	Data	8	Cycle Count	U2	0	65535	0	Count

This register records the number of cycles the battery has experienced. One cycle occurs when accumulated discharge ≥ *CC Threshold*. The value is reported in *CycleCount()*.

5.3.5.3 Cycle Count Threshold

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID	Subciass	Oliset	Name	Туре	Min	Max	Default	Oille
48	Data	10	CC Threshold	12	100	32767	900	mAh

This value increments *CycleCount()*. When the gauge accumulates enough discharge capacity equal to *CC Threshold*, then it increments *CycleCount()* by 1. This discharge capacity does not have to be consecutive. The internal register that accumulates the discharge is not cleared at any time except when the internal accumulating register equals the *CC Threshold*, and increments *CycleCount()*.

This is normally set to about 90% of the **Design Capacity**.

5.3.5.4 Design Capacity

	Subclass	Subclass	Offset	Name	Data	Value			Unit
ID	Jubciass	Oliset	Name	Type	Min Max Default	Oille			
	48	Data	12	Design Capacity	12	0	14500	1000	mAh

This is the original chemical capacity of the pack as specified by the battery vendor. This is used in Impedance Track algorithm in remaining and full charge capacity (RM and FCC) calculations. The value should be set based on the battery specification.

5.3.5.5 Design Energy

Configuration Class www.ti.com

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID	Jubciass	Oliset	Name	Type	Min	Max	Default	Oilit
48	Data	14	Design Energy	12	0	32767	3800	mWh

Design Energy is similar to **Design Capacity** but represented in energy units.

Design Energy = Design Capacity × Design Voltage

The actual unit of this parameter is dependent on **Design Energy Scale**. The default value is 3800 mWh.

5.3.5.6 State of Health Load I

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
48	Data	16	SOH Load I	12	-32767	0	-400	mA

StateOfHealth() is calculated using the ratio of FullChargeCapacity() (FCC) and DesignCapacity(). The FCC used in the SOH calculation is simulated using a fixed temperature (25°C) and load (defined by **SOH Load I**). The FCC value used is not necessarily the same as the FullChargeCapacity() data RAM register since the value reported in data RAM register changes based on current system load and temperature.

The default is -400 mA. It is recommended to set this value to a typical system current.

5.3.5.7 TDD State Of Health Percent

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
48	Data	18	TDD SOH Percent	U1	0	100	80	Percent

The fuel gauge can indicate tab disconnection by detecting change of *StateOfHealth()*. This feature is enabled by setting *[SE_TDD]* bit in *Pack Configuration B*. The *[TDD]* of *Flags()* is set when the ratio of current *StateOfHealth()* divided by the previous *StateOfHealth()* reported is less than *TDD SOH Percent*. The *[TDD]* of *Flags()* can be configured to control an interrupt pin (HDQ or SE) by enabling the interrupt mode.

The default is 80%.

5.3.5.8 ISD Current Threshold

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
48	Data	19	ISD Current	U2	1	32767	10	Hour Rate

The fuel gauge can indicate detection of an internal battery short if the [SE_ISD] bit in Pack Configuration B is set. The gauge compares the self-discharge current calculated based on RELAX mode to the AverageCurrent() measured in the system. The self-discharge rate is measured at 1 hour intervals. When battery SelfDischargeCurrent() is less than the predefined -Design Capacity / ISD Current threshold, the [ISD] of Flags() is set high. The [ISD] of Flags() can be configured to control interrupt pin (HDQ or SE) by enabling the interrupt mode.

The default is 10 HourRate. The HourRate unit is defined as *DesignCapacity()* / [HourRate]. It is recommended to test this feature and tune this parameter to obtain the optimal value in order to avoid both false positives and false negatives.

5.3.5.9 ISD Current Filter

www.ti.com Configuration Class

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
48	Data	21	ISD I Filter	U1	0	255	127	Count

The ISD I Filter filters the amount of change allowed in the *SelfDischargeCurrent()* register. A large value of *ISD I Filter* restricts large fluctuations in the value of *SelfDischargeCurrent()* if the most recent current value read by the gauge is significantly different from the previous readings. A small value of *ISD I Filter* allows the value of *SelfDischargeCurrent()* to update to a value that is closer to the most recent value read by the gauge.

The default is 127.

5.3.5.10 Minimum ISD Detection Time

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Type	Min	Max	Default	
48	Data	22	Min ISD Time	U1	0	255	7	Hour

This parameter defines the amount of time the gauge needs to wait after the initial DOD measurement is made in RELAX mode before an attempt is made to detect an internal short in the battery pack.

The default is 7 hours.

5.3.5.11 Design Energy Scale

S	ubclass	Subclass	Offset	Name	Data		Value		Unit
	ID				Туре	Min	Max	Default	
	48	Data	23	Design Energy Scale	U1	1	10	1	Number

Design Energy Scale selects the scale and units of a set of data flash parameters. The value of **Design Energy Scale** can be either 1 or 10. For battery capacities larger than 6 Ahr, **Design Energy Scale** = 10 is recommended.

Table 5-5. Data Flash Parameter Unit/Scale Based on Design Energy Scale

Data Flash	Design Energy Scale = 1 (default)	Design Energy Scale = 10
Design Energy	mWh	cWh
Reserve Capacity (mWh)	mWh	cWh
Avg Power Last Run	mW	cW
User Rate-Pwr	mWh	cWh
T Rise	No Scale	Scaled by ×10

5.3.6 Discharge Subclass

5.3.6.1 State of Charge 1 Set and Clear Threshold

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
49	Discharge	0	SOC1 Set Threshold	U2	0	65535	150	mAh
49	Discharge	2	SOC1 Clear Threshold	U2	0	65535	175	mAh

Configuration Class www.ti.com

SOC1 Set Threshold sets a *StateOfCharge()* percentage threshold used to indicate when *StateOfCharge()* falls to or below a defined *StateOfCharge()*. The **SOC1 Set Threshold** is typically used as an initial low *StateOfCharge()* warning. When *StateOfCharge()* falls below the **SOC1 Set Threshold**, the *Flags()* [SOC1] bit is set. The [SOC1] bit is cleared once *StateOfCharge()* rises above the **SOC1 Clear Threshold**. If **SOC1 Set Threshold** is set to (–)1, then the [SOC1] bit becomes inoperative.

SOC1 Set Threshold is normally set to 10% of Design Capacity.

SOC1 Clear Threshold is normally set to 5% above the **SOC1 Set Threshold**; that is, 15% of **Design Capacity**.

5.3.6.2 State of Charge Final Set and Clear Threshold

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
49	Discharge	4	SOCF Set Threshold	U2	0	65535	75	mAh
49	Discharge	6	SOCF Clear Threshold	U2	0	65535	100	mAh

The **SOCF Set Threshold** is the *StateOfCharge()* percentage threshold used to indicate when *StateOfCharge()* falls to or below a defined *StateOfCharge()*. The **SOCF Set Threshold** is typically used as a final low *StateOfCharge()* warning. When *StateOfCharge()* falls below the **SOCF Set Threshold**, the *Flags()* [SOCF] bit is set. The [SOCF] bit is cleared once *StateOfCharge()* rises above the **SOCF Clear Threshold**. If **SOCF Set Threshold** is set to (–)1, then the [SOCF] bit becomes inoperative.

SOCF Set Threshold is normally set to 2% of Design Capacity.

SOCF Clear Threshold is normally set to 3% above the **SOCF Set Threshold**, which is 5% of **Design Capacity**.

5.3.6.3 Battery Low Set Voltage Threshold, Time, and Clear

Subclass	Subclass	Offset	Name	Data					
ID				Туре	Min	Max	Default		
		8	BL Set Volt Threshold	12	0	5000	2500	mV	
49	Discharge	10	BL Set Volt Time	U1	0	60	2	S	
		11	BL Clear Volt Threshold	12	0	5000	2600	mV	

BL Set Volt Threshold

BL Set Volt Threshold provides a threshold for the *Voltage()* register. Once the *Voltage()* register falls below this value for a specific time defined by **BL Set Volt Time**, the battery low *Flags()* [BATLOW] bit is set. Fuel gauge must not be in SLEEP mode.

BL Set Volt Time

When *Voltage()* < **BL Set Volt Threshold** is true, **BL Set Volt Time** provides the time to wait before the *Flags()* [BATLOW] bit gets set. Fuel gauge must not be in SLEEP mode.

BL Clear Volt Threshold

BL Clear Volt Threshold provides a threshold for the *Voltage()* register. Once the *Voltage()* register rises above this value, the *Flags()* [BATLOW] bit is cleared immediately. The fuel gauge must not be in SLEEP mode.

5.3.6.4 Battery High Set Voltage Threshold, Time, and Clear

www.ti.com Configuration Class

Subclass	Subclass	Subclass Offset	t Name	Data	Value			Unit
ID				Type	Min	Max	Default	
		13	BH Set Volt Threshold	12	0	5000	4500	mV
49	Discharge	15	BH Volt Time	U1	0	60	2	S
		16	BH Clear Volt Threshold	12	0	5000	4400	mV

BH Set Volt Threshold

BH Set Volt Threshold provides a threshold for the *Voltage()* register. Once the *Voltage()* register rises above this value for a specific time defined by **BH Volt Time**, the battery high *Flags()* [BATHI] bit is set. The fuel gauge must not be in SLEEP mode.

BH Volt Time

When Voltage() < **BH Set Volt Threshold** is true, **BH Volt Time** provides the time to wait before the Flags() [BATHI] bit gets set. Fuel gauge must not be in SLEEP mode.

BH Clear Volt Threshold

BH Clear Volt Threshold provides a threshold for the *Voltage()* register. Once the *Voltage()* register falls above this value, the *Flags()* [BATHI] bit is cleared immediately. Fuel gauge must not be in SLEEP mode.

5.3.7 Manufacturer Data Subclass

5.3.7.1 Pack Lot Code

Subclass ID	Subclass	Offset	Name	Data		Value		Unit
				Type	Min	Max	Default	
56	Manufacturer Data	0	Pack Lot Code	H2	0x00	0xFFFF	0x00	hex

The pack manufacturer can use this location to store the pack lot code.

5.3.7.2 PCB Lot Code

Subclass ID	Subclass	Offset	Name	Data		Value		Unit
				Туре	Min	Max	Default	
56	Manufacturer Data	2	PCB Lot Code	H2	0x00	0xFFFF	0x00	hex

The pack manufacturer can use this location to store the PCB lot code.

5.3.7.3 Firmware Version

Subclass ID	Subclass	Offset	Name	Data	Value			Unit
				Type	Min	Max	Default	
56	Manufacturer Data	4	Firmware Version	H2	0x00	0xFFFF	0x00	hex

The pack manufacturer can use this location to store a firmware version number for their system or pack. This value is user-defined and is not related to the gauge's *Control(FW_VERSION)*.

5.3.7.4 Hardware Revision

Configuration Class www.ti.com

Subclass ID	Subclass				Unit			
				Type	Min	Max	Default	
56	Manufacturer Data	6	Hardware Revision	H2	0x00	0xFFFF	0x00	hex

The pack manufacturer can use this location to store a hardware version number for their system or pack. This value is user-defined and is not related to the gauge's *Control(HW_VERSION)*.

5.3.7.5 Cell Revision

Subclass ID	Subclass	Offset	Name	Data		Value		Unit
				Туре	Min	Max	Default	
56	Manufacturer Data	8	Cell Revision	H2	0x00	0xFFFF	0x00	hex

The pack manufacturer can use this location to store the version of their cell.

