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ABSTRACT
This application report is a general guide that outlines the advantages of using silicon-based timing
devices from Texas Instruments to generate system clocking solutions. This report covers the
conventional way to derive system clocks using crystals and crystal oscillators, disadvantages of using
these mechanical components, and details on replacing them with silicon-based timing devices from TI.
Clock and timing devices from TI help resolve key system problems that are explained in detail in this
document.
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1 Introduction
Most electronic systems require a clock signal to synchronize operation of various components in the
system. For digital logic, the clock signal regulates the sequencing of digital state machines. This ensures
that the key timing parameters like setup and hold times and propagation delay are within allowable limits.
In communication systems, the clock signal regulates the speed of synchronized data transmission over
the link. In A/V systems, the clock signal regulates the sound and image reconstruction from digital media
to produce time-accurate entertainment. For any modern electronic system, clock signals of multiple
frequencies and/or multiple copies of a single frequency in various output formats may be required by
various subsystems. Tight control of phase and frequency relationship, synchronization to external
frequency sources, modulation to reduce EMI, and redundant switching might be additional system
requirements.

1.1 Discrete Resonators (Crystals and Crystal Oscillators)
Discrete resonators have historically been used to synchronize such systems due to their cost efficiency
and stability over time and temperature. Crystals are designed to work in conjunction with a
semiconductor gain circuit that is connected to both terminals of the resonator. The piezoelectric and
physical properties of the resonator material allow the vibrating resonator to act as an electronic filter,
passing the frequency components in its pass band back to the input of the gain circuit. At the pass band
frequency where the loop gain is > 1 and the phase is 360 degrees, the resonator begins to oscillate,
producing a stable frequency source at the output of the gain circuit. The most commonly used discrete
resonator, to achieve frequencies less than 50MHz, is an AT cut quartz crystal oscillating at its
fundamental frequency and with an accuracy of < 50 ppm, inclusive of temperature and aging. When
using quartz crystals on a PCB, the parasitic components on the PCB have an effect on the characteristics
of the resonator output. Discrete oscillators are used to achieve frequencies higher than 50MHz in a single
package that contains a quartz crystal as the resonator oscillating at an overtone frequency along with a
bandpass filter and gain circuit. The output of the oscillator is not impacted by the parasitic components on
a PCB. Such oscillators are expensive in general.

1.2 Phase Locked Loop (Silicon-based Clock Devices)
An alternate way of generating system clock signals is using a silicon based device comprised of a phase
locked loop (PLL). A phase-locked loop (PLL) is a closed-loop frequency-control system based on the
phase difference between the input clock signal and the feedback clock signal of a controlled oscillator.
The PLL responds to variations in frequency and phase of the input by automatically raising or lowering
the frequency of the controlled oscillator through feedback until the output is aligned in phase and
frequency of the system. PLLs are widely used for synchronization purposes in several communication
and consumer domains, radio transmitting, clock recovery and deskewing, spread spectrum, clock jitter
reduction, clock generation and clock distribution.

1.3 Disadvantages of Discrete Resonators
Although crystals are cost efficient, especially if the system requires less than 4 clock frequencies, they
have several disadvantages as listed below and as a result, a more robust hardware design tends to limit
their usage. Crystal-based resonators suffer from the following:
• Cost: While a single crystal or low frequency crystal oscillator is inexpensive, if a system requires a

mix of multiple crystals and/or crystal oscillators and the total frequencies needed are more than 4, it
could be more cost effective to use a PLL device with an input crystal to generate all the system
frequencies needed.

• Reliability: Crystals have a higher failure rate than silicon based devices. Each crystal removed from
the system can help increase overall system reliability. Integration also reduces component count on
the board, leading to higher stability and lower product return rates.

