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Common mistakes made in controller 
designs for power converters

Introduction
In the course of my work as an applications engineer, I’ve 
encountered situations where designers who are used to 
working with converters with integrated field-effect tran-
sistors (FETs) begin using controllers as their current 
needs increase. It’s at this point that there are tendencies 
to overlook some design aspects, much like blind spots 
while driving. This article describes the most common 
mistakes in controller-based designs, with some best prac-
tices that can help prevent those mistakes.

Why choose a controller?
Controllers typically come into play when the output 
current requirements exceed 5 A. The primary reason is 
obviously thermal management. In some cases, the goal 
may be to hit an efficiency number and a controller must 
be chosen that provides flexibility in sizing the FETs. 
Another case may be that the current requirement is 10 A. 
Either a converter or a controller would work well, but a 
controller is selected because it’s reusable. A 10-A control-
ler design can be modified for a 20-A rail by changing 
external components such as FETs and the inductor. Such 
designs are often used as a building blocks for various 
output voltages and currents. However, mistakes can 
happen when a building block is copied over to another 
design.

Mistake No. 1: Mismatch of the controller’s VCC 
current capability, operating frequency and 
chosen FET
As an example, TI’s LM3495 specifies a VVLIN5 = 25 mA. 
This is the maximum current capability of the internal 
4.7-V linear regulator. In this example, the operating 
frequency is set at 1.5 MHz and the control FET selected 
is the CSD86360Q5D NexFET™. The total gate charge 
(Qg) of the control FET is 10 nC, the Qg of the synchro-
nous FET is 23 nC and the current demand from the 
linear regulator is (Qg_control + Qg_sync) × fSW. In this case, 
(10 + 23) × 10–9 × 1.5 × 106 = 50 mA.

The 50-mA current demand exceeds the 25-mA current 
capability of the LM3495 and would cause a large droop in 
the linear regulator output, which means the FET gate-
drive voltage will be much lower (or zero) in operation. A 
similar configuration would be acceptable for the LM27403, 
which has a VDD/linear regulator output current capability 
of 106 mA.

In order to use the CSD86360Q5D with the LM3495, a 
lower switching frequency is required to operate within 
the capabilities of the internal linear regulator of the 
LM3495. For example, reducing the switching frequency 
to 300 kHz reduces the current demand to 10 mA. Thus, it 
is important to confirm that the MOSFET selected and the 
current capabilities of the on-device VCC regulator are 
compatible with the design objectives.
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Mistake No. 2: Component values of the DCR 
current-sensing filter

The key components for the direct-current resistance 
(DCR) current-sensing scheme are RS, CS, RCS, RISET and 
CCS, as shown in Figure 1.

RISET sets the actual value of the current limit based on 
the CS– pin current. It is important to note that the values 
selected for RS and CS are critical for accurate current 
measurement. Matching the time constant L/RDCR (shown 
in Figure 2) with RS × CS ensures that the voltage 
measured across CS is an accurate representation of the 
voltage measured across RDCR with the inductor current 
flowing through it—nothing more, nothing less.

Looking at Figure 2, the goal for the design is for the RC 
time constant of RS and CS to be equal to the ratio of 
L/RDCR, as expressed by Equation 1:

 RS × CS = L/RDCR (1)

When RS × CS is equal to L/RDCR, the voltage developed 
across the sense capacitor, CS, is a replica of the inductor 
DCR’s voltage waveform. The recommended value for CS 
is a capacitance greater than 0.1 µF to maintain low 
impedance on the sense network, thus reducing the 
susceptibility of noise pickup from the switch node.

With the power inductors providing the lowest possible 
DCR to minimize power losses, the typical DCRs should 
range from 0.4 mΩ to 4 mΩ. For a given load current of 
25 A, the voltage presented across the CS+ and CS– pins 

can range between 10 mV and 100 mV. This small differen-
tial signal is superimposed on a large common-mode signal 
that is the DC output voltage, which makes the current-
sense signal challenging to process.

To help reject the high-frequency common-mode noise, 
a series resistor (RCS) can be added with the same resis-
tance as RISET to the CS+ signal path as shown in Figure 2. 
A small filter capacitor (CCS) added across CS+ and CS– 
will attenuate any noise corrupting the current-sense 
signal.

Figure 1. Typical schematic for a LM27403-based controller design
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Now consider a 25-A application with a 1-µH, 
3-mΩ inductor. With the right values for the low-pass 
filter (RS, CS) across the inductor, a 2-A peak-to-
peak inductor current should produce 6 mV across 
CS as shown in Figure 3.

Figure 4 shows the effect of mismatched time 
constants when compared to the matched time 
constants stated in Equation 1. The results in simu-
lation show a large error in sensed voltage in the 
mismatched case.

Mistake No. 3: Excessive switch-node 
ringing
There are two main reasons why switch-node 
ringing is undesirable:

• The ringing waveform voltage can exceed the 
breakdown voltage of the power MOSFET.

• The ringing waveform produces radiated/con-
ducted electromagnetic interference (EMI).

In a controller-based buck design, MOSFET 
selection is based on the input-voltage range. For 
the highest efficiency, it’s best not to over-spec the 
voltage rating of the MOSFET. MOSFETs with 
higher voltage ratings are more expensive and have 
higher capacitances.