5.3.7.6 Data Flash Configuration Version

Subclass ID	Subclass	Offset	Name	Data		Value		Unit
				Туре	Min	Max	Default	
56	Manufacturer Data	10	DF Config Version	H2	0x00	0xFFFF	0x00	hex

The pack manufacturer can use this location to store the data flash configuration version. Version control of DFI files used in production is recommended.

5.3.8 Integrity Data Subclass

5.3.8.1 All Data Flash Checksum

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
57	Integrity Data	6	All DF Checksum	H2	0x00	0x7FFF	0x00	Number

This value is a 16-bit unsigned integer sum of each byte in the data flash. The sum is calculated on a byte-by-byte basis. The most significant bit of the checksum is masked yielding a 15-bit checksum. This checksum is compared with the value generated by command 0x1A. This checksum is intended to validate all parameters that are not pack specific. Table 5-6 shows the data flash that are excluded.

Table 5-6. All Data Flash Checksum Exclusions

Class	Subclass ID	Subclass	Comment
Configuration	57	Integrity Data	Reset Counter – Full (private) Reset Counter – Watch Dog (private)
Configuration	57	Integrity Data	All DF Checksum
System Data	58	Manufacturer Info	Block A Block B
Calibration	104	Data	CC Gain CC Delta CC Offset Board offset Int Temp Offset Ext Temp Offset Pack V offset

Configuration Class www.ti.com

5.3.8.2 Static Chem Data Flash Checksum

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
57	Integrity Data	8	Static Chem DF Checksum	H2	0x00	0x7FFF	0x7C23	Number

This value is a 16-bit unsigned integer sum of each byte in the chemistry data flash. The sum is calculated on a byte-by-byte basis. The most significant bit of the checksum is masked yielding a 15-bit checksum. This checksum is intended to validate chemistry specific data. Table 5-7 shows the data flash that are included. This checksum is executed in conjunction with the IT ENABLE subcommand. If this checksum fails, Impedance Track is not enabled.

Table 5-7. All Chemistry Data Checksum Inclusions

Class	Subclass ID	Subclass	Comment
OCV Table	83	OCV Table	ChemID (public) OCVa Table (private)
OCVb Table	84	OCVb Table	OCVb Table (private)
Rb_Hi Table	85	Rb_Hi Table	Rb Hi Table (private)
Rb_Lo Table	108	Rb_Lo Table	Rb Lo Table (private)
Gas Gauging	80	IT Cfg	Q Invalid Max V Q Invalid Min V

5.3.8.3 Static Data Flash Checksum

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
57	Integrity Data	10	Static DF Checksum	H2	0x00	0x7FFF	0x00	Number

This value is a 16-bit unsigned integer sum of each byte in the data flash. The sum is calculated on a byte-by-byte basis. The most significant bit of the checksum is masked yielding a 15-bit checksum. This checksum is compared with the value generated by command 0x1A. This checksum is intended to validate all parameters that are static. Table 5-8 shows the data flash that are excluded. The checksum execution takes approximately 5 ms and during this time, the fuel gauge does not communicate.

Table 5-8. All Static Data Flash Checksum Exclusions

Class	Subclass ID	Subclass	Comment
Configuration	48	Data	Cycle Count
Configuration	57	Integrity Data	Reset Counter – Full (private) Reset Counter – Watch Dog (private)
Configuration	57	Integrity Data	All DF Checksum
Configuration	57	Integrity Data	Static DF Checksum
System Data	58	Manufacturer Info	Block A Block B
LT Data	59	Lifetime Data	All Lifetime Data
LT Data	59	Lifetime Temp Samples	All Lifetime Temp Samples

Configuration Class www.ti.com

Table 5-8. All Static Data Flash Checksum Exclusions (continued)

Class	Subclass ID	Subclass	Comment
Gas Gauging	82	State	Qmax Cell 0 Cycle Count Update_Status V at Chg Term Avg I Last Run Avg P Last Run Delta Voltage Max Discharge Duration (private)
Ra Tables	88	Data	Ra Table
Ra Tables	89	Data	Rax Table
Calibration	104	Data	CC Gain CC Delta CC Offset Board offset Int Temp Offset Ext Temp Offset Pack V offset

5.3.9 Lifetime Data Subclass, Lifetime Resolution Subclass

Lifetime data subclass contains black box data that records various data over the life of the pack. This data can be very useful for performing failure analysis on the returned packs. Lifetime data is enabled if the *CONTROL_STATUS [QEN]* bit is 1. The *[QEN]* bit is set by sending *IT_ENABLE* subcommand. The lifetime update for the values below is throttled to not happen more than once per 60 seconds to avoid data flash wear out. The frequency of the updates will naturally slow down once pack updates the minimum and maximum values over several packs,

- Lifetime Max Temp: Maximum temperature observed by the gauge. It is initialized to 300. The unit is 0.1°C.
- Lifetime Min Temp: Minimum temperature observed by the gauge. It is initialized to 200. The unit is 0.1°C.
- Lifetime Max Pack Voltage: Maximum battery voltage observed by the gauge. It is initialized to 3200. The unit is mV.
- **Lifetime Min Pack Voltage**: Minimum battery voltage observed by the gauge. It is initialized to 4200. The unit is mV.
- Lifetime Max Chg Current: Maximum charge current observed by the gauge. It is initialized to 0.
 The unit is mA.
- Lifetime Max Dsg Current: Maximum discharge current observed by the gauge. It is initialized to
 0. The unit is mA.
- **LT Flash Cnt**: Lifetime flash page update counter keeps track of total number of updates. It is initialized to 0. The unit is counts.

5.3.9.1 Maximum Temperature, Minimum Temperature, Temperature Resolution

Subclass	Subclass Offse	Offset	Name	Data Type	Value			Unit
ID					Min	Max	Default	
59	59 Lifetime	0	Lifetime Max Temp	12	-600	1400	0	0.1°C
Data	Data	2	Lifetime Min Temp	12	-600	1400	500	0.1°C
66	Lifetime Resolution	0	LT Temp Res	U1	0	255	10	Num

www.ti.com Configuration Class

Lifetime Max Temp value is updated if one of the following conditions is met:

- Temperature() Lifetime Max Temp > LT Temp Res
- Temperature() > Lifetime Max Temp and any other lifetime value is updated.

Lifetime Min Temp value is updated if one of the following conditions is met:

- Lifetime Min Temp Temperature() > LT Temp Res
- Temperature() < Lifetime Min Temp and any other lifetime value is updated.

5.3.9.2 Maximum Pack Voltage, Minimum Pack Voltage, Voltage Resolution

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
59	Lifetime	4	Lifetime Max Pack Voltage	12	0	32767	2800	mV
39	Data	6	Lifetime Min Pack Voltage	12	0	32767	5000	mV
66	Lifetime Resolution	1	LT V Res	U1	0	255	25	Num

Lifetime Max Pack Voltage value is updated if one of the following conditions is met:

- Voltage() Lifetime Max Pack Voltage > LT V Res
- Voltage() > Lifetime Max Pack Voltage and any other lifetime value is updated.

Lifetime Min Pack Voltage value is updated if one of the following conditions is met:

- Lifetime Min Pack Voltage Voltage() > LT V Res
- Voltage() < Lifetime Min Pack Voltage and any other lifetime value is updated.

5.3.9.3 Maximum Charge Current, Maximum Discharge Current, Current Resolution

Subclass	Subclass	Offset	Name	Data		Unit		
ID				Туре	Min	Max	Default	
59	Lifetime	8	Lifetime Max Chg Current	12	-32767	32767	0	mA
39	Data	10	Lifetime Max Dsg Current	12	-32767	32767	0	mA
66	Lifetime Resolution	2	LT Cur Res	U1	0	255	100	Num

Lifetime Max Chg Current value is updated if one of the following conditions is met:

- Current() Lifetime Max Chg Current > LT Cur Res
- Current() > Lifetime Max Chg Current and any other lifetime value is updated.

Lifetime Max Dsg Current value is updated if one of the following conditions is met:

- Lifetime Max Dsg Current Current() > LT Cur Res
- Lifetime Max Dsg Current > Current() and any other lifetime value is updated.

NOTE:	During discharge, current is negative.
-------	--

5.3.10 Lifetime Temp Samples Subclass

5.3.10.1 Flash Write Count

Configuration Class www.ti.com

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
59	Lifetime Temp Samples	12	LT Flash Cnt	U2	0	32767	0	Count

LT Flash Cnt tracks the number of lifetime data flash updates.

5.3.11 Registers Subclass

5.3.11.1 Pack Configuration Register

Some pin configurations and algorithm settings are configured via the *Pack Configuration* data flash register, as indicated in Table 5-9. This register is programmed and read via the methods described in Section 5.1.1, *Accessing the Data Flash*. The register is located at subclass = 64, offset = 0.

Table 5-9. Pack Configuration Bit Definition

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
High Byte	RSVD	INTPOL	INTSEL	HOST_IE	SOCHold99	IWAKE	RSNS1	RSNS0				
	0	0	1	0	1	0	0	1				
		0x29										
Low Byte	GNDSEL	RFACTSTEP	SLEEP	RMFCC	SOCHold1	SOCHold OvrChg	SOCHold OvrDsg	TEMPS				
	0 1 1 1 1 1 1 1											
	0x7F											

High Byte

RSVD = Bit 7 is reserved. Must be 0.

INTPOL = Polarity for Interrupt Pin. (See Section 2.4.2, Interrupt Mode.)

INTSEL = Interrupt Pin Select

0 = SEpin

1 = HDQ Pin

HOST_IE = Flag Interrupt Enable:

0 = Interrupt from Flags() enabled

1 = Interrupt from Flags() disabled

SOCHold99 = The fuel gauge will prevent StateOfCharge() from reporting 100% until Flags()[FC] is set. Set to 1 to enable.

IWAKE, RSNS1, RSNS0 These bits configure the current wa

These bits configure the current wake function (see Section 2.8.2, Wake-Up Comparator).

Low Byte

GNDSEL = The ADC ground select control. The V_{SS} (pins C1 and C2) is selected as ground reference when the bit is clear. Pin A1 is selected when the bit is set.

RFACTSTEP = Enables Ra step up/down to Max/Min Res Factor before disabling Ra updates.

SLEEP = The fuel gauge can enter sleep, if operating conditions allow. True when set. (See Section 2.7.2, SLEEP Mode.)

RMFCC = RM is updated with the value from FCC, on valid charge termination. True when set. (See Section 2.6.4, Full Charge Termination Detection.)

SOCHold1 = The fuel gauge will prevent *StateOfCharge()* from reporting 0% until *Voltage()* is less than or equal to *Terminate Voltage*. Set to 1 to enable.

SOCHoldOvrChg = The fuel gauge will hold *StateOfCharge()* at 100% while in an overcharge condition and not decrement until the charge surplus is equalized. Set to 1 to enable.

SOCHoldOvrDsg = The fuel gauge will hold *StateOfCharge()* at 0% while in an overdischarge condition and not decrement until the charge deficit is equalized. Set to 1 to enable.

TEMPS = Selects external thermistor for *Temperature()* measurements. True when set. (See Section 2.5, *Temperature Measurement and The TS Input.*)

www.ti.com Configuration Class

5.3.11.2 Pack Configuration B Register

Some pin configurations and algorithm settings are configured via the **Pack Configuration B** data flash register, as indicated in Table 5-10. This register is programmed and read via the methods described in Section 5.1.1, Accessing the Data Flash. The register is located at subclass = 64, offset = 2.

Table 5-10. Pack Configuration B Bit Definition

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ChgDoDEoC	SE_TDD	SimCtrl	SE_ISD	RSVD	LFPRelax	DoDWT	FConvEn	
1	0	0	0	0	1	1	1	
0x87								

ChgDoDEoC = Enable DoD at EoC recalculation during charging only. True when set. Default setting is recommended.