• Availability: Crystals in the range of 10-50 MHz are readily available. However, a high-frequency
crystals above 50 MHz are more difficult to manufacture and procure. In such a scenario, crystal
oscillator with a higher-order overtone crystal is used and is more expensive. PLL devices use one
low-frequency crystal (or an available clock reference) to generate several high-frequency high-
performance outputs.
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• Aging: Crystals are prone to aging, with a +/-2ppm to +/-5ppm error every few years, caused by
impurities in the crystal material and on the crystal surface, as well as mechanical stresses between
the crystal material and the deposited electrodes. Aging is also different for each crystal and varies
from one vendor to another. It may cause slow system-wide degradation that is not the same for every
system. PLL devices maintain their accuracy over their entire lifetime across all devices.

• Programmability: PLL devices have built-in programmability features that provide flexibility during
design. Programmable features include changing output frequencies, drive strength settings, spread
spectrum amounts, and pin programming for frequency selection, which implies different frequencies
on an output pin based on need. Programmability can be done in-system, typically using an I2C-
interface, to modify certain parameters "on the fly". Discrete resonators only offer one frequency and
offer very limited flexibility.

• Component Reduction and Board Space Savings: PLL devices reduce number of components
through integration, as hardware designers migrate towards fewer components to reduce problems
caused by routing and maintaining signal integrity. PLL devices have the ability to generate several
outputs from a single crystal, thereby reducing the number components used in a system and
conserve board space.

• Inventory Management: One of the key challenges that procurement teams face today is managing
inventory, demand, and forecast planning for every device that goes into a system. Since each OEM
has several platforms as well as sub-platforms of products, managing this supply chain could be quite
cumbersome. PLL devices resolve this problem by generating different frequencies using software at
the designer's desk, which not only simplifies design, but also allows purchasing to procure a single
device for multiple platforms.

• EMI Reduction by Spread-Spectrum Clocking: PCBs for consumer systems are designed with many
layers, with dedicated ground planes for keeping interference low. Several high-speed signals are
routed carefully to help improve system performance and avoid crosstalk, skew, and signal integrity
issues. PLL devices help alleviate these board design issues by offering features such as spread
spectrum that reduce the peak energy of high-speed signals. All consumer products must pass
stringent US and international regulations on EMI in order to be released to the market. The spread-
spectrum approach reduces, and often eliminates, the need for ferrite beads, filters, coils, and chokes
that add to the BOM.

• Synchronized Outputs: Some applications may require certain clock signals to be synchronized to
each other. This feature is possible with PLL devices, but may not be achievable with discrete crystals
only.

• Power Management: Programmable PLL-based clock generators can cater to the niche demands of
the portable market including gaming, smartphones, personal media players, digital cameras, and
camcorders. In these power intensive applications, certain frequencies can be turned off selectively
using I2C or pinprogramming. This is not easily achieved with traditional crystal designs.

2 Replacing Crystals, Crystal Oscillators with Phase Locked Loops
TI offers a broad portfolio of Clocking ICs designed to meet the diverse needs of our customers.
Depending on the customer system requirements on the number of output clock signals and their quality
(in terms of jitter, stability), an appropriate device from the TI clocking portfolio can be selected. The
CDCE(L)9xx family of devices contain multiple general purpose PLLs that are typically used to replace
crystals or crystal oscillators intended for clocking processors and/or medium speed asynchronous serial
links. The CDCM6208, LMK03806 and CDCM6100x family of devices contain a high performance PLL
capable of producing very low jitter clock outputs and are typically used to replace high performance
crystal or SAW oscillators intended for clocking high speed asynchronous serial links, CDCM6208
provides the flexibility to also generate unrelated general purpose clock signals for clocking processors
and/or other medium speed asynchronous serial links. The LMK03806 and CDCM6208 can also be used
to provide clock signals at their outputs that are sychronized to backplane clock inputs for line cards of
sychronous systems like SONET/SDH. LMK03806 is currently the lowest phase noise clock generator in
the industry.
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2.1 CDCE(L)9xx
The CDCE(L)9xx family of devices contain multiple general purpose programmable PLLs that are capable
of generating up to 9 independent frequencies at each single ended output from a single reference crystal
with a total jitter of 60ps, p-p typical and each PLL is capable of generating spread spectrum on the
associated clock outputs. The devices also include an on-chip EEPROM that allows for customized startup
modes per system needs. For A/V applications that require the ability to tune the clock frequency, the
devices can replace use of traditional VCXOs and have in-built capability to act as a VCXO with up to +/-
150ppm tuning range (please refer to SCAA085 for more details).
• CDCE913: 1 PLL, 3 LVCMOS outputs, 1.8V core, 2.5V or 3.3V I/O
• CDCEL913: 1 PLL, 3 LVCMOS outputs, 1.8V core and I/O
• CDCE925: 2 PLL, 5 LVCMOS outputs, 1.8V core, 2.5V or 3.3V I/O
• CDCEL925: 2 PLL, 5 LVCMOS outputs, 1.8V core and I/O
• CDCE937: 3 PLL, 7 LVCMOS outputs, 1.8V core, 2.5V or 3.3V I/O
• CDCEL937: 3 PLL, 7 LVCMOS outputs, 1.8V core and I/O
• CDCE949: 4 PLL, 9 LVCMOS outputs, 1.8V core, 2.5V or 3.3V I/O
• CDCEL949: 4 PLL, 9 LVCMOS outputs, 1.8V core and I/O