Designers widely use three methods to minimize 
switch-node ringing:

1. Careful layout of the PCB to minimize the para-
sitic loop inductance in the circuit.

2. A gate resistor/bootstrap resistor to slow down 
the turn-on of the control FET.

3. An RC snubber circuit to attenuate the ringing.

The importance of careful PCB layout cannot be 
over emphasized. In most cases, the root cause of 
ringing is a violation of the first method. If the 
switch-node ringing is caused by a bad layout, 
applying the second and third methods is like 
trying to fix a pipe that has a hole in it. In most 
designs, the second and third methods are 

Figure 3. RS = 3.3 kΩ, CS = 0.1 µF 
(matches the current flow)
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Figure 4. RS = 100 kΩ, CS = 0.1 µF 
(mismatches the current flow)
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placeholders in PCB layouts to offer flexibility in taming 
the ringing. Figure 5 shows a PCB layout with optimized 
component placement.

A bootstrap resistor slows down the rising edge of the 
control FET, whereas the gate resistor slows down both 
the rising and falling edges. A good rule of thumb is to try 
a 4.7-Ω resistor in either location and determine the best 
results based on ringing improvement and efficiency. 
Resistor values above 10 Ω are not recommended.

A method to determine RC-snubber circuit values
The procedure for choosing the resistor and capacitor 
components starts with measuring the ringing frequency 
(fP) of the original circuit undamped (Figure 6).

Equation 2 can be used to find Rsnub.

  
R

f Csnub
P P

=
× ×

1

4π  
(2)

where CP = parasitic capacitance of the synchronous FET 
(Coss) and Csnub = one-half to three times CP

Another practical way to find Csnub is to experiment 
with the capacitor values in parallel with the synchronous 
FET. When the frequency is half the original value, the 
Csnub parallel capacitor is equal to three times the parasitic 
capacitance of the original circuit.

Equation 3 can be used to find the power dissipation in 
the snubber resistor.

 
P

C V f
snub

snub snub SW=
× ×2

2  
(3)

where Vsnub is the maximum input voltage for a buck 
converter. Pay careful attention to the power dissipation 
of Psnub and select the case size of Rsnub accordingly. For 
example, if VIN = 15 V, Csnub = 1 nF, Rsnub = 2.7 Ω and 
fSW = 500 kHz, then Psnub = 0.052 W. Thus, a 0603 or 0805 
case size for Rsnub would be appropriate.

Figure 5. Optimized placement and PCB layout
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Mistake No. 4: Cdv/dt-induced gate turn-on
The synchronous FET can be affected by the so-called 
“sync-FET false turn-on,” which can be potentially danger-
ous for the MOSFET itself and the reliability of the entire 
converter. When the control FET turns on, a high dv/dt 
appears across the synchronous FET (Figure 7). Through 
the Miller capacitance of the FET, a capacitive current 
flows (IDG = Cgd × dv/dt), coupling to the gate pin of the 
synchronous FET (Figure 8). If the total resistance 
formed by the intrinsic, external and driver resistances is 
much lower than the equivalent MOSFET impedance 
between gate and source, the coupled capacitive current 
flows through the resistive path mentioned above.

The capacitive current causes spurious bouncing across 
the gate and source MOSFET pins. If the induced voltage 
is higher than the minimum threshold voltage, the 
synchronous FET can be partially turned on, creating a 
low-resistance path between input and ground. This 
causes undesired power dissipation in each switching 
cycle, which degrades converter efficiency, thermal manage-
ment and reliability. In designs that have a wide conver-
sion ratio and where the synchronous FET is much larger 
(a lower RDS(on)) than the control FET, it is important to 
watch for Cdv/dt-induced gate turn-on. As a rule of thumb, 
it is better to avoid gate resistors for synchronous FETs.

Other common mistakes
Here are other common mistakes:

• Incorrect pin conditions: Use the data sheet to verify 
that each pin condition is satisfied. The common issues 
are related to unused functions and the corresponding 
state of the pins.

• A crossover frequency that’s too high: Just like 
going over the speed limit invites trouble, selecting a 
crossover frequency higher than one-fifth the switching 
frequency is asking for trouble. Even though the phase 
margin may look good, the device’s susceptibility to 
noise increases.

• Incorrect compensation values leading to low 
phase and gain margins: It’s always good to verify the 
results on your board because the characteristics of the 
capacitors may be different on your board compared to 
generic reference designs.

• Setting the compensation and then making a 
change downstream: Changes might include replacing 
output capacitor types, inductor values, etc., and then 
forgetting to revisit compensation. Some designs are 
revamped later as part of cost reductions or component 
availability exercises. It’s during these sort of changes 
where mistakes come into play.

• Current-limit variation with temperature: This 
seems to catch designers by surprise when they set cur-
rent limits too aggressively close to their maximum cur-
rent. Be sure to account for component variation and 
parametric variations of current-limit setting pins over 
temperature and make the worst-case calculations.

Figure 7. Illustration of Cdv/dt-induced 
current path
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Conclusion
Designing with controllers is relatively easy if datasheet 
guidelines are followed, but it is helpful to be aware of the 
common mistakes presented in this article. A designer 
with this awareness can adapt and modify their controller 
designs with greater confidence and get products to 
market quicker.
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Product information:
LM27403
LM3495
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