SE_TDD = Enable Tab Disconnect Detection. True when set. (See Section 2.2.1.1, Tab Disconnect Detection.)

SimCtrl = Dynamic Simulation of Voltage Consistency

0 = Dynamic Simulation Step Enabled

1 = Voltage Consistency Enabled

SE ISD = Enable Internal Short Detection. True when set.

RSVD = Bit 3 is reserved. Must be 0.

LFPRelax = Enable LiFePO₄ long RELAX mode. True when set.

DoDWT = Enable DoD weighting feature of gauging algorithm. This feature can improve accuracy during relaxation in a flat portion of the voltage profile, especially when using LiFePO₄ chemistry. True when set.

FConvEn = Enable fast convergence algorithm. Default setting is recommended. (See Section 2.1.3, Fast Resistance Scaling.)

5.3.11.3 Pack Configuration C Register

Some algorithm settings are configured via the *Pack Configuration C* data flash register, as indicated in Table 5-11. This register is programmed and read via the methods described in Section 5.1.1, *Accessing the Data Flash*. The register is located at subclass = 64, offset = 3.

Table 5-11. Pack Configuration C Bit Definition

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
FastQmax	FConvTempEn	RlxSmEn	SmoothEn	SleepWkChg	RSVD	RSVD	BTP_EN		
1	0	1	1	1	0	0	1		
0xB9									

FastQmax = Fast Qmax feature is enabled.

FConvTempEn = Thermal modeling is enabled while in Fast Resistance Scaling Mode. Set to 1 to enable. Default of 0 is

RIxSmEn = SOC smoothing is enabled while in battery relaxation state. Set to 1 to enable.

SmoothEn = Enable SOC smoothing algorithm. True when set. (See Section 2.1.4, StateOfCharge() Smoothing.)

SleepWkChg = Enables compensation for the passed charge missed when waking from SLEEP mode.

RSVD = Bits 1 and 2 are reserved. Must be 0.

BTP_EN = BTP interrupts are enabled on the HDQ pin. When enabled, all other interrupts are disabled. Set to 1 to enable.

5.3.11.4 Pack Configuration D

Table 5-12. Pack Configuration D Bit Definition

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RSVD	SE_POL	SE_PU	SE_EN	SMRLXSYNC	PREDICTAM B	IMAXRESRVEN	IMAXEN

Configuration Class www.ti.com

Table 5-12. Pack Configuration D Bit Definition (continued)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	1	0	1	0	1	1	1	
0x57								

RSVD = Bit 7 is reserved. Must be 0.

SE_POL = Pullup enable for SE pin. True when set (push pull).

SE_PU = Polarity bit for SE pin. SE is active high when set (makes SE high when gauge is ready for shutdown).

 $SE_EN = 0$ = shutdown feature is disabled; 1 = shutdown feature is enabled.

SOC smoothing in relax will immediately equalize differences in true SOC vs reported StateOfCharge() SMRLXSYNC=

instead of gradually converging capacity (RM and FCC) differences over time.

PREDICTAMB = 0 = uisasise for gauging. 0 = disables ambient temperature adaptability for gauging, 1 = enables ambient temperature adaptability

IMAXRESRVEN = Enables usage of **Reserve Capacity** in the Imax() calculation.

IMAXEN = Enables maximum allowed discharge reporting in Imax().

5.3.12 Lifetime Resolution Subclass

5.3.12.1 Lifetime Update Time

Subclass	Subclass	Offset	Name	Data Type	Value		Unit	
ID					Min	Max	Default	
66	Lifetime Resolution	3	LT Update Time	U2	0	65535	60	Num

This parameter sets the minimum time between data flash writes to update the Lifetime Parameters. The default for this register is 60.

5.3.13 Power Subclass

5.3.13.1 Valid Update Voltage

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
68	Power	0	Flash Update OK Voltage	12	0	5000	2800	mV

This register controls one of the several data flash protection features. It is critical that data flash is not updated when the battery voltage is too low. Data flash programming takes much more current than normal operation of the gauge, and with a depleted battery, this current can cause the battery voltage to drop dramatically, forcing the gauge into reset before completing a data flash write. The effects of an incomplete data flash write can corrupt the memory, resulting in unpredictable and extremely undesirable results. The voltage setting in Flash Update OK Voltage prevents any writes to the data flash below this value. If a charger is detected, then this register is ignored.

The default for this register is 2800 mV. Ensure that this register is set to a voltage where the battery has plenty of capacity to support data flash writes but below any normal battery operation conditions.

5.3.13.2 Sleep Current Threshold

Subclass	Subclass	Offset	Name	Data	Value		Unit	
ID				Туре	Min	Max	Default	
68	Power	2	Sleep Current	12	0	100	15	mA

www.ti.com System Data Class

When AverageCurrent() is less than **Sleep Current** or greater than (–)**Sleep Current**, the gauge enters SLEEP mode if the feature is enable by setting the **Pack Configuration [SLEEP]** bit.

This setting should be below any normal application currents.

5.3.13.3 Hibernate Current/Voltage

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
68	Power	9	Hibernate I	12	-32768	32767	8	mA
68	Power	10	Hibernate V	12	0	32767	2550	mV

When voltage drops below the *Hibernate V* threshold the device enters Hibernate mode. If the *AverageCurrent()* is > *Hibernate Current*, then the device exits from Hibernate mode.

5.3.13.4 Full Sleep Wait Time

Subclass	Subclass	Offset	Name	Data				Unit
ID				Туре	Min	Max	Default	
68	Power	12	FS Wait	U1	0	255	0	S

FS Wait provides the time to wait for the fuel gauge to go from SLEEP mode to FULLSLEEP mode. When the **FS Wait** value is 0, the gauge waits for the SET_FULLSLEEP subcommand, once the gauge receives this command while in SLEEP mode, it immediately goes to FULLSLEEP mode. If **FS Wait** is non-zero, the gauge switches to FULLSLEEP from SLEEP, once the timer expires. During the wait time, SET_FULLSLEEP subcommand is ignored. Note that when the gauge is in FULLSLEEP mode, any communication with the gauge triggers it to get out of FULLSLEEP mode. The best way to check the mode of the gauge is to monitor the drawn current out of the gauge.

Default value is 0 seconds.

5.4 System Data Class

5.4.1 Manufacturer Information Subclass

5.4.1.1 Block A and Block B

Subclass			Name	Data Type		Unit		
ID					Min	Max	Default	
58	Manufacturer	0 through 31	Block A 0 through 31	H1	0x00	0xFF	0x00	
	Info	32 through 63	Block B 0 through 31	H1	0x00	0xFF	0x00	

Each block can hold a maximum of 8 characters or 32 bytes of user-programmable data.

The method for accessing these memory locations is different, depending on whether the device is in UNSEALED or SEALED mode.

When in UNSEALED mode and when an 0x00 has been written to *BlockDataControl()*, accessing the *Manufacturer Info Blocks* is identical to accessing general data flash locations. First, a *DataFlashClass()* command sets the subclass, then a *DataFlashBlock()* command sets the offset for the first data flash address within the subclass. The *BlockData()* command codes contain the referenced data flash data. When writing the data flash, a checksum is expected to be received by *BlockDataCheckSum()*. Only when the checksum is received and verified is the data actually written to data flash.

As an example, the data flash location for *Manufacturer Info Block B* is defined as having a Subclass = 58 and an Offset = 32 through 63 (32-byte block). The specification of Class = System Data is not needed to address *Manufacturer Info Block B*, but is used instead for grouping purposes when viewing data flash info in the evaluation software.

When in SEALED mode or when *BlockDataControl()* does not contain 0x00, data flash is no longer available in the manner used in UNSEALED mode. Rather than issuing subclass information, a designated *Manufacturer Information Block* is selected with the *DataFlashBlock()* command. Issuing a 0x01, 0x02, or 0x03 with this command causes the corresponding information block (A or B, respectively) to be transferred to the command space 0x40 through 0x5F for editing or reading by the system. Upon successful writing of checksum information to *BlockDataCheckSum()*, the modified block is returned to data flash.

NOTE: Manufacturer Info Block A is read-only when in SEALED mode.

5.5 Gas (Fuel) Gauging Class

5.5.1 IT Cfg Subclass

5.5.1.1 Load Select

Subclass	Subclass	Offset	Name	Data	Value		Unit	
ID				Туре	Min	Max	Default	
80	IT Cfg	0	Load Select	U1	0	6	1	Number

Load Select defines the type of power or current model to be used to compute load-compensated capacity in the Impedance Track algorithm. By default, **Load Select** is set to 1, which means the IT algorithm will use a running average of the current discharge period. Once the discharge stops, the algorithm stores the average in data flash as the **Avg I Last Run** and **Avg P Last Run** variables. For simulations during relaxation, charge, and at the start of discharge (since a new average has not been gathered), it would use data flash values for simulations. Once the discharge has lasted 500 s, the gauge will re-simulate using the new running average, and thereafter during discharge it will use the continuous running average for any subsequent simulations.

If **Load Mode** = 0 (constant-current model), then the options presented in Table 5-13 are available.

Table 5-13. Constant-Current Model Used When Load Mode = 0

Load Select Value	Current Model Used
0	Average discharge current from previous cycle: There is an internal register that records the average discharge current through each entire discharge cycle. The previous average is stored in this register.
1 (default)	Present average discharge current: This is the average discharge current from the beginning of this discharge cycle until present time.
2	Average current: based off the AverageCurrent()
3	Current: based off of a low-pass-filtered version of AverageCurrent() ($\tau = 14 \text{ s}$)
4	Design capacity / 5: C Rate based off of Design Capacity /5 or a C / 5 rate in mA.
5	Use the value specified by AtRate()
6	Use the value in <i>User_Rate-mA</i> . This gives a completely user-configurable method.

If **Load Mode** = 1 (constant-power model) then the following options are available:

Table 5-14. Constant-Power Model Used When Load Mode = 1

Load Select Value	Power Model Used
0	Average discharge power from previous cycle: There is an internal register that records the average discharge power through each entire discharge cycle. The previous average is stored in this register.
1	Present average discharge power: This is the average discharge power from the beginning of this discharge cycle until present time.

Copyright © 2015, Texas Instruments Incorporated

Table 5-14. Constant-Power Model Used When Load Mode = 1 (continued)

Load Select Value	Power Model Used
2	Average current × voltage: based off the AverageCurrent() and Voltage().
3	Current x voltage: based off of a low-pass-filtered version of AverageCurrent() (τ = 14 s) and Voltage()
4	Design energy / 5: C Rate based off of Design Energy /5 or a C / 5 rate in mW or cW.
5	Use the value specified by AtRate()
6	Use the value in User_Rate-Pwr. This gives a completely user-configurable method.

5.5.1.2 Load Mode

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	1	Load Mode	U1	0	1	1	Number

Load Mode selects either the constant-current or constant-power model for the Impedance Track algorithm as used in **Load Select** (see Section 5.5.1.1, Load Select). When **Load Mode** is 0, the constant-current model is used (default). When Load Mode is 1, the constant-power model is used. The **CONTROL_STATUS** [LDMD] bit reflects the status of **Load Mode**.

This is normally set to 0 (constant-current model) but it is application specific. If the application load profile more closely matches a constant-power model, then set to 1. This provides a better estimation of remaining run time, especially close to the end of discharge where current increases to compensate for decreasing battery voltage.

5.5.1.3 Maximum and Minimum Resistance Factor

Subclass	Subclass	Offset	Name	Data			Unit	
ID				Туре	Min	Max	Default	
80 IT Cfg	17	Max Res Factor	U1	0	255	15	num	
80	IT Cfg	18	Min Res Factor	U1	0	255	5	num

Max Res Factor.