The CDCE949 has architecture as shown in Figure 1 and is representative of the architecture of its family
of products.

Figure 1. CDCE949 Block Diagram
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2.1.1 EMI Fundamentals
EMI is electromagnetic interference, or unintentional radiation of radio signals from an electronic circuit.
Clock signals can contribute significantly to measured emissions because of the fast edge rates and any
improperly terminated traces carrying clock signals on the PCB. As shown in Figures 2 and 3, single
ended signals emit maximum radiation due to its fringe fields that escape in all directions, a fully balanced
differential signals do not emit as the fields are canceled and do not escape, whereas unbalanced
differential signals emit some radiation due to uncanceled fringe fields that escape.

Figure 2. Radiation from Single Ended and Differential Signals

Figure 3. Far Field Strength from Single Ended and Differential Signals
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2.1.2 CDCE949 Block Diagram
The CDCE(L)9xx family is capable of suppressing EMI on the clock outputs by generating spread
spectrum clocking (SSC). SSC can be center-spread or down-spread. SSC is a frequency modulation
scheme that reduces EMI without additional external components. When SSC is disabled, the clock signal
has its signal power concentrated at its harmonic frequencies. When SSC is enabled, the clock signal is
modulated to have its signal power spread around its harmonic frequencies while lowering the peak power
and this reduces the EMI emission. CDCE(L)9xx allows the user to select between center-spread SSC
and down-spread SSC, modulation frequency, the modulation depth (percentage of the clock spread) and
the SSC profile. Figure 4 shows an example of utilizing SSC to meet EMI regulations.

Figure 4. Example SSC to Meet Regulation Standards

2.1.2.1 Down-Spread
Upon frequency modulation of output, the highest frequency of modulation is the nominal output
frequency. As a result, the actual average output frequency measured across several clock cycles will be
lower than the desired nominal output frequency. Figure 5 shows an example of down-spread SSC.

Figure 5. Down-spread
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2.1.2.2 Center-Spread
Upon frequency modulation of output, the frequency of modulation is around the nominal output
frequency. As a result, the actual average output frequency measured across several clock cycles will be
same as the desired nominal output frequency. Figure 6 shows an example of center-spread SSC.

Figure 6. Center-spread

2.1.2.3 Modulation Depth and Frequency
Modulation depth is the percentage of clock spread and modulation frequency is the frequency with which
the signal is changed. Appropriate selection of the modulation depth is important as too-low number would
result in interference on audio signals and too-high number would result in unwanted side-effects like too
much additive jitter. Figure 7 shows an example of modulation signal.

Figure 7. Example Modulation Signal
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2.1.2.4 Spread Function
To allow for a even frequency distribution of the spread signal, one has to use a special function to sweep
through the spread frequency range. Common spread functions are sawtooth, hershey, and sinusoidal.
The best option is the hershey profile but since it is hard to create in practice, a closely resembling
triangular spread is created. One drawback of the triangular spread is that it doesn’t create a completely
even frequency spectrum. Figure 8 shows the different spread functions.

