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Introduction

Analog Applications Journal is a collection of analog application articles
designed to give readers a basic understanding of TI products and to provide
simple but practical examples for typical applications. Written not only for
design engineers but also for engineering managers, technicians, system
designers and marketing and sales personnel, the book emphasizes general
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific
circuits but as examples of how devices could be used to solve specific design
requirements. Readers will find tutorial information as well as practical
engineering solutions on components from the following categories:

e Power Management
e Amplifiers: Op Amps

Where applicable, readers will also find software routines and program
structures. Finally, Analog Applications Journal includes helpful hints and
rules of thumb to guide readers in preparing for their design.
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Power Management

Selecting the correct IC for power-

supply applications

By William Hadden (Email: willhadden@ti.com)

Applications Engineer, High Performance Analog, Low Power dc/dc

Selecting the proper integrated circuit (IC)

for a power-supply application may seem like Figure 1. Power-supply application

an easy task. However, as newer consumer
electronics come out that require multiple
voltage rails, the task becomes more com- 12-v
plex. To select the correct IC(s) for the job,
many factors such as cost, solution size,
power source, duty cycle, and required output
power must be weighed. These factors must
be ranked by importance and the power
supplies selected accordingly. In this article,
we will determine the best solution for the
application shown in Figure 1.

Our example application is portable, requires
the lowest possible battery consumption and
a small form factor, and operates from a single-
cell Li-ion battery that is charged whenever the
12-V supply is available. We want to keep the
cost to a minimum; but this can be sacrificed
for space considerations, which are the most
important requirements, followed by the high-
est efficiency possible to extend battery life.

Selecting the hest topology
First, let’s examine the power requirements
of each rail to determine what kind of dc/dc
converter should be used (i.e., inductive
switcher, linear regulator, or charge pump).
Inductive switchers are usually the best
choice for highest efficiency. The inductive
switcher circuits require a switching element,
rectifier, inductor, and input and output capac-
itors. For many applications, the solution size
can be reduced by choosing a device where
the IC switching element and rectifier are

Supply

5.V, 2-A DC/DC Li+ Battery
Supply Charger
'
]_ 3.5-to0 4.2-V
l Li+ Battery
AC-Adapter/Battery —
Switchover Circuit
1.50-V, 100-mA
DC/DC Supply
2.5-V, 50-mA ITSIC

DC/DC Supply

1.25-V, 300-mA

DC/DC Supply FPGA
1.65-V, 112-mA Mi

DC/DC Supply icroprocessor

3.3-V, 420-mA
DC/DC Supply

internal. These circuits have typical efficien-
cies ranging from 80 to 96%, depending on
the load. Switching converters usually
require more space due to the size of the inductor and are
generally more expensive. The switching converter also
causes electromagnetic interference (EMI) radiation from

the inductor and noise on the output due to the switching.

Low-dropout linear regulators (LDOs) step down dc

voltages by dropping the input voltage across a pass element.

The benefit of this topology is that it requires only three
parts (pass element and input/output capacitors). LDOs
are usually a cheaper solution and are much less noisy

Analog Applications Journal 1Q 2007
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than inductive switchers. The device input current is
equal to the load current, so the efficiency of the solution
is equal to the output-to-input voltage ratio. The drawback
of this solution is the low efficiency for high input-to-output
voltage ratios. All of the power is dissipated by the pass
element, which means that an LDO is not an ideal solution
for high-current applications where the input-to-output
difference is large. These high-power applications require
heat sinking, which increases the solution size.
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Charge pumps step up/down or invert dc voltages using
“flying” capacitors as storage elements and use internal
switches to connect the capacitors in such a way as to
perform the desired dc/dc conversion. Charge pumps are
generally cheaper than inductive switchers and do not
emit EMI, but the output ripple is usually greater than
that of inductive switchers. Charge pumps are limited in
their output power, and the transient response is limited
to the rate at which the flying capacitors can charge.
Additionally, efficiency is usually very low in applications
where the input voltage is near the output voltage.

To further reduce the solution size, many multi-output
ICs are available. These ICs usually contain internal MOS
field-effect transistors (MOSFETs) and require a minimum
of external components. These ICs alone may be more
expensive, but the savings gained by the reduction of
external parts that must be placed during production will,
in many cases, offset the higher cost.

What topology should we use?

Due to the space constraints of this application, LDOs would
be our best choice. However, this is not always possible due
to power dissipation and efficiency constraints. Beginning
with the 5-V, 2-A rail, it is clear that we should choose a
switching converter. The power dissipated by an LDO, in
this case 14 W, is excessive. For this rail, an inductive
step-down converter is the best choice.

Next we move on to the battery charger. This battery is
charged from the 5-V rail. Our application is for a single-
cell Li-ion battery that has a charging voltage of 4.2 V.
With the space constraints of our application, a linear
charger is a good choice. The charging efficiency is not as
much of a concern because the only time this device will
operate is when the 12-V power adapter is available.
However, when selecting the peak charge current of a
battery deeply discharged to 3 V, we must take care to
limit the thermal dissipation of the device.

e [or the 1.50-V rail, either a switching step-down con-
verter or an LDO would be acceptable. With the latter,
our efficiency would be in the 25% range and would
require an input current of 100 mA. If we substitute a
switching step-down converter, we could get efficiencies
higher than 90%, which requires an input current of
30 mA. There are many very small switching-converter
solutions that can supply the required output power, so
the size increase over an LDO circuit is not appreciable.
To maximize battery life, the step-down converter is a
better choice.

e For our 2.5-V rail, again, either topology is acceptable.
Due to the low current requirements and lower input/
output differential, an LDO is the best choice for the
smallest size.

www.ti.com/aaj; 10 2007
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e For our 1.25-V rail, a switching converter is the best
choice. With the high (300-mA) load requirement and
the large input/output differential, an LDO would dissi-
pate too much power and is too inefficient.

e For the 1.65-V rail, again, either topology is acceptable.
Using the same logic as for the 1.50-V case, we could
choose a switching converter; but other factors discussed
later require that this be an LDO.

e For the final 3.3-V rail, a switching converter is the best
choice due to the large output current required.

Selecting the best IC(s) for the job

Taking into consideration our size and cost constraints,
the chosen ICs should be as highly integrated as possible.
All of the selected ICs contain internal MOSFETSs. This
saves on solution size as well as on production costs. In
addition to a reduced bill of material, the reduced compo-
nent count reduces the cost to assemble each board for
further cost savings. There are also multi-output ICs avail-
able that decrease our solution size even further.

If we start again with the 5-V rail, the best solution for
this is the TPS5431. Its wide input range (5.5 to 23 V) will
accept our 12-V, £10% input. The TPS5431 also provides
up to 3 A with an adjustable output voltage down to 1.2 V.
The switching MOSFET and the compensation compo-
nents are integrated, and the 95% efficiency meets our
battery-power demands. The device comes in the SO-8
package for a very small solution size.

Proceeding to the battery charger, we have several
choices. The bg24010, a small battery charger IC in the
3 x 3-mm QFN package, is a good choice. Its solution size
is very small and requires only three external components,
but there is a better solution for our application. The
TPS65010 is a power- and battery-management IC for
Li-ion-powered systems. This device is an excellent fit for
our application, as it integrates two switching converters
(VMAIN and VCORE), two LLDOs (LDO1 and LDOZ2), and
a single-cell Li-ion battery charger. In addition to these
rails, the IC also eliminates the need for a switchover
circuit when the 12-V power adapter is connected. In our
application, VMAIN powers the 3.3-V rail, VCORE powers
the 1.25-V rail, LDO1 powers the 1.65-V rail, and LDO2
powers the 2.5-V rail. Using the TPS65010 drastically
reduces our solution size as well as the external compo-
nent count.

The remaining 1.50-V rail can be powered from a step-
down switcher such as the TPS62201. This device comes
in a five-lead SOT-23 package and requires only three
external components (input/output capacitors, inductor,
and two feedback resistors). This translates to a very
small solution size. To increase efficiency, the input of this
device should be connected to the 3.3-V MAIN output of
the TPS65010.

Analog Applications Journal
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Figure 2. Power-supply solution

Power Management
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The final solution

The final solution, based on the preceding discussion, is
shown in Figure 2.

No I2C interface available?

If our application did not have an I2C interface available, we
would not be able to use the TPS65010. In this situation,
the TPS75003 would be useful. It contains two 3-A switch-
ing dc/dc step-down converters as well as one 300-mA LDO.
This adjustable output device would integrate the three
highest current rails. The 1.25- and 3.3-V rails would be
supplied by the switching converters. The LDO would
supply the 1.65-V rail because of the lower current require-
ment. The remaining 2.5-V rail is easily supplied by a small
LDO circuit. The TPS71525, which comes in an SC-70
package and is stable with ceramic output capacitors,
provides a very small solution size.

A larger but less expensive solution is the TPS76925 to
power the 1.65-V rail. The TPS76925 control circuitry
requires a minimum equivalent series resistance on the
output for stability, so this may interfere with the size
constraints.

Analog Applications Journal 1Q 2007
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Calculating the system efficiency difference

For this discussion, we have assumed that all of the voltage
rails are on 100% of the time, which is rarely the case.
Sometimes, where an inductive switcher would typically
be used, an LDO may be an acceptable choice to minimize
solution size. We can determine which to use by calculat-
ing the efficiency difference between each topology.

Using the percentage of time that an output is enabled
(the duty cycle), we can determine the effect of each rail
on the total solution efficiency. First, the effective total
output power is calculated by summing up the effective
power for each rail:

n
Pouterrror = X Di xB;,
i=

where P is the output power from one output rail and D;
is the duty cycle for the same rail. Next, we calculate the
power lost by each rail:

1
Progs = DX Prap, [ﬂ - 1J
RAIL
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We then sum up the power loss for all of the rails to get

the total power loss:

1
P ossToraL = 2 D; xP, (—— 1]
i=1 nl

where 1 is the efficiency of the individual output rail. We
then calculate the effect of each rail on the overall system

efficiency:
D xPraLL

NSYSRAIL = P =
LOSSTOTAL t YOUTEFFTOT

By summing all of the rail system efficiencies or by using
the following equation, we can determine the total system

efficiency:

_ Pourerrror
Msys =~ D; x P,

i=1 M

For example, if the 3.3-V, 420-mA rail we previously
decided should be powered from a switching converter

was enabled for only 10% of the operation time, then

using an LDO instead of a switcher would result in a drop
of less than 0.75% in overall efficiency. This is illustrated

more clearly in Table 1.

Table 1. Effective efficiency calculations*

Texas Instruments Incorporated

If the 3.3-V output was on all the time, using an LDO
instead of an inductive switcher would reduce the overall
efficiency by nearly 4%. These two cases are clearly
extremes but illustrate how the duty cycle affects the
overall efficiency. As the duty cycle for an output increases,
the calculation of solution size versus efficiency must be
examined to determine the optimal solution.

Conclusion

Selecting between the many different options available for
dc/dc conversion can be a daunting task. Requirements such
as available space, available input power, output power,
duty cycle, and cost all must be examined to choose the
best solution. We can start by ranking the requirements by
importance, then select the topology for each output based
on the requirements. Finally, we can choose the most cost-
effective solution for each output. Following these simple
steps should take the difficulty out of power-supply design.

Related Web sites

Replace parmumber with bq24010,.TPS5481 'TPS62201y

OUTPUT OUTPUT DUTY EFFECTIVE POWER
POWER LDO OR VOLTAGE CURRENT POWER CYCLE POWER EFFICIENCY LOSS
RAIL SWITCHER? (V) (A) (W) (%) (w) (%) (W)
P Switcher 1.35 0.106 0.1431 100 0.1431 90 0.016
P, LDO 25 0.05 0.125 100 0.125 63 0.075
P, Switcher 1.25 0.3 0.375 100 0.375 90 0.042
P, LDO 1.65 0.112 0.1848 100 0.1848 4 0.263
Py Switcher 33 0.42 1.386 10 0.1386 90 0.015
TOTALS 2.2139 0.9665 0.411

System Efficiency: 70.15%

OUTPUT OUTPUT DUTY EFFECTIVE POWER
POWER LDO OR VOLTAGE CURRENT POWER CYCLE POWER EFFICIENCY LOSS
RAIL SWITCHER? v) (A) (W) (%) (W) (%) (W)
P, Switcher 1.35 0.106 0.1431 100 0.1431 90 0.016
P, LDO 25 0.05 0.125 100 0.125 63 0.075
P, Switcher 1.25 0.3 0.375 100 0.375 90 0.042
P, LDO 1.65 0.112 0.1848 100 0.1848 4 0.263
Py LDO 33 0.42 1.386 10 0.1386 83 0.029
TOTALS 2.2139 0.9665 0.425

*Assuming 4-V battery operation and switching-converter efficiency of 90%

High-Performance Analog Products

System Efficiency: 69.45%
Difference: 0.71%
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LDO white-LED driver TPS7510x provides
incredibly small solution size

By William Hadden (Email: willhadden@ti.com)

Applications Engineer, High Performance Analog, Low Power dc/dc

Introduction

Use of white-LED drivers has increased in
recent years due to the popularity of color
LCD screens on most portable electronic

Figure 1. Efficiency versus battery voltage of TPS7510x

and typical LED boost converter

equipment. The white backlight required to 100.0 [ ~—— ,—TF"S751 0x

bring out the color in these screens is most 90.0 TV

often provided by white LEDs. In applica- 80.0 7y

tions powered by a one-cell Li-ion battery, g 70.0 Typical LED Boost Converter
charge pumps or boost converters have been > 60.0

required to drive these LEDs because of S 50.0

their high forward voltage (4 V typical). As S 400

white-LED technology has advanced, the w 30.0

forward voltage required has significantly 20.0

dropped. Today, white LEDs such as Nichia’s 10.0

NHSW046 or NSSW100C are available with 0.0

a typical forward voltage of less than 3 V. 3 3.2 3.4 3.6 3.8 4 4.2 4.4
The lower forward voltage eliminates the Input Voltage (V)

need for voltage boosting, permitting the

use of linear regulation topologies that

reduce costs and solution size and increase

efficiency across the battery-discharge range. Figure 1
compares the efficiency and battery voltage of the Texas
Instruments TPS7510x and a typical series LED boost
converter.

TPS7510x family

The TPS7510x low-dropout (LDO) matching LED current
source is a highly integrated white-LED driver optimized
for low-power keypad and navigation pad LED backlight-
ing applications. The device provides a constant, matched
current for up to four unmatched LEDs organized into two
banks of two LEDs, each in a common-cathode topology.
Inputting a PWM signal on each EN pin allows brightness to
be varied from off to full brightness. Each bank has inde-
pendent enable control, but all four channels are concur-
rently current-matched. The input supply range is ideally
suited to single-cell Li-ion battery supplies and provides up
to 25 mA of current per LED over the entire input range.
The typical 70-mV dropout voltage allows the circuit to
drive the white LEDs from a standard one-cell Li-ion
battery. No internal switching signals are used, eliminating
troublesome EMI. The TPS7510x is offered in an ultra-
small 9-ball, 0.4-mm ball-pitch wafer chip scale package

Analog Applications Journal 1Q 2007
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Figure 2. TPS75105 LDO white-LED driver

VBATT
TPS7510x
VIN D1A
A9
VENA ENA D2A —Pt
W
Vv
ENB ENB D1B \
N
—ISET D2B
O
GND

(WCSP) and a 3 x 3-mm QFN package. The package size
coupled with the high integration yields a very small solu-
tion footprint. Figure 2 shows the typical operating circuit
for the TPS7510x.

High-Performance Analog Products
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The output of each LED is regulated independently, and
all of the outputs are typically within 2% of each other. The
ISET input allows the user to program any LED current up
to 25 mA. If ISET is unconnected, the TPS7510x uses the
factory default current setting. The default current settings
available in the general catalog are 3 mA (TPS75103) and
5mA (TPS75105). Default settings are available between
1 and 10 mA in 1-mA increments but may require mini-
mum order quantities.

The TPS7510x does not require input or output capaci-
tors for stability. If the default current setting is used, no
external parts other than the LEDs are required. This
results in a solution size of less than 1.5 mm?2. A photo-
graph of the EVM layout, including pads for the optional
set resistor and input capacitor, is shown in Figure 3. The
solution size for this layout with the extra components is
still only 25 mm2.

S INSTRUMEN?
1510xEVM~=17
174 Rev E=1

Texas Instruments Incorporated

Conclusion

Historically, charge pumps or inductor boost converters
have been used to drive white LEDs in most backlighting
applications. As the LED technology has improved, forward
voltages have dropped. In many low-power applications,
the LED forward voltage is less than 3 V. In these applica-
tions, the TPS7510x LDO white-LED driver IC provides an
excellent solution. The LDO topology eliminates EMI and,
with no required external components and the ultrasmall
WCSP or QFN package, the total solution size is drastically
reduced to just 1.5 mm?2 or 9 mm?2, respectively.

Related Web sites

power ti. com

PR Aoy gt el g gl e i

www.ti.com/aaj;
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Power management for processor
core voltage requirements

By Adrian Harris (Email: aharris@ti.com)
Applications Specialist

Introduction

Today’s high-performance processors have very stringent
power requirements. Typically, the power requirements
consist of at least two supply voltage requirements. One
voltage requirement is for the processor core voltage,
Voorps While the others are input-output voltage require-
ments, V.

The core-voltage requirement ranges from 0.9 to 1.3 V
and is usually defined by specific processor performance
criteria. The latest core-supply voltage tolerance require-
ments are typically +3%. The presence of large current
transients makes the task of delivering reliable processor
power even more challenging.

To meet these challenges, Texas Instruments (TI) intro-
duces its plug-in power series of fast-transient-response
power modules. These high-performance products have
been designed to deliver reliable processor core power
that is compact and cost-effective.

TMS320TCI648x digital signal processor
power requirements

An example of a high-performance processor is TI's new
TMS320TCI648x digital signal processor. Upon inspection
of this product’s datasheet and the associated power
requirements, we find the following information.

Voltage tolerances, noise and transients
The voltage tolerances specified in the datasheet include
all DC tolerances and the transient response of the power
supply. These tolerances include the absolute maximum
and minimum levels that must be maintained at the pins
of the TCI6488 under all conditions. Special attention to
the power supply solution is needed to achieve this level
of performance, especially the 3% tolerance on the core
power plane (Vgpp)- In order to maintain the 3% toler-
ance at the pins, the tolerance must be a combination of
the power supply DC output accuracy and the effect of
transients. A reasonable goal for the DC power supply
output accuracy is 1.5%, leaving 1.5% for the transients.
At a nominal 1.0-V Vyqpn, 3% tolerance is +30 mV. This
allows 15 mV of DC accuracy from the output of the
power supply and another 15 mV due to transients.
With large current transients, a core-voltage require-
ment of +3% tolerance and 1 V is nearly impossible to
meet using a traditional solution. Usually, a custom-
designed power module or an entirely discrete solution
with an application specific-control design is required.

Analog Applications Journal 1Q 2007

www.ti.com/aaji

Second generation PTH series (T2) power modules

The new T2 series of plug-in power modules shown in
Appendix A has a new patent-pending feature called
TurboTrans™. TurboTrans technology allows the designer
to customize the power module’s control design to meet a
target voltage-deviation specification. These T2 products
offer the following three primary benefits.

Up to 8x reduction in output capacitance — Fewer
capacitors means lower cost and saves board space. In
applications with high load transients, these savings could
easily be as much as the cost of the module itself.

Faster response to load transients — For a given
value of output capacitance, the designer will see up to a
50% reduction in the peak deviation of the output voltage
following a load transient.

Enhanced stability when used with ultra-low ESR
capacitors — Designers can safely use the latest Oscon®
polymer tantalum or all-ceramic output capacitors with-
out stability concerns.

As part of the second-generation PTH products, a new
line of ultra-fast-transient-response versions has been
developed. These products were designed to meet the
challenging power requirements of high-speed processors
such as the TMS320TCI648x family. The control design is
aggressively compensated beyond that of a standard T2
module. This provides an additional improvement in tran-
sient response and the lower cost associated with reduced
output capacitance.

For example, let’s examine the requirements of the
TMS320TCI648x DSP above.

e Core voltage (Voopp) =1V

® Viorp tolerance = 3% (1.5% for DC tolerance and 1.5%
for AC transients)

e Maximum current transition = 5 A

e Maximum peak voltage deviation with transients =

Voorg X 1.5% = 15 mV
e Qutput impedance requirement = 15 mV + 5 A =

3 mV/A

In order to meet the voltage tolerance requirement for
the TMS320TCI648x, the power supply must have an
output impedance of 3 mQ or less. This requirement is
beyond the capability of any standard, “off-the-shelf”
power module.

High-Performance Analog Products
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Figure 1 shows that the competitive module cannot meet
the 3-mQ requirement. Even with a standard PTHO8T240W
module, the low-impedance requirement cannot be
achieved without a large amount of capacitance. The
PTHO8T240F module, however, can meet the requirement
with only 3000 pF of external output capacitance. Typical
designs are shown in Appendix B.

Summary

Texas Instruments Incorporated

requirements of the latest system processors. These modules
permit system designers to optimize transient perform-
ance while minimizing the need for output capacitance,
thus optimizing board space and reducing system cost.

Related Web sites

-dsp t1 com |
."v'(r;v;v*ﬁ com/sc/dev'i(':e/PTHO'S'I‘240F'

TT’s new line of ultra-fast-transient-response modules
was designed to meet the challenging supply-voltage

Figure 1. Transient response versus capacitance chart
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Figure 1 compares the output impedance characteristics of a standard T2 module, PTHO8T240W:; a fast-
transient-response module, PTHO8T240F; and a similarly rated competitive product.

Appendix A: T2 product selection tables

Standard — T2 non-isolated point-of-load modules

Viy (V) DESCRIPTION 3A 6A 10A 16A 30A 50 A
+3.3 T2 PTH PTH04T260W PTH04T230W PTH04T240W PTH04T220W PTHO4T210W
+5 T2 PTH PTH04T260W PTH04T230W PTH04T240W PTH04T220W PTHO5T210W
PTHO8T260W PTHO8T230W PTHO8T240W PTH08T220W
+12 T2 PTH PTH08T260W PTHO8T230W PTHO8T240W PTH08T220W PTHO8T210W PTV08T250W
Released products are listed in bold red.
Ultra-fast transient response — T2 non-isolated point-of-load modules
Viy (V) DESCRIPTION 3A 6A 10A 16A 30A 50 A
+3.3 T2-F PTH PTHO4T260F PTHO04T230F PTHO4T240F PTHO04T220F PTHO4T210F
+5 T2-FPTH PTHO4T260F PTHO04T230F PTHO4T240F PTHO04T220F PTHO5T210F
PTHO8T260F PTHO8T230F PTHO8T240F PTHO8T220F
+12 T2-FPTH PTHO8T260F PTHO8T230F PTHO8T240F PTHO8T220F PTHO8T210F PTV08T250F

Released products are listed in bold red. Depending on the business opportunity and system requirements, additional products may be developed upon request.
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Appendix B: Faraday DSP’s scaled core expanded designs

PTHO08T240F Transient Performance Data
(Kemet T530 Series - Polymer Tantalum Bulk Capacitors)

Power Management

Output Voltage Truth Table | MTRKcore Ui
VID3 VID2 VID1 VIDO| Vcore 1 6
0 0 0 0 0.900 V Track Si m nse
0 ) 0 1 0.913¥ 2 ‘ e 5 +Sense
0 0 1 0 0927 1
0 0 1 1 osy 2w L C105 - C107 C108-C110] | c111-c112 VCORE
0 1 0 0 0953 I ihi Rer - 1000 pF 100 pF . | 1000 uF
0 1 0 1 |0967V 7 €101 = €102 <-C103 SULISUU NSRRIl | 1 1 o8V L1l xsR" LLosy"
0 1 1 0 |0980V 330 pF| 10 pF | 0.1 pF Kemet Ceramic Kemet
9 L A b T530 Series T530 Series
1 0 ° 1 1020V Poly- Tant Poly- Tant s Return
1 (] 1 1] 1.033¥ J7 ur
1 L) 1 1 1.047 -
1 1 0 0 |1.060V 18V Sense
11 0 1 1073V >Ven - .
I N R Regulation
R1053R106 $R107 3R108 $R109 2R110  3R111 ;5{}1'(2;2 _;531'(:22 Circuit per
D3 10 kQ 710 kQ 3
VID Identification Resistor VIDO TVID1TVID 2 TV gaCh ?il;
ore (x
Component Q101 | Q102 | Q103 | Q104
VID Code Designator | Resistor 0.50%
no code R105 31.2 kQ
VID 0(LSB) [R106 453 kQ On-Semi ViD3 VID3
VID 1 R107 229 kQ NTA4153NT1 ' VID2
VID 2 R108 117 kQ (@101-Q104) Vib-2 VID1
VID 3(MSB) [ R109 57.6 kQ VID-1 VIDO
VID-0
PTHO08T240F Transient Performance Data
(OSCON SEPC Series Bulk Output Capacitors)
Output Voltage Truth Table | MTRKcore
VID3 VID2 VID1 VIDO| Vcore 6
0 0 0 0 |0.900V Track Sync TT  +Sense +Sense
o o 1 o |y PTHO8T240F
o o0 11 3:342\\5 PA €105 C107-C109 | C106 Vcone
1 95 ! Rser - + 2700 pF 100 pF * 2700 uF
0 1 0 1 |0967V ~C101 ==C102 = SETG oS0 125 V" LLl.l stp =25 vp
0 1 1 o |o0.980 ¥ 330 pF| 10 pF Oscon Ceramic Oscon
) 1 1 1 0.993
0 L O | M SEPC 2700M SEPC2700M
1 0 L) 1 1.020 V
1 0 1 0 [1033Vv o Return
1 0 101 1.047\\; -Sense
1 1 0 () 1.060
1 10 1 [1073V| >Ven 18V .
Polor e jimy N Regulation
R105 $R106 £ R107 $R108 gR109 | RI10 <RI SR12Z ~SR113 Circuit per
viDo fvID1fVvID2FVID3| F10 F10kQ $10kQ $10 ke each DSP
VID Identification Resistor
Core (x4)
Component Q101 | Q102 [ 103 [ Q104
VID Code Designator | Resistor 0.50%
no code R105 31.2 kQ
VID 0(LSB) |R106 453 kQ On-Semi ViD3 VID3
VID 1 R107 229 kQ NTA4153NT1 ViDz VID2
VID 2 R108 17 kQ (Q101-Q104) VID1
VID 3(MSB) | R109 57.6 kQ VvID-1 VIDO
VID-0
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Accurately measuring ADC driving-

circuit settling time

By Rajiv Mantri, Strategic Marketing Engineer (Email: rajivmantri@ti.com),
and Bhaskar Goswami, Test Development Engineer (Email: bhaskar@ti.com)

Introduction

Many modern data acquisition systems consist of high-
speed, high-resolution ADCs.! CMOS-switched, capacitor-
based ADCs are often chosen for such designs due to their
low cost and low power dissipation. These ADCs use an
unbuffered front end directly coupled to the sampling
network. To effectively minimize noise and signal distortion,
it is necessary to drive the ADC with a high-speed, low-
noise, low-distortion operational amplifier.2 To achieve
minimal distortion it is important for the op amp output to
settle to the desired accuracy within the acquisition time
of the ADC. Normally the op amp settling time is either
calculated from the frequency response specified in the
datasheet or measured by probing the output with an
oscilloscope that has a limitation on resolution. Sometimes
the difference between the op amp input and output is
amplified to achieve better accuracy. These methods are
limited by the oscilloscope resolution or circuit parasitic.
Moreover, the settling time of the op amp is affected by
the parasitic capacitance and inductance introduced by
the oscilloscope probe. In another method, the difference
between output and input is amplified to increase the
resolution of the measurement. None of these methods
includes the parasitic capacitance and inductance present
in the ADC sampling circuit and package.

Definition of settling time

Settling time is the time elapsed from the application of
an ideal instantaneous step input to the time at which the
closed-loop amplifier output has entered and remained
within a specified symmetrical error band. Settling time
includes a very brief propagation delay, plus the time
required for the output to slew to the vicinity of the final
value, recover from the overload condition associated with
slewing, and finally settle to within the specified error. For
high-resolution ADCs, the specified error band is usually
one fourth of one least significant bit (LSB) of the ADC.

Basic setup

The ADC used here is the Texas Instruments (TI) ADS8411,
which is a 16-bit, 2-MSPS successive approximation regis-
ter (SAR) ADC. The driver op amp is the TI THS4031.
Figure 1 shows the evaluation setup.

The instantaneous step input is generated with an analog
multiplexer (MUX) (the TI TS5A3159) by switching its two
channels. A dc voltage, V, is applied to channel 2, and
channel 1 is connected to ground; so this setup can produce

www.ti.com/aaj; 10 2007

High-Performance Analog Products

a step input rising to V from O or falling to O from V. Alter-
natively, the step input can be generated from any step
generator. The step generator should settle much faster
than the op amp settling time.

Explanation

Step 1

ADC samples channel 1 (connected to ground) first. A long
sampling time is provided to make sure that the input
capacitor of the ADC is fully discharged.

Step 2

The analog MUX is switched to channel 2 from channel 1
at instant A in Figure 2. This diagram shows the voltage at
point S (Figure 1) when the MUX switches over to chan-
nel 2 from channel 1. The settling time of the MUX is
denoted by t. It is assumed that t_ is much shorter than
the op amp settling time.

Figure 1. Settling time evaluation setup

Pattern Conversion
Generator Start
Adjustable-
Delay
Channel 1 Generator
Grounded
o——— ' o :
Channel 2 ol S [THS4031 =
Voltage, V it :
o— ' o H
TS5A3159
Analog MUX

Figure 2. Settling time for MUX channel change

_’itsi*

Channel 2

MUX Channel 1 y |

MUX switches to
channel 2 here
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Step 3
Once the analog MUX is switched at instant A, the input
of the op amp starts changing. The output of the op amp
starts changing after a very brief propagation delay after
instant A. The op amp settling time (t;4,,,) is approximately
calculated from the slew rate and bandwidth specified in
the op amp datasheet. The method proposed here plots the
op amp output from instant A to instant B (Figure 3). The
time difference between instant B and instant A is 2t.

Sampling edge is
shifted toward left

ideal’
Figure 3. Averaging n samples from B to A
increases accuracy

Sampling

starts 3 =

vere. [ [[TLIIIIIN
Thrr e
Phir i
Py
Phyri i
Phor b
Phyry i
Phyr i
Phigg b
(N SRR
P\ N
1

Op Amp Output :i: «——
i
[}
1
1
1

Step 4

The first ADC sampling edge appears at instant B, and n
number of readings (digital outputs from the ADC) are
taken. The n number of readings are averaged for better
accuracy (discussed later). Next the sampling edge is
shifted to the left by 1 ns (Figure 3) with the help of a
pattern generator and an adjustable-delay generator
(Figure 1), and again n number of readings are taken.
This way the sampling edge is shifted toward the left from
instant B to instant A in 1-ns steps. At each sampling edge
the average is stored in an element of an array. The array
is plotted against the time to get the true picture of the
op amp output settling (Figure 3).

Figure 5. Input settling time with an external capacitor

Amplifiers: Op Amps

Averaging to achieve better resolution
Input of an n-bit ADC should settle to at least n+2 bits, but
measured output is an n-bit digital code from the ADC. The
resolution can be increased by repeatedly sampling the
same input and taking multiple (n) readings from the ADC.
Finally an average is taken on the n digital output codes. It
can be shown that for each additional bit of resolution, the
number of readings should be 4, so w extra bits of resolu-
tion require 4% readings.

For each additional bit, the signal-to-noise ratio (SNR)
increases by 6.02 dB. In this case the 16-bit ADC should
settle with at least 18-bit accuracy.

SNR = 6.02 x N + 1.76,
where N is the ADC resolution. SNR is 110.08 dB for 18-
bit accuracy, so an extra bit (w) of resolution required is
110.08-86*
6.02

The number of samples (n) needed for each reading is
44 = 256.

Results
An RC filter is used at the output of the op amp to filter
the external noise. An ADC sampling circuit always con-
sists of another RC (R’, C"), as shown in Figure 4.

Figure 5 shows the settling behavior when three different
values of an external capacitor are used for RC filtering.

*Typical SNR specification of ADS8411

Figure 4. Typical noise filter
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Figure 6. Expanded scale magnifies settling-time
behavior shown in Figure 5
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f 1000 pF
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Figure 6 is a zoomed-in version of Figure 5 to show the Table 1. Comparison of edge-shift method versus
settling more accurately. While the output code is based on traditional method
16-bit sampling, the resolution of the measurement is more » | SETTLING
than 16-bit because 656536 samples were captured and METHOD CAPA(CI:;OR' ¢ ACCl(Jo;{;-\CY TIME
averaged for each reading. The result shows significant P ’ (ns)
ringing and underdamping of the system when no capacitor Datasheet 10-Bit 0.1 45
was used. Also note that use of a bigger (1000-pF) capaci- Specification | 13-Bjt No Spec 0.01 80
tor significantly increases the settling time. 0.1 55
A summary of these results is shown in Table 1. 25 0.01 120
Averaging the output data can improve the resolution of
. 0.0015 150
the result beyond 16-bit. o 109
Edge-Shift Method -
(R=200) 680 0.01 130
0.0015 140
0.1 152
1000 0.01 195
0.0015 220

*16-bit LSB deviation = 0.0015%
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Figure 7. Effects of changing feedback resistors
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Measurement of bias current

Figure 7 shows op amp settling behavior with different
values of feedback resistors. The difference between the
settled voltages indicates the offset voltage shift caused by
bias current. From this the bias current can be calculated
as 3 pA, which matches the typical specification of the
THS4031. This experiment validates the correctness of
this setup.

Bias current calculation

The settled value with 0 Q in the feedback is 59595. The
settled value with 301 Q in the feedback is 59610.

Delta (offset voltage) = bias current x resistor
(used in the feedback).
(59610 —59595) x 4.096

Delta (offset voltage) = 65530

=938 V.

Bias current = 938 =3.12 uA
301

(compared to the datasheet typical specification of 3 nA).

Conclusion

This is a practical and simple method to accurately measure
the settling time of an ADC driving circuit. The settling
behavior is unaffected by the measurement, because no

additional component is used for the setup. This method
can be implemented as a built-in self-test (BIST) in the
future. The averaging of multiple readings improves the
accuracy of the result.
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