This is the maximum allowable cumulative percentage (ratio) increase for impedance values stored in the Ra table (over 15 gridpoint updates).

For Ra new > Ra old.

New Ra = min(Ra_new, Ra_old × *Max Res Factor* ÷ 10)

The default setting is 15. The algorithm divides the value of this parameter by 10. The upper bound is determined by multiplying (*Max Res Factor* / 10) by the impedance value stored in the Ra table. Therefore a value of 15 indicates resistance can only change by 50% from the current resistance value in the positive direction.

Min Res Factor.

This is the maximum allowable cumulative percentage (ratio) decrease for impedance values stored in the Ra table (over 15 gridpoint updates).

For Ra new < Ra old

New Ra = max(Ra_new, Ra_old × *Min Res Factor* ÷ 10)

The default setting is 5. The algorithm divides the value of this parameter by 10. The lower bound is determined by multiplying (*Min Res Factor* / 10) by the impedance value stored in the Ra table. Therefore a value of 5 indicates resistance can only change by 50% from the current resistance value in the negative direction.

5.5.1.4 Ra Filter

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	20	Ra Filter	U2	0	1000	800	num

Ra table updates are filtered. This is a weighting factor which takes a certain percentage of the previous Ra table value and the remaining percentage comes from the newest calculated Ra value. This is to prevent resistances in the Ra table from changing quickly. After this filter has been applied, there is a final check to make sure that the new resistances satisfy both *Max Res Factor* and *Min Res Factor*.

Ra Filter is a filter constant used to calculate the filtered Ra value that is stored into data flash from the old Ra value.

 $Ra = (Ra_old \times Ra Filter + Ra_new \times (1000 - Ra Filter)) \div 1000$

It is normally set to 800 (80% previous Ra value plus 20% learned Ra value to form new Ra value).

5.5.1.5 Resistance Update Voltage Drop

Subclass	Subclass	Offset	Name	Data	Value		Unit	
ID				Туре	Min	Max	Default	
80	IT Cfg	22	Res V Drop	12	0	32767	50	mV

Res V Drop is used during battery discharge to qualify sufficient conditions for measuring and storing resistance values. It is useful in applications with low-rate discharge or frequent cold temperature usage that typically have trouble achieving consistent resistance updates. Even with low current, the voltage drop requirement can still be met if enough cell resistance is evident.

5.5.1.6 Fast Qmax Start DOD Percent, Fast Qmax Start Voltage Delta, Fast Qmax Current Threshold

Subclass	Subclass	Offset	Name	Data		Value			
ID				Туре	Min	Max	Default		
		39	Fast Qmax Start DOD %	U1	0	100	92	%	
80	IT Cfg	41	Fast Qmax Start Volt Delta	12	0	4200	200	mV	
80	11 019	43	Fast Qmax Current Threshold	U2	0	1000	4	HourRate	

Fast Qmax measurement starts when the following conditions are met:

- DOD > Fast Qmax Start DOD% or Voltage < Terminate Voltage + Fast Qmax Start Volt Delta
- Current < C / Fast Qmax Current Threshold

5.5.1.7 Fast Qmax End DOD Percent

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Type	Min	Max	Default	
80	IT Cfg	40	Fast Qmax End DOD %	U1	0	100	96	%

Fast Qmax measurement is performed at the end of discharge when the following conditions are met:

- Number of Fast Qmax measurements > 3
- DOD > Fast Qmax End DOD% or Voltage < Terminate Voltage + 50 mV

5.5.1.8 Qmax Capacity Error

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	61	Qmax Capacity Err	U1	0	100	15	0.10%

Qmax Capacity Err specifies maximum capacity error allowed during Qmax update. Capacity error is estimated based on the time spent for Qmax measurement.

5.5.1.9 Maximum Qmax Change

Subclass	Subclass	Offset	Name	Data					
ID				Туре	Min	Max	Default		
80	IT Cfg	62	Max Qmax Change	U1	0	255	30	%	

Max Qmax Change specifies maximum allowed change in Qmax value during Qmax update. Qmax update is disqualified if change from previous Qmax value is greater than **Max Qmax Change**.

5.5.1.10 Termination Voltage

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	64	Terminate Voltage	12	2800	3700	3000	mV

Terminate Voltage is used in the Impedance Track algorithm to compute *RemainingCapacity()*. This is the absolute minimum voltage for end of discharge, where the remaining chemical capacity is assumed to be zero.

Terminate Voltage stores the voltage for the end of discharge where RemainingCapacity() is set to 0 mAh

Set *Terminate Voltage* based on battery cell specifications to prevent damage to the cell or set to the absolute minimum system voltage, taking into account impedance drop from the PCB traces, FETs, and wires. The default value is set to 3000 mV.

5.5.1.11 Termination Voltage Delta and Fast Scale Start SOC

Subclass	Subclass	Offset	Name	Data		Value		
ID				Туре	Min	Max	Default	
80	IT Cfg	66	Term V Delta	12	0	4200	200	mV
00	11 Cig	104	Fast Scale Start SOC	U1	0	100	10	%

Fast Scale Start SOC and Term V Delta specify voltage and SOC thresholds for Fast Ra Scaling activation. Fast Ra Scaling is activated when either of the following conditions is true:

- SOC < Fast Scale Start SOC
- Voltage < (Terminate Voltage + Term V Delta)

The default value for *Term V Delta* is 200 mV. For most battery applications, it is recommended to keep (*Terminate Voltage* + *Term V Delta*) below 3.4 volts.

5.5.1.12 Simulation Res Relax Time

Subclass	Subclass	Offset	Name	Data		Value		
ID				Туре	Min	Max	Default	
80	IT Cfg	69	ResRelax Time	U2	0	65535	500	S

This value is used for Impedance Track transient modeling of effective resistance. The resistance increases from zero to final value determined by the Ra table as defined by the exponent with time constant **Res Relax Time** during discharge simulation. Default value has been optimized for typical cell behavior.

ResRelax Time or resistance relaxation time is used for transient modeling. It represents the time it takes for the internal resistance to be fully saturated. This way the gauge will not simulate immediate large IR drops when it calculates the instantaneous voltage from the battery under load.

The default value is 500 seconds, which is sufficient for most applications.

5.5.1.13 User-Defined Rate-Current

	Subclass	Subclass	Offset	Name	Data		Value		Unit
	ID				Туре	Min	Max	Default	
Ī	80	IT Cfg	73	User Rate-mA	12	0	32767	0	mA

This is the discharge rate used for Impedance Track simulation of voltage profile to determine discharge capacity. It is only used when **Load Mode** = 0 (constant-current) and **Load Select** = 6 (user-defined rate).

User Rate-mA is only used if Load Select is set to 6 and **Load Mode** = 0. If these criteria are met, then the current stored in this register is used for the *RemainingCapacity()* computation in the Impedance Track algorithm. This is the only function that uses this register.

It is unlikely that this register is used. An example application that requires this register is one that has increased predefined current at the end of discharge. With this application, it is logical to adjust the rate compensation to this period because the IR drop during this end period is affected the moment *Terminate Voltage* is reached. The default value is 0.

5.5.1.14 User-Defined Rate-Power

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	75	User Rate-Pwr	12	0	32767	0	cW

This is the discharge rate used for Impedance Track simulation of voltage profile to determine discharge capacity. It is only used when **Load Mode** = 1 (constant-power) and **Load Select** = 6 (user-defined rate).

User Rate-Pwr is only used if Load Select is set to 6 and **Load Mode** = 1. If these criteria are met, then the power stored in this register is used for the *RemainingCapacity()* computation in the Impedance Track algorithm. This is the only function that uses this register.

It is unlikely that this register is used. An example application that requires this register is one that has increased predefined power at the end of discharge. With this application, it is logical to adjust the rate compensation to this period because the IR drop during this end period is affected the moment *Terminate Voltage* is reached. The actual unit of this parameter is dependent on *Design Energy Scale*. The default value is 0.

5.5.1.15 Reserve Capacity

	Subclass	Subclass	Offset	Name	Data		Value		Unit
	ID				Туре	Min	Max	Default	
Ī	80	IT Cfg	77	Reserve Cap-mAh	12	0	14500	0	mAh

Reserve Cap-mAh determines how much actual remaining capacity exists after reaching 0 RemainingCapacity(), before **Terminate Voltage** is reached when **Load Mode** = 0 is selected. A loaded rate or no-load rate of compensation can be selected for *Reserve Cap* by setting the **[RESCAP]** bit in the **Pack Configuration** data flash register. This is a specialized function to allow time for a controlled shutdown after 0 RemainingCapacity() is reached.

Carefully select **Reserve Cap-mAh** based upon the system requirements. The default value is set to 0 mAh.

5.5.1.16 Maximum and Minimum Delta Voltage

Subclass	Subclass	Offset	Name	Data		Value		
ID				Туре	Min	Max	Default	
80	IT Cfg	84	Max DeltaV	12	0	32767	200	mV
80	11 Cig	86	Min DeltaV	12	0	32767	0	mV

Max DeltaV:

This is the maximum *Delta Voltage* that is saved during discharge cycles. See Section 5.5.3.6 for the description of *Delta Voltage*. The default is 200 mV.

Min DeltaV:

This is the minimum **Delta Voltage** that is saved during discharge cycles. See Section 5.5.3.6 for the description of **Delta Voltage**. The default is 0 mV.

5.5.1.17 Maximum and Minimum Simulation Rate

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Type	Min	Max	Default	
80	IT Cfa	88	Max Sim Rate	U1	0	255	1	HourRate
30	IT Cfg	89	Min Sim Rate	U1	0	255	20	HourRate

Max Sim Rate:

Maximum IT simulation rate (inversed). 2 implies C / 2. This is the maximum load used in IT simulations in terms of C-rate.

This register defaults to 1.

Min Sim Rate:

Minimum IT simulation rate (inversed). 20 implies C / 20. This is the minimum load used in IT simulations in terms of C-rate.

This register defaults to 20.

5.5.1.18 Ra Maximum Delta

	Subclass	Subclass	Offset	Name	Data		Value		Unit
	ID				Type	Min	Max	Default	
Ī	80	IT Cfg	90	Ra Max Delta	12	0	32767	54	mΩ

The maximum jump allowed during updates of a Ra table grid point.

Calculate and modify *Ra Max Delta* when creating the golden file, set this to 15% of the grid 4 Ra value after optimization cycle is completed, the default is 54.

5.5.1.19 Trace Resistance

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	92	Trace Resistance	12	0	32767	0	mΩ

Trace Resistance is the nominal resistance between the cell and the coulomb counter measurement point in a given application. Flex cabling and long copper traces on the PCB itself can contribute to this resistance and inject error into the SOC prediction. The fuel gauge will offset cell resistance with this value in order to improve *RemainingCapacity()* estimation.

5.5.1.20 Downstream Resistance

Subclass	Subclass	Offset	Name	Data		Value		
ID				Туре	Min	Max	Default	
80	IT Cfg	94	Downstream Resistance	12	0	32767	0	mΩ

Downstream Resistance is the nominal resistance between the coulomb counter measurement point and the system voltage node in a given application. Long copper traces on the PCB itself can contribute to this resistance and inject error into the SOC prediction. The fuel gauge will offset cell resistance with this value in order to improve *RemainingCapacity()* estimation.

5.5.1.21 Qmax Maximum Delta Percent

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	96	Qmax Max Delta %	U1	0	100	5	mAh

This is the percent of <code>DesignCapacity()</code> to limit how much Qmax may grow or shrink during any one Qmax update

The default is 5%.

5.5.1.22 Qmax Upper Bound Percent

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	97	Qmax Bound %	U1	0	255	130	mAh

Maximum allowed Qmax increase over lifetime of the pack. It is calculated as a fraction of **Design Capacity**.