Figure 8. Spread Functions

2.1.2.5 Maintaining Signal Integrity
For high frequency signals, any trace should be treated as a transmission line if the following condition is
met:

where
• L is the trace length
• fmax is the maximum signal frequency
• tPR is the signal propagation delay and is between 150ps/inch to 175ps/inch for FR4 PCB dielectric

material. (1)
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Transmission lines are defined by their characteristic impedance, which is given by the square-root of the
ratio of their series inductance per unit length and their shunt capacitance per unit length. Commonly used
transmission lines have a 50Ω characteristic impedance. Signal reflections between the source and the
receiver occur if their respective impedances are not closely matched to the transmission line’s
characteristic impedance. In order to avoid these reflections, the LVMOS output needs to have a 50Ω
source impedance. The LVCMOS output drivers in CDCE(L)9xx family have an 32Ω nominal output
impedance. Thus a series termination resistor of 18Ω is recommended on all output clock traces to ensure
proper termination and avoid reflections. In addition, it is recommended for the clock traces to be routed
on internal layers to minimize any emissions and adjacent clock traces that are not pairs should be
adequately spaced to minimize crosstalk. Figure 9 shows the recommended source termination.

Figure 9. Recommended Source Termination for CDCE(L)9xx

To minimize coupling between LVCMOS signals, % of return current density (which is the path of least
resistance and least inductance for return currents) through the reference plane for each trace should be
minimized to less than 4%. The return current density is a function of the ratio of distance from edge of
signal trace (D) to depth of reference place from signal trace (h). It is recommended to keep a ratio of 5 to
ensure a return current density of 4%. A ratio of 10 ensures a return current density of 1%. Figure 10
shows the return current path for LVCMOS signals. Return current density is given by:

(2)

Figure 10. Return Current Path for LVCMOS Signals
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2.2 CDCM6208, LMK03806, CDCM6100x
The CDCM6208 contains high-performance low-jitter programmable PLL with 4 output fractional dividers
that are capable of generating up to 6 independent frequencies and up to 5 unrelated frequencies at each
differential or single ended output from a single crystal or external clock source at the input with a total
jitter of 15ps, p-p using integer dividers and 60ps, p-p using fractional dividers. The CDCM6208 has
architecture as shown in Figure 11.

Figure 11. CDCM6208 Block Diagram
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The LMK03806 contains high-performance ultra low-jitter programmable PLL that are capable of
generating up to 7 independent frequencies at each differential or single ended output from a single
crystal or external clock source at the input with a total jitter of 5ps, p-p. The LMK03806 has architecture
as shown in Figure 12.

Figure 12. LMK03806 Block Diagram
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The CDCM6100x family of devices contains high-performance low-jitter pin-programmable PLL that are
capable of generating a frequency at all differential or single ended output from a single crystal or external
clock source at the input with a total jitter of 20ps, p-p.

The devices that make up this family are:
• CDCM61001: 1 PLL, 1 pair of differential outputs or 2 LVCMOS outputs, 1 LVCMOS bypass output.
• CDCM61002: 1 PLL, 2 pairs of differential outputs or 4 LVCMOS outputs, 1 LVCMOS bypass output.
• CDCM61004: 1 PLL, 4 pairs of differential outputs or 8 LVCMOS outputs, 1 LVCMOS bypass output.

The CDCM61004 has architecture as shown in Figure 13 and is representative of the entire family.

Figure 13. CDCM61004 Block Diagram
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2.2.1 EMI Suppression
As shown in Figure 2 and Figure 3, single ended signals emit maximum radiation due to its fringe fields
that escape in all directions, fully balanced differential signals do not emit as the fields are canceled and
do not escape, whereas unbalanced differential signals emit some radiation due to uncanceled fringe
fields that escape. Impedance mismatches on single ended or differential signals result in reflections that
increase emission.