5.5.1.23 Delta V Maximum Delta

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	98	DeltaV Max Delta	U2	0	65535	10	mV

Limits on how far **Delta Voltage** grows or shrinks on one grid update (in mV).

This register defaults to 10.

5.5.1.24 Maximum and Minimum Resistance Scale

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
80	IT Cfa	100	Max Res Scale	U2	0	32767	5000	Num
30	IT Cfg	102	Min Res Scale	U2	0	32767	200	Num

Min Res Scale and *Max Res Scale* specify allowed change in Ra during Fast Ra Scaling algorithm. Value of 1000 corresponds to 1x and value of 200 corresponds to 0.2x.

5.5.1.25 Fast Scale Load Select

S	ubclass	Subclass	Offset	Name	Data		Value		Unit
	ID				Type	Min	Max	Default	
	80	IT Cfg	105	Fast Scale Load Select	U1	0	6	3	Number

Fast Scale Load Select is used to configure an independent load profile for use with Fast Resistance Scaling Mode. It can be set to any value supported by the standard Load Select and is useful for systems that exhibit significant load changes near the end of discharge, allowing the gauge to better predict remaining SOC in such cases. The default value for Fast Scale Load Select is set to 3 (14 s average of the current/power). This makes it more responsive to changes in load near empty and to help it converge better to 0%. This will help in cases where the discharge was at a relatively light load during most of the discharge, but the load increases dramatically near the end.

5.5.1.26 Charge Hysteresis Voltage Shift

Subclass	Subclass	Offset	Name	Data		Value			
ID				Туре	Min	Max	Default		
80	IT Cfg	106	Charge Hys V Shift	12	0	2000	40	mV	

Charge Hys V Shift is a flash parameter that helps the gauge to avoid Qmax update in the flat region after a charge to avoid OCV hysteresis effects. If OCV (in mV) < Flat region upper bound (typically ~3800 mV) + **Charge Hys V Shift**, then Qmax update is not allowed.

It is recommended to keep this value at the default setting of 40 mV.

5.5.1.27 Ra Scale OCV Reset Temperature Threshold

Subclass	Subclass	Offset			_Data Value					Unit
ID				Туре	Min	Max	Default			
80	IT Cfg	108	RaScl OCV Rst Temp Thresh	U1	0	127	15	degC		

RaScI Ocv Rst Temp Thresh determines the temperature threshold at which the scaling factor used in Fast Resistance Scaling Mode is reset if a new open-circuit voltage measurement is captured.

5.5.1.28 Maximum Allowed Current

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Type	Min	Max	Default	
80	IT Cfg	109	Max Allowed Current	12	0	32767	8500	mA

Max Allowed Current is the worst-case current pulse that the system expects to impose on the battery for *Max Current Pulse Duration*. It is used to compute the reported *Imax()*.

5.5.1.29 Maximum Current Pulse Duration

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	111	Max Current Pulse Duration	U1	0	255	10	S

Max Current Pulse Duration specifies the longest time the **Max Allowed Current** is expected to be applied in a given system and is used to compute **Imax()**.

5.5.1.30 Maximum Current Interrupt Step

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	112	Max Current Interrupt Step	12	-32768	32767	500	mA

Max Current Interrupt Step determines the amount of change in reported *Imax()* required to trigger a new interrupt on the (SE or HDQ) pin.

5.5.1.31 Relax Smooth Time

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	114	Relax Smooth Time	U2	1	65535	1000	S

Relax Smooth Time determines the amount of time, the Relative State Of Charge() is smoothed during relaxation.

5.5.1.32 Predict Outside Temp Time

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
80	IT Cfg	116	Predict Outside Temp Time	U2	0	65535	2000	S

Predict Outside Temp Time determines the wait time before the algorithm starts to predict the ambient temperature during charge/discharge.

5.5.1.33 Terminate Voltage Valid Time

Subclass	Subclass	Offset	Name	Data		Value		Unit	
ID				Туре	Min	Max	Default		
80	IT Cfg	118	TermV Valid t	U1	0	255	2	S	

The voltage must dip below Terminate Voltage for at least this many seconds before *RemainingCapacity()* and *StateOfCharge()* will be forced to zero.

5.5.2 Current Thresholds Subclass

5.5.2.1 Discharge and Charge Detection Threshold

Subclass	Subclass	Offset	Name	Data	Value		Unit	
ID				Туре	Min	Max	Default	
81	Current	0	Dsg Current Threshold	12	0	2000	60	mA
01	Thresholds	2	Chg Current Threshold	12	0	2000	75	mA

Dsg Current Threshold:

This register is used as a threshold by many functions in the fuel gauge to determine if actual discharge current is flowing out of the battery. The [DSG] flag in Flags() is the method for determining charging or discharging. If the fuel gauge detects discharge [DSG] is set to 1 and any other time (charging or relaxation), the [DSG] flag is set to 0. Discharge is detected if AverageCurrent() < -Dsg Current Threshold. Please note that current is negative while discharging.

This threshold should be set low enough to be below any normal application load current but high enough to prevent noise or drift from affecting the measurement (please note that **Dsg Current Threshold** is a positive value). The default is 60 mA.

Chg Current Threshold:

This register is used as a threshold by many functions in the fuel gauge to determine if actual charge current is flowing out of the battery. It is independent from the [CHG] bit which is used to determine charge termination. This threshold also has no effect on the [DSG] bit in the Flags() register.

Many algorithms in the fuel gauge require more definitive information about whether current is flowing in the charge or discharge direction. This is what **Chg Current Threshold** is used for. The default for this register is 75 mA which is sufficient for most applications.

5.5.2.2 Quit Current

Subclass	Subclass	Offset	Name			Value		Unit
ID				Туре	Min	Max	Default	
81	Current Thresholds	4	Quit Current	12	0	1000	40	mA

Quit Current sets a current threshold to determine when the fuel gauge goes into RELAX mode from CHARGE or DISCHARGE mode. The **Quit Current** parameter has units of mA. Either of the following criteria must be met to enter RELAX mode:

- AverageCurrent() is less than (-)Quit Current and then goes within (±)Quit Current for Dsg Relax Time.
- 2. AverageCurrent() is **greater than** Quit Current and then goes within (±)Quit Current for Chg Relax Time.

After 30 minutes in RELAX mode, the fuel gauge starts checking if the dV / dt < 1 μ V/s requirement for OCV readings is satisfied. When the battery relaxes sufficiently to satisfy this criterion, the fuel gauge takes an OCV reading for updating Q_{max} . These updates are used by the Impedance Track algorithm.

It is critical that the battery voltage be relaxed during OCV readings to get the most accurate results. The quit current threshold must not be higher than *Design Capacity* / 20 when attempting to go into RELAX mode; however, it should not be so low as to prevent going into RELAX mode due to noise. The current threshold that the *Quit Current* parameter sets should always be less than the magnitude of the current threshold the *Chg Current Threshold* sets and less than the magnitude of the current threshold the *Dsg Current Threshold* sets. The default value is set to 40 mA.

5.5.2.3 Discharge and Charge Relax Time

Subclass	Subclass	Offset	Name	Data	Value		Unit	
ID				Туре	Min	Max	Default	
81	Current	6	Dsg Relax Time	U2	0	65535	60	S
01	Thresholds	8	Chg Relax Time	U1	0	255	60	S

Dsg Relax Time:

The **Dsg Relax Time** is used in the function to determine when to go into RELAX mode after discharge current ceases. When *AverageCurrent()* is less than (–) **Quit Current** and then goes within (\pm) **Quit Current**, the **Dsg Relax Time** timer is initiated. If the current stays within (\pm) **Quit Current** until the **Dsg Relax Time** timer expires, then the fuel gauge goes into RELAX mode. After 30 minutes in RELAX mode, the fuel gauge starts checking if the dV / dt < 4 μ V/s requirement for OCV readings is satisfied. When the battery relaxes sufficiently to satisfy these criteria, the fuel gauge takes OCV reading for updating Qmax and for accounting for self-discharge. These updates are used in the Impedance Track algorithms.

Be careful when interpreting discharge descriptions in this document while determining the direction and magnitude of the currents, because they are in the negative direction. This is application specific, the default is 60 seconds.

Chg Relax Time:

The *Chg Relax Time* is used in the function to determine when to go into RELAX mode after charge current ceases. When *AverageCurrent()* is greater than *Quit Current* and then goes within (\pm) *Quit Current*, the *Chg Relax Time* timer is initiated. If the current stays within (\pm) *Quit Current* until the *Chg Relax Time* timer expires, then the fuel gauge goes into RELAX mode. After approximately 30 minutes in RELAX mode, the fuel gauge attempts to take accurate OCV readings. An additional requirement of dV / dt < 4 μ V/s (delta voltage over delta time) is required for the fuel gauge to perform Qmax updates. These updates are used in the Impedance Track algorithms.

This is application specific. Default is 60 seconds.

5.5.2.4 Maximum IR Correct

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
81	Current Thresholds	9	Max IR Correct	I2	0	1000	400	mV

The *Max IR Correct* is a maximum IR correction applied to OCV lookup under load. It only applies to OCV lookup after wakeup with detected charge current when gauge needs to establish capacity baseline, but the current is already flowing.

If current is flowing during a voltage measurement that is used for finding initial DOD, IR correction eliminates the effect of the IR drop across the cell impedance and obtain true OCV. *Max IR Correct* is the maximum value of IR correction that is used. It is to avoid artifacts due to very high resistance at low DOD values during charge.

This is particular to handheld applications. Default is 400 mV.

5.5.3 State Subclass

5.5.3.1 Qmax Cell 0

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	0	Qmax Cell 0	12	0	14500	1000	mAh

Qmax contains the maximum chemical capacity of the cell profiles, and is determined by comparing states of charge before and after applying the load with the amount of charge passed. They also correspond to capacity at low rate of discharge, such as C/20 rate. For high accuracy, this value is periodically updated by the gauge during operation. Based on the battery cell capacity information, the initial value of the chemical capacity should be entered in Qmax filed. The Impedance Track algorithm updates this value and maintains it.

Before an optimization cycle is run, set this value to the battery cell data sheet capacity. After the optimization cycle is run and for creation of the golden settings, set it to the learned value. The default is 1000 mAh.

5.5.3.2 Update Status

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	2	Update Status	H1	0x0	0x6	0x0	num

Since this is a pack-side gauge, the Update Status register can be represented by the bits below:

x	x	x	x	x	Bit 2	Bit 1	Bit 0

Three bits in this register are important:

- Bit 2 (0x04) indicates whether the Impedance Track algorithm is enabled.
- Bit 1 (0x02) indicates that the fuel gauge learned optimized values for Qmax and the Ra tables during a learning cycle.
- Bit 0 (0x01) indicates that the fuel gauge learned an initial value for Qmax after the charging portion of a learning cycle.

At the beginning of a learning cycle when creating a golden file, Update Status starts at 0x00. When IT is enabled with the IT_ENABLE subcommand being sent to Control(), Update Status automatically changes to 0x04. After the charge and relaxation portion of the learning cycle are complete, Update Status should have become 0x05. Finally, after the discharge and relaxation portion of the learning cycle, Update Status becomes 0x06 if the learning cycle was successfully completed. A golden file can then be generated if Update Status was successfully set to 0x06 by the gauge. When the golden file is created, bit 2 is cleared, leaving Update Status = 0x02.

Do not change any of these bits manually. IT must be enabled only by sending the *IT_ENABLE* subcommand to the *Control()* register.

Bit 1 is a status flag that can be set by the fuel gauge as needed. This bit should never be modified except when creating a golden file.

See for a detailed description of the learning cycle.

5.5.3.3 Voltage at Charge Termination

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	3	V at Chg Term	12	0	5000	4350	mV

This is the gauge recorded voltage at charge termination. It is used by the gauge to learn the depth of discharge (DoD) of a full battery for a given system. This is updated by the gauge after every charge termination to account for variations between systems and different temperatures.

V at Chg Term defaults to 4200 mV but can be initialized to the nominal charging voltage of the system.

5.5.3.4 Average Current Last Run

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	5	Avg I Last Run	12	-32768	0	-299	mA

The fuel gauge logs the *AverageCurrent()* averaged from the beginning to the end of each discharge. It stores this average current from the previous discharge period in this register provided that the previous discharge lasted at least 500 seconds.

This register should never need to be modified, it is only updated by the fuel gauge when the gauge exits discharge mode.

5.5.3.5 Average Power Last Run

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	7	Avg P Last Run	12	-32768	0	-1131	mA

The fuel gauge logs the power averaged from the beginning to the end of each discharge. It stores this average power from the previous discharge period in this register provided the previous discharge lasted at least 500 seconds. To get a correct average power reading, the fuel gauge continuously multiplies instantaneous current with *Voltage()* to get power. It then logs this data to derive the average power.

This register should never need to be modified. It is only updated by the fuel gauge when the gauge exits discharge mode.

5.5.3.6 Pulse Delta Voltage

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	9	Delta Voltage	12	0	32767	2	mV

The maximum difference of *Voltage()* during short load spikes and normal load, so the Impedance Track algorithm can calculate remaining capacity for pulse loads. The *Delta Voltage* value is automatically updated by the gauge during operation as voltage spikes are detected. It can be initialized to a higher value if large spikes are typical for the system. Allowable values are limited by *Max Delta V* and *Min Delta V*. During the IT simulations, the target voltage of the empty battery is *(Terminate Voltage + Delta Voltage)*. This feature allows *Terminate Voltage* to be set at the minimum operating voltage of the system with confidence that the 0% point will be reached at a sufficiently high voltage to prevent voltage spikes from crashing the system while still extracting maximum run time from the battery when spikes are small.

Delta Voltage defaults to 2 mV.

5.5.3.7 Thermal Rise Factor

Subclass	Subclass	Offset	Name	Data		Value		
ID				Type	Min	Max	Default	
82	State	11	T Rise	12	0	32767	50	Num

This is the thermal rise factor that is used in the single time constant heating-cooling thermal modeling. If set to 0, this feature is disabled and simulations in the IT algorithm will not account for self-heating of the battery cell. Larger values of *T Rise* lead to higher temperature rise estimates for the IT simulation.

T Rise defaults to 20.

5.5.3.8 Thermal Time Constant

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
82	State	13	T Time Constant	12	0	32767	1000	Num

www.ti.com OCV Table Class

This is the thermal time constant that is used in single time constant heating-cooling thermal modeling. The default setting can be used, or it can be modified to improve low-temperature accuracy if testing shows the model does not match the actual performance.

T Time Constant defaults to 1000. This is sufficient for many applications. However, it can be modified if better predictive accuracy at low temperatures is desired.

5.6 OCV Table Class

5.6.1 OCVa Table Subclass

5.6.1.1 Chemistry Identification

Subclass	Subclass	Offset	Name	Data Type		Value		Unit
ID					Min	Max	Default	
83	OCVa Table	0	Chem ID	H2	0x00	0xFFFF	0x0354	flags

The *Chem ID* determines the type of chemistry which is programmed on the gauge. Changing this value by replacing it in data flash has no effect on what is programmed on to the gauge. In order to obtain a new chemistry you must go through an actual chemistry tool. For the fuel gauge, this can be done using the bqCONFIG tool.

It defaults to 0128 when you program the default flash image which can be obtained from the Texas Instruments website.

5.7 Ra Table Class

This data is automatically updated during device operation. Do not make changes except for reading the values from another pre-learned pack for creating *Golden Image Files*. Profiles have format *Cello R_a* M where M is the number indicating state of charge to which the value corresponds.

Cell0 R_a flag xCell0 R a flag

Each subclass (R_a0 and R_a0x) in the Ra Table class is a separate profile of resistance values normalized at 0 degrees for the cell in a design. The cell has two profiles. They are denoted by the x or absence of the x at the end of the subclass title:

R a0 or R a0x.

The purpose for two profiles for the cell is to ensure that at any given time at least one profile is enabled and is being used while attempts can be made to update the alternate profile without interference. Having two profiles also helps reduce stress on the flash memory. At the beginning of each of the two subclasses (profiles) is a flag called *Cello R_a flag* or *xCello R_a flag*. This flag is a status flag that indicates the validity of the table data associated with this flag and whether this particular table is enabled or disabled.

Each flag has two bytes:

- 1. The least-significant byte (LSB) indicates whether the table is currently enabled or disabled. It has the following options:
 - (a) 0x00: means the table had a resistance update in the past; however, it is not the currently enabled table for the cell. (The alternate table for the cell must be enabled at this time.)
 - (b) 0xFF: This means that the values in this table are default values. These table resistance values have never been updated, and this table is not the currently enabled table for the cell. (The alternate table for the indicated cell must be enabled at this time.)
 - (c) 0x55: This means that this table is enabled for the indicated cell. (The alternate table must be disabled at this time.)
- 2. The most-significant byte (MSB) indicates the status of the data in this particular table. The possible values for this byte are:
 - (a) 0x00: The data associated with this flag has a resistance update and the Qmax Pack is updated.

Ra Table Class www.ti.com

- (b) 0x05: The resistance data associated with this flag is updated and the pack is no longer discharging (this is prior to a Qmax Pack update).
- (c) 0x55: The resistance data associated with this flag is updated and the pack is still discharging. (Qmax update attempt not possible until discharging stops.)
- (d) 0xFF: The resistance data associated with this flag is all default data.

This data is used by the fuel gauge to determine which tables need updating and which tables are being used for the Impedance Track algorithm.

This data is used by the Impedance Track algorithm. The only reason this data is displayed and accessible is to allow the resistance data on golden image files to be updated. This description of the **xCello R_a flags** are intended for information purposes only. It is not intended to give a detailed functional description for the resistance algorithms.

```
Cello R_a0 - Cello R_a14,
xCello R_a0 - xCello R_a14,
```

The *Ra Table* class has 15 values for each R_a subclass. Each of these values represents a resistance value normalized at 0°C for the associated *Qmax Pack*-based SOC grid point as found by the following rules:

For CellO R aM where:

- 1. If $0 \le M \le 7$: The data is the resistance normalized at 0° for: SOC = $100\% (M \times 11.1\%)$
- 2. If $8 \le M \le 14$: The data is the resistance normalized at 0° for: SOC = $100\% [77.7\% + (M 7) \times 3.3\%)$

This gives a profile of resistance throughout the entire SOC profile of the battery cells concentrating more on the values closer to 0% where resistance quickly increases.

SOC, as stated in this description is based on $Qmax\ Pack$. It is not derived as a function of SOC. These resistance profiles are used by the fuel gauge for the Impedance Track algorithm. The only reason this data is displayed and accessible is to allow the resistance data on golden image files to be updated. This resistance profile description is for information purposes only. It is not intended to give a detailed functional description for the resistance algorithms. It is important to note that this data is in m Ω units and is normalized to 25°C. The following are useful observations to note with this data throughout the application development cycle:

 Watch for negative values in the Ra Table class. Negative numbers in profiles should never be anywhere in this class.

Watch for smooth consistent transitions from one profile grid point value to the next throughout each profile. As the fuel gauge does resistance profile updates, these values should be roughly consistent from one learned update to another without huge jumps in consecutive grid points.

5.7.1 Ra0 Subclass

www.ti.com Ra Table Class

Subclass	Subclass	Offset	Name	Data		Value		Unit	
ID				Туре	Min	Max	Default		
		0	Ra flag	H2	0xFF55	0xFF55	0xFF55		
		2	Ra 0	12	0	32767	272	2 ⁻¹⁰ Ω	
		4	Ra 1	12	0	32767	316	2 ⁻¹⁰ Ω	
		6	Ra 2	12	0	32767	374	2 ⁻¹⁰ Ω	
		8	Ra 3	12	0	32767	507	2 ⁻¹⁰ Ω	
		10	Ra 4	12	0	32767	360	2 ⁻¹⁰ Ω	
		12	Ra 5	12	0	32767	330	2 ⁻¹⁰ Ω	
88	Ra0	14	Ra 6	12	0	32767	389	2 ⁻¹⁰ Ω	
00	Nau	16	Ra 7	12	0	32767	345	2 ⁻¹⁰ Ω	
		18	Ra 8	12	0	32767	352	2 ⁻¹⁰ Ω	
		20	Ra 9	12	0	32767	367	2 ⁻¹⁰ Ω	
		22	Ra 10	12	0	32767	374	2 ⁻¹⁰ Ω	
			24	Ra 11	12	0	32767	397	2 ⁻¹⁰ Ω
		26	Ra 12	12	0	32767	455	2 ⁻¹⁰ Ω	
		28	Ra 13	12	0	32767	808	2 ⁻¹⁰ Ω	
		30	Ra 14	12	0	32767	1182	2 ⁻¹⁰ Ω	

5.7.2 Ra0x Subclass

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
		0	xRa flag	H2	0xFFFF	0xFFFF	0xFFFF	
		2	Ra 0	12	0	32767	272	2 ⁻¹⁰ Ω
		4	Ra 1	12	0	32767	316	2 ⁻¹⁰ Ω
		6	Ra 2	12	0	32767	374	2 ⁻¹⁰ Ω
		8	Ra 3	12	0	32767	507	2 ⁻¹⁰ Ω
		10	Ra 4	12	0	32767	360	2 ⁻¹⁰ Ω
		12	Ra 5	12	0	32767	330	2 ⁻¹⁰ Ω
89	Ra0x	14	Ra 6	12	0	32767	389	2 ⁻¹⁰ Ω
69	Raux	16	Ra 7	12	0	32767	345	2 ⁻¹⁰ Ω
		18	Ra 8	12	0	32767	352	2 ⁻¹⁰ Ω
		20	Ra 9	12	0	32767	367	2 ⁻¹⁰ Ω
		22	Ra 10	12	0	32767	374	2 ⁻¹⁰ Ω
		24	Ra 11	12	0	32767	397	2 ⁻¹⁰ Ω
		26	Ra 12	12	0	32767	455	2 ⁻¹⁰ Ω
		28	Ra 13	12	0	32767	808	2 ⁻¹⁰ Ω
		30	Ra 14	12	0	32767	1182	2 ⁻¹⁰ Ω

5.8 Calibration Class

5.8.1 Data Subclass

Most of the following values never require modification by the user. They are only modified by the calibration commands in CALIBRATION mode. For calibration using a host system, see Appendix A, Factory Calibration.

5.8.1.1 CC Sense Resistor Gain

Calibration Class www.ti.com

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
104	Data	0	CC Gain	F4	1.00E-01	4.00E+01	0.9536	Number

This is the gain factor for calibrating Sense Resistor, Trace, and internal Coulomb Counter (integrating ADC delta sigma) errors. It is used in the algorithm that reports charge and discharge in and out of the battery through the *RemainingCapacity()* register. The difference between *CC Gain* and *CC Delta* is that the algorithm that reports *AverageCurrent()* cancels out the time base because *AverageCurrent()* does not have a time component (it reports in mA) and *CC Delta* requires a time base for reporting *RemainingCapacity()* (it reports in mAh).