2.2.1.1 Single-ended Clock Signals
Maintaining signal integrity is of paramount importance and the techniques discussed in Section 2.1.2.5 is
relevant for CDCM6208, LMK03806 and CDCM6100x devices. In addition to matching clock signal output
impedance and its routing on internal layers, CDCM6208 offers the flexibility to control the slew rate of
LVCMOS outputs. When the output slew rate is reduced, the harmonic powers are reduced in amplitude
and lowers emission. Figure 14 shows the impact of slew rate control on signal harmonics.

Figure 14. Slew Rate Control of LVCMOS Outputs
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2.2.1.2 Differential Clock Signals
In order to avoid unbalanced differential clock signals as shown in Figure 2 and Figure 3, the following
guidelines should be followed in PCB design and layout for a differential clock signal pair:
• Minimize output impedance mismatch in signals of every pair
• Tightly couple and symmetrically route signals in every pair
• Closely match the length of each signal trace in every match to minimize output skew
• Route the clock signals on internal layers of board and increase separation between adjacent clock

traces that are not pairs to minimize coupling
• Follow proper termination guidelines to eliminate reflections (AC termination resistors should be close

to the source output pins and DC termination resistors should be close to the receiver input pins)

Figure 15 shows part of PCB design with a differential pair that follows the aforementioned
recommendations. W represents the trace width of each leg of the pair, S is the separation between each
leg of the pair, t is the trace thickness, and x is the separation of another signal trace from the differential
pair.

Figure 15. Good PCB Design Techniques for Differential Signals
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3 End-equipment Examples and Device Recommendations
Table 1 lists TI clocking IC recommendations in various end-equipments to replace crystals and/or crystal
oscillators.

Table 1. End-equipment Currently Using Crystals/crystal Oscillators
and Recommendations Of TI PLL Devices

DESCRIPTION of EE OPPORTUNITIES for CLOCKING TI CLOCKING OPTIONS
Main control unit: CPU Clock, PCIe clock, CDCE62005, CDCM6208, CDCM6100x,

Sys clock CDCE(L)913, CDCE(L)925, LMK00304
Core Switch Switch card: CPU, Switch, FPGA CDCM6208, LMK03806, CDCE(L)913

CDCM6208, LMK03806, LMK04906,Line card: Network processor, 10G port LMK00301, LMK00101, CDCLVPxxx
Applications Processor, Power LineData Concentrator, Collector and PLC CDCE(L)913, CDC3S04Communication and Connectivity module

Analog Input module: One clock per ADC, CDCE(L)9xx, CDCLVCxxxxone clock for microcontroller
Analog output module: One clock for
microcontroller, one clock per data CDCE(L)9xx, CDCLVCxxxx

Industrial PLCs - DCS converter
Digital Input / Output module CDCE(L)9xx

Controller board: One clock per processor, CDCE(L)9xxreplace crystals
Servo driver - controller & driver: ClockingInverter and Servo System CDCE(L)9xxfor FPGA, C2000 DSP

Data acquisition cards (may needPatient Monitoring System CDCE(L)9xx, CDCLVCxxxxJESD204B support), processors
Data acquisition platform: Clock gen for CDCE(L)9xxprocessor, FPGA, ADC

Optical CT / PT: Clock source for allPower Automation
ADC's, FPGA's. Use one clock generator CDCE(L)9xx, CDCLVCxxxxwith multiple outputs or use one buffer

with large fan-out
Clock for main processor with spreadTV System CDCS501/3, CDCE(L)913, CDCE(L)925spectrum

LMK04906, LMK048xx, CDCLVPxxxx,Ultrasound Clock generator, clock buffer, jitter cleaner LMK01010, LMK0030x
Clock for main processor with spread CDCM9102, CDCS501/3, CDCE(L)913,Video Security spectrum CDCE(L)925

Table 2 lists the integrated phase noise and jitter requirements on the reference clock for serial IO
applications that are currently addressed by crystals and/or crystal oscillators. The table also includes the
PLL device recommendations from Texas Instruments.
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Table 2. Serial Link Standards Currently Using Crystals/crystal Oscillators
and Recommendations Of TI PLL Devices (1)