5.8.1.2 Coulomb Counter Delta

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
104	Data	4	CC Delta	F4	2.98E+04	1.19E+06	1119000	Number

This is the gain factor for calibrating Sense Resistor, Trace, and internal Coulomb Counter (integrating ADC delta sigma) errors. It is used in the algorithm that reports charge and discharge in and out of the battery through the *RemainingCapacity()* register. The difference between *CC Gain* and *CC Delta* is that the algorithm that reports *AverageCurrent()* cancels out the time base because *AverageCurrent()* does not have a time component (it reports in mA) and *CC Delta* requires a time base for reporting *RemainingCapacity()* (it reports in mAh).

5.8.1.3 Coulomb Counter Offset

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
104	Data	8	CC Offset	12	-32768	32767	1432	mA

Two offsets are used for calibrating the offset of the internal Coulomb Counter, board layout, sense resistor, copper traces, and other offsets from the Coulomb Counter readings. *CC Offset* is the calibration value that primarily corrects for the offset error of the Coulomb Counter circuitry. The other offset calibration is *Board Offset* and is described next. To minimize external influences when doing *CC Offset* calibration by automatic *CC Offset* calibration or *CC Offset* calibration function in CALIBRATION mode, an internal short is placed across the SRP and SRN pins inside the fuel gauge. *CC Offset* is a correction for small noise and errors; therefore, to maximize accuracy, it takes about 20 seconds to calibrate the offset. Because it is impractical to do a 20-s offset during production, two different methods have been selected for calibrating *CC Offset*.

- The first method is to calibrate *CC Offset* by putting the fuel gauge in CALIBRATION mode and initiating the *CC Offset* function as part of the entire calibration suite. This is a short calibration that is not as accurate as the second method mentioned below. Its primary purpose is to calibrate *CC Offset* enough so that it does not affect any other Coulomb Counter calibrations. This is only intended as a temporary calibration because the automatic calibration is done the first time the I²C Data and Clock is low for more than 20 seconds, which is a much more accurate calibration.
- During normal Gas Gauge Operation when the I²C clock and data lines are low for more than 5 seconds and AverageCurrent() is less than Sleep Current in mA, then an automatic CC Offset calibration is performed. This takes approximately 16 seconds and is much more accurate than the method in Calibration mode.

5.8.1.4 Board Offset

www.ti.com Calibration Class

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Туре	Min	Max	Default	
104	Data	10	Board Offset	I1	-128	127	88	μA

Board Offset is the second offset register. Its primary purpose is to calibrate everything the **CC Offset** does not calibrate. This includes board layout, sense resistor, copper trace, and other offsets which are external to the chip. The simplified ground circuit design in the fuel gauge requires a separate board offset for each tested device.

5.8.1.5 Internal and External Temperature Offset

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Туре	Min	Max	Default	
104	Data	11	Int Temp Offset	I1	-128	127	0	Number
104	Dala	12	Ext Temp Offset	I1	-128	127	0	Number

Int Temp Offset:

The fuel gauge has a temperature sensor built into the IC. The *Int Temp Offset* is used for calibrating offset errors in the measurement of the reported *Temperature()* if the internal temperature sensor is used. The gain of the internal temperature sensor is accurate enough that a calibration for gain is not required.

Ext Temp Offset:

Ext Temp Offset is for calibrating the offset of the thermistor connected to the TS1 pin of the fuel gauge as reported by *Temperature()*. The gain of the thermistor is accurate enough that a calibration for gain is not required.

5.8.1.6 Pack Voltage Offset

Subclass	Subclass	Offset	Name	Data				
ID				Туре	Min	Max	Default	
104	Data	13	Pack V Offset	I1	-128	127	0	Number

Pack V Offset is a calibration value that is used to correct for any offset relating to the analog-to-digital converter (ADC) cell voltage measurement.

5.8.2 Current Subclass

5.8.2.1 Filter

Subclass	Subclass	Offset	Name	Data		Value		Unit
ID				Type	Min	Max	Default	
107	Current	0	Filter	U1	0	255	239	Number

Filter specifies the value for AverageCurrent() filter.

5.8.2.2 Deadband

Subclass	Subclass	Offset	Name	Data	Value			Unit
ID				Type	Min	Max	Default	
107	Current	1	Deadband	U1	0	255	5	mA

Security Class www.ti.com

Deadband creates a filter window to the reported *AverageCurrent()* register where the current is reported as 0. Any negative current above this value or any positive current below this value is displayed as 0.

This defaults to 5 mA. Only a few reasons may require changing this value:

- 1. If the fuel gauge is not calibrated.
- 2. Board Offset has not been characterized.
- 3. If the PCB layout has issues that cause inconsistent board offsets from board to board.
- 4. An extra noisy environment along with reason 3.

5.8.2.3 CC Deadband

Subclass	Subclass	Offset	Name	Data				Unit
ID				Туре	Min	Max	Default	
107	Current	2	CC Deadband	U1	0	255	34	294nV

CC Deadband creates a filter window below which measured coulomb count is not accumulated. Any coulomb count below this value will be thrown away.

This parameter defaults to 34 \times 294 nV based on a default sense resistor value of 5 m Ω . It should be scaled based on any changes to the sense resistor value in a given design per CC Deadband \times (R_{old} / R_{new}).

5.9 Security Class

5.9.1 Codes Subclass

Subclass	Subclass	Offset	Name	Data		Value	Unit	
ID				Type	Min	Max	Default	
		0	Sealed to Unsealed	H4	0x00	0xFFFF FFFF	0x3672 0414	Default 0x3672 0414 0xFFFF FFFF 0x0123 4567 0x89AB CDEF
		4	Unsealed to Full	H4	0x00	0xFFFF FFFF	0xFFFF FFFF	
112	Codes	8	Authen Key3	H4	0x00	0xFFFF FFFF		
112		12	Authen Key2	H4	0x00	0xFFFF FFFF	0x89AB CDEF	
		16	Authen Key1	H4	0x00	0xFFFF FFFF	0xFEDC BA98	
		20	Authen Key0	H4	0x00	0xFFFF FFFF	0x7654 3210	

5.9.1.1 Sealed to Unsealed

This register contains the security code to transition the device from SEALED mode to UNSEALED mode. The default code is set to 0x36720414.

5.9.1.2 Unsealed to Full Access

This register contains the security code to transition the device from UNSEALED mode to FULL ACCESS mode.

The default code is set to 0xFFFFFFF.

www.ti.com Security Class

5.9.1.3 Authentication Keys

This is the register to store the SHA-1 authentication key to allow a system to authenticate the battery pack.

The default key is set to 0x0123456789ABCDEFFEDCBA9876543210.

Security Class www.ti.com

Factory Calibration

The bq27546-G1 fuel gauge requires factory calibration. The gauge performs only a limited number of calibration functions. The rest must be performed by a host system using commands provided by the gauge for this purpose. The following sections give a detailed description of the various calibration sequences with the help of flow charts.

A.1 General I²C Command Information

In the following flow charts, all I²C functions take three arguments. Write command arguments:

- Address
- Data
- · Wait time in ms

Read command arguments:

- Address
- · Number of bytes read
- Wait time in ms

A.2 Calibration

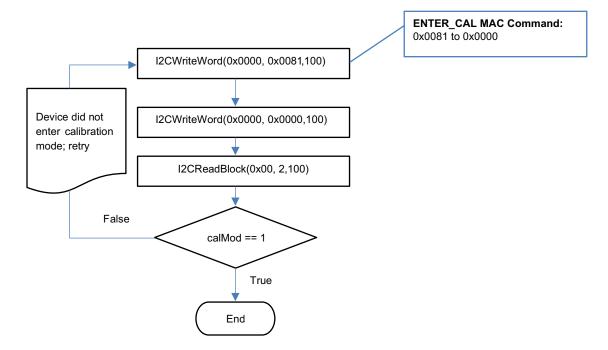
A.2.1 Method

The calibration method is broken up into the following sections. The first four sequences are subroutines to be used in the main calibration sequences.

- Section A.3, Enter CALIBRATION Mode
- Section A.4, Exit CALIBRATION Mode
- Section A.7, Obtain Raw Calibration Data
- Section A.11, Floating Point Conversion
- Section A.5, CC Offset
- Section A.6, Board Offset
- Section A.8, Current Calibration
- Section A.9, Voltage Calibration
- Section A.10, Temperature Calibration

A.2.2 Sequence

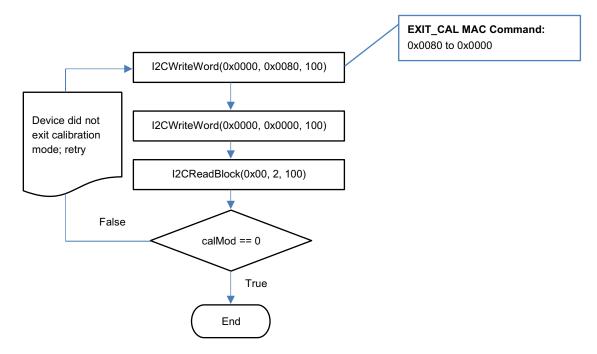
Please, perform the following calibration sequence during battery pack manufacturing process:


- 1. Perform CC Offset
- 2. Perform Board Offset
- 3. Perform Current Calibration
- 4. Perform Voltage Calibration
- 5. Perform Temperature Calibration
- 6. Write calibration results to data flash

Enter CALIBRATION Mode www.ti.com

A.3 Enter CALIBRATION Mode

This sequence puts the gauge into CALIBRATION mode. These steps must be performed when gauge is in UNSEALED mode.

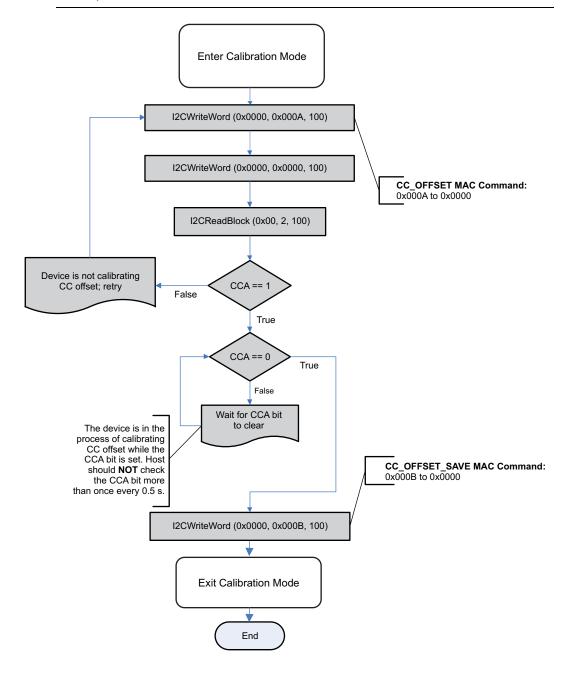


www.ti.com Exit CALIBRATION Mode

A.4 Exit CALIBRATION Mode

This sequence takes gauge out of CALIBRATION mode. These steps must be performed when gauge is in UNSEALED mode.

CC Offset www.ti.com


A.5 CC Offset

Use MAC commands for *CC Offset* calibration. The host system does not need to write information to the Data Flash (DF). See Section 4.1.1.1 for the description of the *CONTROL_STATUS[CCA]* bit. The host system needs to make sure the fuel gauge is unsealed.

NOTE: While the device is calibrating the *CC Offset*, the host system must not read the *CONTROL_STATUS* register at a rate greater than once every 0.5 seconds.