OFFSET FREQUENCIES (Mhz)
MAX REF RX –REF CLOCK MAX REF PLL DEVICETX –SIGNAL RATE CLOCK MINIMUMSTANDARD FREQUENCY CLOCK JITTER RX – MINIMUMMAXIMUM PLL(Gbps) STABILITY RECOMMENDATION(MHz) (ps, p-p) RECOMMENDATIONBANDWIDTH(ppm) CDR BANDWIDTH (low-pass char)(hgh-pass char)

106.25 4.25 12.2
CDCM6208,Fibre Channel (SAN) 132.8125 8.5 7.3 ±100 0.637 10
LMK03806,212.5 14.025 6.4

CDCE6200x,
Serial ATA (SATA) 75 3 16 1.8 7.5 CDCM6100x± 100Serial SCSI (SAS) 100 6 8 1.8 7.5
10/100/1000 Mb 25 2.51.25 55 ± 100 0.637 CDCE(L)9xxEthernet 125 12.5

LMK048xx,156.25 3.125 (4 lanes) 22 1.875 2010 Gb Ethernet ± 100 LMK03806,161.1328125 10.3125 5.4 0.08 80 CDCM6208
100 2.5 24Infiniband ± 100 1.5 10200 5 12 LMK03806,

CDCM6208,XAUI 156.25 3.125 22 ± 100 1.875 20
CDCM6100x,

RapidIO 156.25 3.125 32 ± 100 1.875 20 CDCE6200x,
CDCM910250 5USB 3.0 5 40 ± 500 3250 25

24USB 2.0 0.48 420 ± 500 0.5 5 CDCE9xx48
CDCM6208,

100 2.5 80 (Gen 1) 0.1 1.5 LMK03806,
PCI Express 200 5 43 (Gen 2) ± 300 1.5 Fref/2 CDCM6100x,

400 8 14 (Gen 3) 1 20 CDCM9102,
CDCE6200x

(1) total jitter requirements for each standard is assumed to be 20% of the valid bit period)
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4 Example Use Case with TI PLL Devices
Figure 16 shows an application example of a media streaming system where current implementation using
crystals and a crystal oscillator can be replaced with CDCE949 and CDCE913.

Figure 16. Streaming Media Example with CDCE949, CDCE913
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Figure 17 shows an application example of a 10G ethernet switch where current implementation using
crystals and crystal oscillators can be replaced with CDCM6208 or LMK03806.

Figure 17. 10 G Ethernet Switch Example with CDCM6208 or LMK03806
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5 PCB Design and Layout Guidelines
Following sections describe PCB design and layout guidelines for optimal performance of silicon based
PLL devices.

5.1 Signal Routing: Minimizing Coupling and Crosstalk
Signal coupling happens when a signal affects another signal and results in reduced functionality or
performance. In every situation there is an aggressor and a victim and many times they might exchange
roles. Impedance, Signal Power and Isolation play a big role in determining the isolation between two
signals. Isolation is the inverse of coupling. So to maximize isolation, coupling should be minimized.

Figure 18. Possible Coupling Zones Between 2 Signals

Figure 18 shows various regions marked in red where coupling could happen between 2 signals. To
reduce coupling:
• Increase Isolation between aggressor and victim. Guidelines for LVCMOS signals are given in

Section 2.1.2.5 and guidelines for differential signals are given in Section 2.2.1.2.
• Isolate the power supplies. Guidelines for supply design are given in Section 5.2.
• Watch out for Ground Bounce. Ensure that the device grounds are connected to the system ground

with minimal inductance. Figure 19 shows a recommendation of proper connection in a QFN package
of device ground to PCB ground layer through thermal vias and thermal slug for good contact with the
package thermal pad. No solder mask should be present in the thermal dissipation pad.
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Figure 19. Recommendation to Avoid Ground Bounce on QFN Package
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5.2 Power Supply Design
Section 5.2.1 and Section 5.2.2 detail the design of power supplies for PLL devices.

5.2.1 Power Supply Filtering
Power supply filtering is essential on any design in order to prevent board supply noise from leaking into
the device and to prevent device supply noise from leaking to the board supply. PLL devices are very
sensitive to noise on the power supply, which can dramatically increase the jitter of the PLL. It is essential
to reduce noise from the system power supply, especially when jitter/phase noise is very critical to
applications. A PLL could, in certain cases depending on the source of coupling of the power supply noise,
be able to significantly attenuate it.

Low frequency decoupling capacitors are used to eliminate the low frequency noise from the power supply
for critical blocks of the PLL where as local bypass capacitors provide the very low impedance path for
high frequency noise and guard the power supply system against the induced fluctuations. Inserting a
ferrite bead between the board power supply and the chip power supply isolates the high frequency
switching noises generated by the clock driver, preventing then from leaking into the board supply. A
typical power supply filter is shown in Figure 20. For PLL devices with separate supplies for each output,
they have to be supplied right at each output supply pin to minimize output frequency injection into the
power network.

Figure 20. Power Supply Filter

5.2.2 Power Supply Decoupling
When a load is suddenly applied to a voltage source, the current through the power supply tries to
suddenly increase, but its inductance acts to oppose that increase by lowering the voltage of the power
supply. The job of a decoupling capacitor is to supply short bursts of current when the IC needs it. That is,
it acts as a battery in the short term.

Decoupling capacitors between the power supply and ground lower the distributed impedance of a
system, reduce the system noise and lower EMI. The values of the decoupling capacitors are chosen to
provide the lowest impedance at the frequencies of interest. To ensure lowest impedance over a wide
range, an array of closely spaced decoupling capacitors might be required. Figure 21 shows typical
impedance characteristics across frequency of several capacitors with parisitics as indicated.

Figure 21. Typical Capacitor Impedance Characteristics
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Good layout practices for routing decoupling capacitors are to avoid vias between them and the active
device. Vias should instead be routed into the decoupling capacitors and then followed by the active
device. Also best results are obtained when the decoupling capacitors are on the same layer as the active
device. It is recommended to use more vias and widen trace widths. The distance between decoupling
capacitors and active device should be minimized. Trace length to trace width should not exceed 3:1.
Figure 22 shows an example of bad routing and Figure 23 shows an example of good routing.

Figure 22. Poor Routing of Decoupling Capacitors

Figure 23. Good Routing of Decoupling Capacitors

6 Summary
Crystal based clocking solutions suffer from various drawbacks that affect the system performance,
reliability and cost as outlined in this report. To overcome these system-level concerns, TI has a broad
portfolio of silicon based PLL devices from which an appropriate device can be chosen based on the
application requirements.

22 CDCE(L)9xx, CDCM6208, LMK03806, CDCM6100x Crystal Or Crystal SNAA217–July 2014
Oscillator Replacement with Silicon Devices Application Report Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNAA217


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	CDCE(L)9xx, CDCM6208, LMK03806, CDCM6100x Crystal Or Crystal Oscillator Replacement with Silicon Devices Application Report
	1 Introduction
	1.1 Discrete Resonators (Crystals and Crystal Oscillators)
	1.2 Phase Locked Loop (Silicon-based Clock Devices)
	1.3 Disadvantages of Discrete Resonators

	2 Replacing Crystals, Crystal Oscillators with Phase Locked Loops
	2.1 CDCE(L)9xx
	2.1.1 EMI Fundamentals
	2.1.2 CDCE949 Block Diagram
	2.1.2.1 Down-Spread
	2.1.2.2 Center-Spread
	2.1.2.3 Modulation Depth and Frequency
	2.1.2.4 Spread Function
	2.1.2.5 Maintaining Signal Integrity


	2.2 CDCM6208, LMK03806, CDCM6100x
	2.2.1 EMI Suppression
	2.2.1.1 Single-ended Clock Signals
	2.2.1.2 Differential Clock Signals



	3 End-equipment Examples and Device Recommendations
	4 Example Use Case with TI PLL Devices
	5 PCB Design and Layout Guidelines
	5.1 Signal Routing: Minimizing Coupling and Crosstalk
	5.2 Power Supply Design
	5.2.1 Power Supply Filtering
	5.2.2 Power Supply Decoupling


	6 Summary

	Important Notice