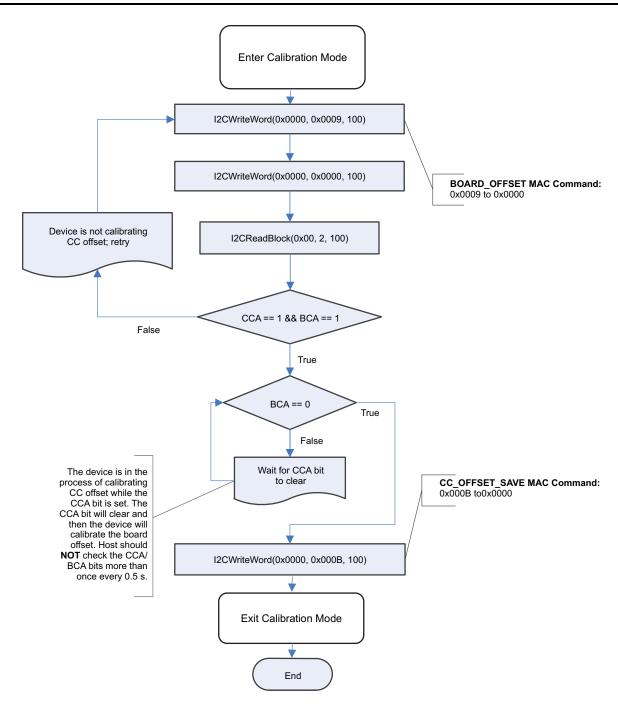
NOTE: The step labeled Enter CALIBRATION Mode refers to Section A.3, Enter CALIBRATION

The step labeled Exit CALIBRATION Mode refers to Section A.4, Exit CALIBRATION Mode.

www.ti.com Board Offset

A.6 Board Offset

Use MAC commands for **Board Offset** calibration. The host system does not need to write information to the DF. The host system needs to make sure the fuel gauge is unsealed. See Section 4.1.1.1 for the description of the CONTROL_STATUS[CCA] and [BCA] bits. Note that calculating the **Board Offset** will also calculate the **CC Offset**; therefore, it is not necessary to go through the **CC Offset** calibration process if the **Board Offset** calibration process is implemented.

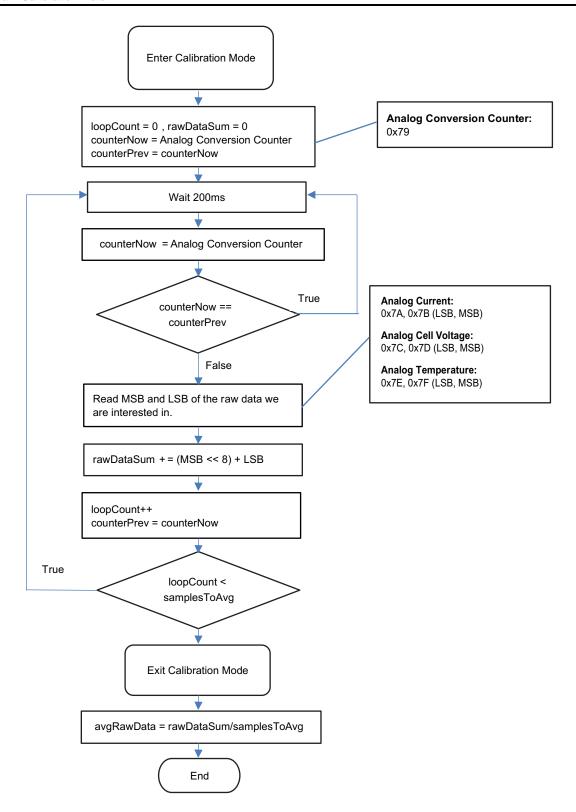

NOTE: While the device is calibrating the *CC Offset*, the host system should not read the *CONTROL_STATUS()* register at a rate greater than once every 0.5 seconds.

NOTE: The step labeled Enter CALIBRATION Mode refers to Section A.3, Enter CALIBRATION Mode.

The step labeled Exit CALIBRATION Mode refers to Section A.4, Exit CALIBRATION Mode.

Board Offset www.ti.com

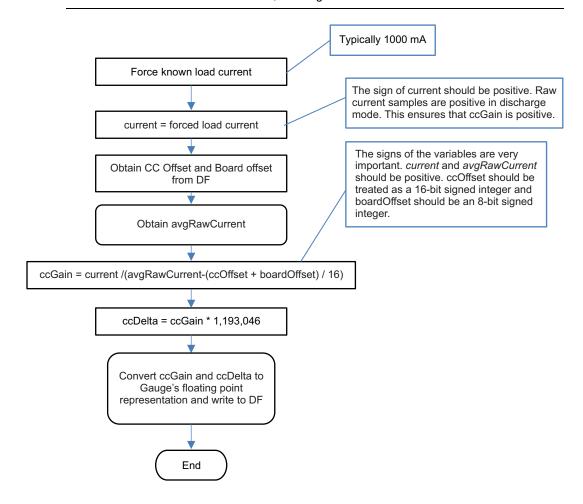
A.7 Obtain Raw Calibration Data


The following flow chart demonstrates how the host system obtains the raw data to calibrate current, voltage, and temperature. The host system uses this flow in conjunction with the Current, Voltage, and Temperature flows described in this appendix. It is recommended that the host system samples the raw data multiple times, at a rate of once per second, to obtain an average of the raw current, voltage and temperature. The host system needs to make sure the fuel gauge is UNSEALED.

NOTE: The step labeled Enter CALIBRATION Mode refers to Section A.3, Enter CALIBRATION

Mode.

The step labeled Exit CALIBRATION Mode refers to Section A.4, Exit CALIBRATION Mode.

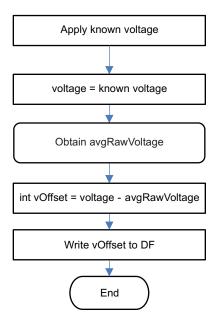

www.ti.com Current Calibration

A.8 Current Calibration

The *CC Gain* and *CC Delta* are two calibration parameters of concern for current calibration. A known load, typically 1000 mA, is applied to the device during this process. Details on converting the *CC Gain* and *CC Delta* to floating point format are in Section A.11, *Floating Point Conversion*. The host system needs to ensure the fuel gauge is UNSEALED.

NOTE: The step labeled **Obtain avgRawCurrent** refers to Section A.7, *Obtain Raw Calibration Data*.

The step labeled Convert ccGain and ccDelta to Gauge's floating point representation and write to DF refers to Section A.11, Floating Point Conversion.

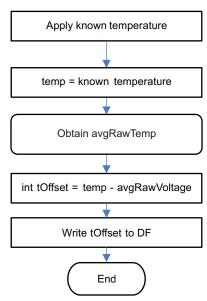


Voltage Calibration www.ti.com

A.9 Voltage Calibration

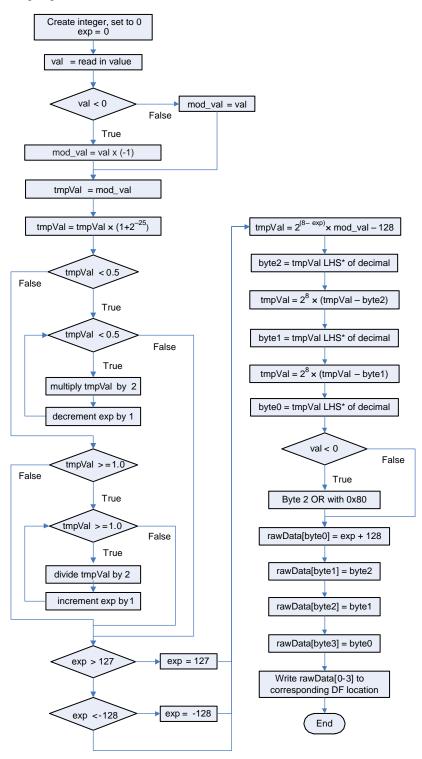
A known voltage must be applied to the device for voltage calibration. The calculated voltage offset must be written to the corresponding location in DF. The voltage offset is represented by an integer that is a single byte in size and can be written to the appropriate location in DF without any intermediate steps. The host system needs to ensure the fuel gauge is UNSEALED.

NOTE: The step labeled **Obtain avgRawVoltage** refers to Section A.7, *Obtain Raw Calibration Data*.



A.10 Temperature Calibration

A known temperature must be applied to the device for temperature calibration. The calculated temperature offset is written to the corresponding location in DF. The temperature offset is represented by an integer that is a single byte in size and can be written to the appropriate location in DF without any intermediate steps. The host system needs to ensure the fuel gauge is unsealed.


NOTE: The step labeled Obtain avgRawTemp refers to Section A.7, Obtain Raw Calibration Data.

A.11 Floating Point Conversion

This section details how to convert the floating point *CC Gain* and *CC Delta* values to the format understood by the gauge.

^{*} LHS is an abbreviation for Left Hand Side. This refers to truncating the floating point value by removing anything to the right of the decimal point.

Glossary

ACK Acknowledge character
ADC Analog-to-digital converter

BCA Board calibration CC Coulomb counter

CCA Coulomb counter calibration

CE Chip enable

Charge Mode Refers to a mode to where the gauge reads AverageCurrent() > Chg Current Threshold for at least 1 second.

Clear Refers to a bit in a register becoming a logic LOW or 0. The bqEvaluation software (EVSW) represents a clear bit with

the color green

C Rate C rate corresponds to discharge current that will discharge the battery in one hour, which is equal to full capacity of the

battery in mAh.

cWh Centiwatt-hour
DF Data flash

Discharge Mode Refers to a mode where the gauge read AverageCurrent() < (-)Dsg Current Threshold for at least 1 second.

DOD Depth of discharge in percent as related to Qmax. 100% corresponds to empty battery.

DOD0 Depth of discharge that was looked up in the DOD (OCV) table based on OCV measurement in relaxed state.

EOC End of charge FC Fully charged

FCC Full charge capacity. Total capacity of the battery compensated for present load current, temperature, and aging effects

(reduction in chemical capacity and increase in internal impedance).

FIFO First in, first out

Flag This word usually represents a read-only status bit that indicates some action occurred or is occurring. This bit typically

cannot be modified. The flags are set and cleared automatically by the gauge.

FVCA Fast voltage and current acquisition
GPIO General-purpose input output
HDQ High-speed data queue
IC Integrated circuit

ID Identification
 IO Input or output
 IT Impedance Track
 I²C Inter-integrated circuit

LDO Low dropout
LSB Least significant bit

LT Lifetime

MAC Manufacturer access command or control command

mAh Milliamp-hour
MSB Most significant bit
mWh Milliwatt-hour

NACK Negative acknowledge character NTC Negative temperature coefficient

OCV Open-circuit voltage. Voltage measured on fully-relaxed battery with no load applied.

OTC Overtemperature in charge
OTD Overtemperature in discharge
Qmax Maximum chemical capacity

Qpass Qmax Passed Charge. The amount of charge passed between two DOD0 points required for learning Qmax.

RDIS Resistance update disabled

www.ti.com Appendix B

Rem Cap	Present remaining capacity in the battery compensated for present load current, temperature, and aging effects (reduction in chemical capacity and increase in internal impedance).
RM	Remaining capacity
RW	Read or write
SCL	Serial clock: programmable serial clock used in the I ² C interface
SDA	Serial data: serial data bus in the I ² C interface
SE	Shutdown enable
Set	Refers to a bit in a register becoming a logic HIGH or 1. The bqEvaluation software (EVSW) represents a set bit with the color red.
SOC	State-of-charge in percent related to FCC
SOC1	State-of-charge initial
SOCF	State-of-charge final
System	The word system is sometimes used in this document. When used, it always means a host system that is consuming current from the battery pack.
TCA	Terminate charge alarm
TS	Temperature status
TTE	Time-to-empty
TTF	Time-to-full
VOK	Indicates that Qmax has been saved to data flash. This bit is located on CONTROL_STATUS register bit 1.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive amplifier.ti.com Communications and Telecom www.ti.com/communications **Amplifiers Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity