LM324

AN-666 DTMF Generation with 3.58 MHz Crystal

Literature Number: SNOA148

DTMF Generation with a 3.58 MHz Crystal

National Semiconductor Application Note 666 Verne H. Wilson June 1990

DTMF (Dual Tone Multiple Frequency) is associated with digital telephony, and provides two selected output frequencies (one high band, one low band) for a duration of 100 ms. DTMF generation consists of selecting and combining two audio tone frequencies associated with the rows (low band frequency) and columns (high band frequency) of a pushbutton touch tone telephone keypad.

This application note outlines two different methods of DTMF generation using a COP820C/840C microcontroller clocked with a 3.58 MHz crystal in the divide by 10 mode. This yields an instruction cycle time of 2.79 μ s. The application note also provides a low true row/column decoder for the DTMF keyboard.

The first method of DTMF generation provides two PWM (Pulse Width Modulation) outputs on pins G3 and G2 of the G port for 100 ms. These two PWM outputs represent the selected high band and low band frequencies respectively, and must be combined externally with an LM324 op amp or equivalent feed back circuit to produce the DTMF signal.

The second method of DTMF generation uses ROM lookup tables to simulate the two selected DTMF frequencies. These table lookup values for the selected high band and low band frequencies are then combined arithmetically. The high band frequencies contain a higher bias value to compensate for the DTMF requirement that the high band frequency component be 2 dB above the low band frequency component to compensate for losses in transmission. The resultant value from the arithmetic combination of sine wave values is output on L port pins L0 to L5, and must be combined externally with a six input resistor ladder network to produce the DTMF signal. This resultant value is updated every 118 µs. The COP820C/840C timer is used to time out the 100 ms duration of the DTMF. A timer interrupt at the end of the 100 ms is used to terminate the DTMF output. The external ladder network need not contain any active components, unlike the first method of DTMF generation with the two PWM outputs into the LM324 op amp.

The associated COP820C/840C program for the DTMF generation is organized as three subroutines. The first subroutine (KBRDEC) converts the low true column/row input from the DTMF keyboard into the associated DTMF hexadecimal digit. In turn, this hex digit provides the input for the other two subroutines (DTMFGP and DTMFLP), which represent the two different methods of DTMF generation. These three subroutines contain 35, 94, and 301 bytes of COP820C/840C code respectively, including all associated ROM tables. The Program Code/ROM table breakdowns are 19/16, 78/16, and 88/213 bytes respectively.

DTMF KEYBOARD MATRIX

The matrix for selecting the high and low band frequencies associated with each key is shown in *Figure 1*. Each key is uniquely referenced by selecting one of the four low band frequencies associated with the matrix rows, coupled with selecting one of the four high band frequencies associated with the matrix columns. The low band frequencies are 697 Hz, 770 Hz, 852 Hz, and 941 Hz, while the high band frequencies are 1209 Hz, 1336 Hz, 1477 Hz, and 1633 Hz. The DTMF keyboard input decode subroutine assumes that the keyboard is encoded in a low true row/column format, where the keyboard is strobed sequentially with four low true column selects with each returning a low true row select. The low true column and row selects are encoded in the upper and lower nibbles respectively of the accumulator, which serves as the input to the DTMF keyboard input decode subroutine. The subroutine will then generate the DTMF hexadecimal digit associated with the DTMF keyboard input diait.

The DTMF keyboard decode subroutine (KBRDEC) utilizes a common ROM table lookup for each of the two nibbles representing the low true column and row encodings for the keyboard. The only legal low true nibbles for a single key input are E, D, B, and 7. All other low true nibble values represent multiple keys, no key, or no column strobe. Results from two legal nibble table lookups (from the same 16 byte ROM table) are combined to form a hex digit with the binary format of 0000RRCC, where RR represents the four row values and CC represents the four column values. The illegal nibbles are trapped, and the subroutine is exited with a RET (return) command to indicate multiple keys or no key. A pair of legal nibble table lookups result in the subroutine being exited with a RETSK (return and skip) command to indicate a single key input. This KBRDEC subroutine uses 35 bytes of code, consisting of 19 bytes of program code and 16 bytes of ROM table.

DTMF GENERATION USING PWM AND AN OP AMP

The first DTMF generation method (using the DTMFGP subroutine) generates the selected high band and low band frequencies as PWM (Pulse Width Modulation) outputs on pins G3 and G2 respectively of the G port. The COP820C/ 840C microcontrollers each contain only one timer, and three times must be generated to satisfy the DTMF application. These three times are the half periods of the two selected frequencies and the 100 ms duration period. Obviously the single timer can only generate one of the required times, while the program must generate the two remaining times. The solution lies in dividing the 100 ms duration time by the half periods for each of the eight DTMF frequencies, and then examining the respective high band and low band quotients and remainders. Naturally these divisions must be normalized to the instruction cycle time (t_C). 100 ms represents 35796 t_C's. The results of these divisions are detailed in Table I

The four high band frequencies are produced by running the COP820C/840C timer in PWM (Pulse Width Modulation) mode, while the program produces the four low band frequencies and the 100 ms duration timeout. The programmed times are achieved by using three programmed register counters R0, R2 and R3, with a backup register R1 to reload the counter R0. These three counters represent the half period, the 100 ms quotient, and the 100 ms remainder associated with each of the four low band frequencies.

DTMF Generation with a 3.58 MHz Crysta

RRD-B30M75/Printed in U. S. A

The DTMFGP subroutine starts by transforming the DTMF hex digit in the accumulator (with binary format 0000RRCC) into low and high frequency vectors with binary formats 0011RR11 and 0011CC00 respectively. The transformation of the hex digit 0000RRCC (where RR is the row select and CC is the column select) into the frequency vectors is shown in Table II. The conversion produces a timer vector 0011CC00 (T), and three programmed counter vectors for R1, R2, and R3. The formats for the three counter vectors are 0011RR11 (F), 0011RR10 (Q), and 0011RR01 (R). These four vectors created from the core vector are used as inputs for a 16 byte ROM table using the LAID (Load Accumulator InDirect) instruction. One of these four vectors (the T vector) is a function of the column bits (CC), while the other three vectors (F, Q, R) are a function of the row bits (RR). This correlates to only one parameter being needed for the timer (representing the selected high band frequency), while three parameters are needed for the three counters (half period, 100 ms quotient, 100 ms remainder) associated with the low band frequency and 100 ms duration. The frequency parameter ROM translation table, accessed by the T, F, Q, and R vectors, is shown in Table III.

R— Remainder

TABLE II. DTMF Hex Digit Translation

DTMF Hex Digit— 0000RRCC — — — — — — — — — — — — — — — — — —						
			**	* *		
			*	*		
			*	*		
			*	*		
			*	*		
Timer Vector	Timer	Т	0011C	C00		
Half Period Vector	R1	F	0011R	R11		
100 ms Quotient Vector	R2	Q	0011R	R10		
100 ms Remainder Vector	R3	R	0011R	R01		

TABLE III. Frequency Parameter ROM Translation Table

T— Timer	F— Frequency	Q— Quotient	
Address	Data (Decimal)	Vector	
0x30	147	т	
0x31	10	R	
0x32	140	Q	
0x33	38	F	
0x34	133	Т	
0x35	9	R	
0x36	155	Q	
0x37	33	F	
0x38	120	Т	
0x39	14	R	
0x3A	171	Q	
0x3B	31	F	
0x3C	109	Т	
0x3D	10	R	
0x3E	189	Q	
0x3F	26	F	

The theory of operation in producing the selected low band frequency starts with loading the three counters with values obtained from a ROM table. The half period for the selected frequency is counted out, after which the G2 output bit is toggled. During this half period countout, the quotient counter is decremented. This procedure is repeated until the quotient counter counts out, after which the program branches to the remainder loop. During the remainder loop, the remainder counter counts out to terminate the 100 ms. Following the remainder countout, the G2 and G3 bits are both reset, after which the DTMF subroutine is exited. Great care must be taken in time balancing the half period loop for the selected low band frequency. Furthermore, the toggling of the G2 output bit (achieved with either a set or reset bit instruction) must also be exactly time balanced to maintain the half period time integrity. Local stall loops (consisting of a DRSZ instruction followed by a JP jump back to the DRSZ for a two byte, six instruction cycle loop) are embedded in both the half period and remainder loops. Consequently, the ROM table parameters for the half period and remainder counters are approximately only one-sixth of what otherwise might be expected. The program for the half period loop, along with the detailed time balancing of the loop for each of the low band frequencies, is shown in *Figure 2*.

	Prog	ram	Bytes/ Cycles	Cond Cond	ditional /cles	Cycles	Total Cycles
	LD	B, # PORTGD	2/3	-			-
	LD	X, #R1	2/3				
LUP1:	LD	A,[X-]	1/3			3	
	IFBIT	2,[B]	1/1			1	
	JP	BYP1	1/3	3	1		
	Х	A,[X+]	1/3		3		
	SBIT	2,[B]	1/1		1		
	JP	BYP2	1/3		3		
BYP1:	NOP		1/1	1			
	RBIT	2,[B]	1/1	1			
	Х	A,[X+]	1/3	3			
BYP2:	DRSZ	R2	1/3			3	
	JP	LUP2	1/3			3	
	JP	FINI	1/3				
LUP2:	DRSZ	R0	1/3		3	3	
	JP	LUP2	1/3		3	1	
	LD	A,[X]	1/3			3	
	IFEQ	A,#31	2/2			2	
	JP	LUP1	1/3		1	3	30
	NOP		1/1		1		
	NOP		1/1		1		
	IFEQ	A,#38	2/2		2		
	JP	LUP1	1/3	1	3		35
	LAID		1/3	3			
	NOP		1/1	1			
	JP	LUP1	1/3	3			40
		Table III	Stall	Total	Half		
		Frequency	Loop	Cycles	Period		
		[(38 - 1)	× 6]	+ 35	= 257		
		[(33 - 1)	× 6]	+ 40	= 232		
		[(31 - 1)	× 6]	+ 30	= 210		
		[(26 - 1)	× 6]	+ 40	= 190		
		FIGURE 2. Time	Balancing	for Half Peri	od Loop		

	Ctall	Bleen	Total	Table I
Remainder	Loop	Overhead	Cvcles	Remainder
[(10 - 1)	× 6]	+ 20	= 74	73
[(9-1)	× 6]	+ 20	= 68	68
[(14 - 1)	× 6]	+ 20	= 98	96
[(10 - 1)]	× 6]	+ 20	= 74	76

Note that the Q value in Table III is one greater than the quotient in Table I to compensate for the fact that the quotient count down to zero test is performed early in the half period loop. The overhead in the remainder loop is 20 instruction cycles. The detailed time balancing for the remainder loop is shown in Table IV.

The selected high band frequency is achieved by loading the half period count in t_C's minus one (from Table III) into the timer autoreload register and running the timer in PWM output mode. The minus one is necessary since the timer toggles the G3 output bit when it underflows (counts down through zero), at which time the contents of the autoreload register are transferred into the timer.

In summary, the input digit from the keyboard (encoded in low true column/row format) is translated into a digit matrix vector XXXXRRCC which is checked for 1001RRCC to indicate a single key entry. No key or multiple key entries will set a flag and terminate the DTMF subroutine. The digit matrix vector for a single key is transformed into the core vector 0000RRCC. The core vector is then translated into four other vectors (T, F, Q, R) which in turn are used to select four parameters from a 16 byte ROM table. These four parameters are used to load the timer, and the respective half period, quotient, and remainder counters. The 16 byte ROM table must be located starting at ROM location 0030 (or 0X30) in order to minimize program size, and has reference setups with the "OR A, #033" instruction for the F vector and the "OR A, #030" instruction for the T vector.

The three parameters associated with the two R bits of the core vector require a multi-level table lookup capability with the LAID instruction. This is achieved with the following section of code in the DTMF subroutine:

1

LUP

JP

LUP

This program loads the F frequency vector into R1, and then decrements the vector each time around the loop. The vector is successively moved with the exchange commands from R1 to R2 to R3 as one of the same exchange commands loads the data from the ROM table into R1, R2, and R3. This successive decrementation of the F vector changes the F vector into the Q vector, and then changes the Q vector into the R vector. These vectors are used to access the ROM table with the LAID instruction. The B pointer is incremented each time around the loop after it has been used to store away the three selected ROM table parameters (one per loop). These three parameters are stored in sequential RAM locations R1, R2, and R3. The IFBNE test instruction is used to skip out of the loop once the three selected ROM table parameters have been accessed and stored away.

The timer is initialized to a count of 15 so that the first timer underflow and toggling of the G3 output bit (with timer PWM mode and G3 toggle output selected) will occur at the same time as the first toggling of the G2 output bit. The half period counts for the high band frequencies minus one are stored in the timer section of the ROM table. The selected value from this frequency ROM table is stored in the timer autoreload register. The timer is selected for PWM output mode and started with the instruction LD [B], #0B0 where the B pointer is selecting the CNTRL register at memory location 0FF

This first DTMF generation subroutine for the COP820C/ 840C uses 94 bytes of code, consisting of 78 bytes of program code and 16 bytes of ROM table. A program test routine to sequentially call the DTMFGP subroutine for each of the 16 keyboard input digits is supplied with the listing for the DTMF35 program. This test routine uses a 16 byte ROM table to supply the low true encoded column/row keyboard input to the accumulator. An input from the I0 input pin of the I port is used to select which DTMF generation subroutine is to be used. The DTMFGP subroutine is selected with 10 = 0.

A TYPICAL OP AMP CONFIGURATION FOR MIXING THE TWO DTMF PWM OUTPUTS IS SHOWN IN FIGURE 3.

DTMF GENERATION USING A RESISTOR LADDER NETWORK

The second DTMF generation method (using the DTMFLP subroutine) generates and combines values from two table lookups simulating the two selected sine waves. The high band frequency table values have a higher base line value (16 versus 13) than the low band frequency table values. This higher bias for the high frequency values is necessary to satisfy the DTMF requirement that the high band DTMF frequencies need a value 2 dB greater than the low band DTMF frequencies to compensate for losses in transmission.

The resultant value from arithmetically combining the table lookup low band and high band frequency values is output on pins L0 to L5 of the L port in order to feed into a six input external resistor ladder network. The resultant value is updated every 1171/₃ μ s (one cycle of the LUP42 program loop). The LUP42 program loop contains 42 instruction cycles (tc's) of 2.7936511 μ s each for a total loop time of 1171/₃ μ s. The COP820C/840C timer is used to count out the 100 ms DTMF duration time.

An interrupt from the timer terminates the 100 ms DTMF output. Note that the Stack Pointer (SP) must be adjusted following the timer interrupt before returning from the DTMFLP subroutine.

The DTMFLP subroutine starts by quadrupling the value of the DTMF hex digit value in the accumulator, and then adding an offset value to reach the first value in the telephone key table. The telephone key ROM table contains four values associated with each of the 16 DTMF hex keys. These four values represent the low and high frequency table sizes and table starting addresses associated with the pair of frequencies (one low band, one high band) associated with each DTMF key. The FRLUP section of the program loads the four associated telephone key table values from the ROM table into the registers LFTBSZ (Low Freq Table Size), LFTADR (Low Freq Table Address), HFTBSZ (High Freq Table Size), and HFTADR (High Freq Table Address). The program then initializes the timer and autoreload register, starts the timer, and then jumps to LUP42. Note that the timer value in t_C 's is 100 ms plus one LUP42 time, since the initial DTMF output is not until the end of the LUP42 program

Multiples of the magic number 118 μ s (approximately) are close approximations to all eight of the DTMF frequencies. The LUP42 program uses 42 instruction cycles (of 2.7936511 μ s each) to yield a LUP42 time of 1171/₃ μ s. The purpose of the LUP42 program is to update the six L port outputs by accessing and then combining the next set of

values from the selected low band and high band sine wave frequency tables in the ROM. The ROM table offset frequency pointers (LFPTR and HFPTR) must increment each time and then wrap around from top to bottom of the two selected ROM tables. The ROM table size parameters (LFTBSZ and HFTBSZ) for the selected frequencies are tested during each LUP42 to determine if the wrap around from ROM table top to bottom is necessary. The wrap around is implemented by clearing the frequency pointer in question. Note that the ROM tables are mapped from a reference of 0 to table size minus one, so that the table size is used in a direct comparison with the frequency offset pointer to test for the need for a wrap around. Also note that the offset pointer incremented value is used during the following LUP42 cycle, while the pre-incremented value of the pointer is used during the current cycle. However, it is the incremented value that is tested versus the table size for the need to wrap around.

After the low band and high band ROM table sine wave frequency values are accessed in each cycle of the LUP42 program, they are added together and then output to pins LO-L5 of the L port. As stated previously, the low band frequency values have a lower bias than the high band frequency values to compensate for the required 2 dB offset. Specifically, the base line and maximum values for the low frequency values are 13 and 26 respectively, while the base line and maximum values for the low frequency values are 13 and 26 respectively, while the base line and maximum values for the high frequency values are 16 and 32 respectively. Thus the combined base line value is 29, while the combined maximum value is 58. This gives a range of values on the L port output (LO-L5) from 0 to 58.

The minimum time necessary for the LUP42 update program loop is 36 instruction cycles including the jump back to the start of the loop. Consequently, two LAID instructions are inserted just prior to the jump back instruction at the end of LUP42 to supply the six extra NOP instruction cycles needed to increase the LUP42 instruction cycles from 36 to 42. A three cycle LAID instruction can always be used to simulate three single cycle NOP instructions if the accumulator data is not needed.

Table V shows the multiple LUP42 approximation to the eight DTMF frequencies, including the number of sine wave cycles and data points in the approximation. As an example, three cycles of a sine wave with a total of 19 data points across the three cycles is used to approximate the 1336 Hz DTMF frequency. The 19 cycles of LUP42 times the LUP42 time of 1171/₃ µs is divided into the three cycles to yield a value of 1345.69 Hz. This gives an error of +0.73% when compared with the DTMF value of 1336 Hz. This is well within the 1.5% North American DTMF error range.

TABLE V. DTMF Frequency Approximation Table

DTMF Freq.	# of Sine Wave Cycles	# of Data Points	Calculation	Approx. Freq.	% Erro
697	4	49	4/(49 x 1171/3)	= 695.73	-0.18
770	1	11	1/(11 x 1171⁄3)	= 774.79	+0.62
852	1	10	1/(10 x 1171/3)	= 852.27	+ 0.03
941	1	9	1/(9 x 1171/3)	= 946.97	+ 0.63
1209	1	7	1/(7 x 1171/3)	= 1217.53	+0.71
1336	3	19	3/(19 x 1171/3)	= 1345.69	+0.73
1477	4	23	4/(23 x 117⅓)	= 1482.21	+ 0.35
1633	4	21	4/(21 x 117 ¹ / ₃)	= 1623.38	-0.59

The frequency approximation is equal to the number of cycles of sine wave divided by the time in the total number of LUP42 cycles before the ROM table repeats.

The values in the DTMF sine wave ROM tables are calculated by computing the sine value at the appropriate points, scaling the sine value up to the base line value, and then adding the result to the base line value. The following example will help to clarify this calculation.

Consider the three cycles of sine wave across 19 data points for the 1336 Hz high band frequency. The first value in the table is the base line value of 16. With 2π radians per sine wave cycle, the succeeding values in the table represent the sine values of 1 imes (6 π /19), 2 imes (6 π /19), 3 imes(6 π /19), \ldots , up to 18 imes (6 π /19). Consider the seventh and eighth values in the table, representing the sine values of 6 \times (6 π /19) and 7 \times (6 π /19) respectively. The respective calculatons of 16 \times sin[6 \times (6 π /19)] and 16 \times sin[7 imes (6 π /19)] yield values of -5.20 and 9.83. Rounding to the nearest integer gives values of -5 and 10. When added to the base line value of 16, these values yield the results 11 and 26 for the seventh and eighth values in the 1336 Hz DTMF ROM table. Symmetry in the loop of 19 values in the DTME table dictates that the fourteenth and thirteenth values in the table are 21 and 6, representing values of 5 and -10 from the calculations.

The area under a half cycle of sine wave relative to the area of the surrounding rectangle is $2/\pi$, where π radians represent the sine wave half cycle. This surrounding rectangle has a length of π and a height of 1, with the height representing the maximum sine value. Consequently, the area of the surrounding rectangle is π . The integral of the area under the half sine wave from 0 to π is equal to 2. The ratio of $2/\pi$ is equal to 63.66%, so that the total of the values for each half sine waves. The maximum values (relative to the base line) are 13 and 16 respectively for the low and high band DTMF frequencies.

For the previous 1336 Hz example, the total of the absolute values for the 19 sine values from the 1336 Hz ROM

table is equal to 196. The surrounding rectangle for the three cycles of sine wave is 19 by 16 for a total area of 304. The ratio of 196/304 is 64.47% compared with the $2/\pi$ ratio of 63.66%. Thus the sine wave approximation gives an area abundance of 0.81% (equal to 64.47 - 63.66).

An application of the sine wave area criteria is shown in the generation of the DTMF 852 Hz frequency. The ten sine values calculated are 0, 7.64, 12.36, 12.36, 7.64, 0, -7.64, -12.36, -12.36, and -7.64. Rounding off to the nearest integer yields values of 0, 8, 12, 12, 8, 0, -8, -12, -12 and -8. The total of these values (absolute numbers) is 80, while the area of the surrounding rectangle is 130 (10 x 13). The ratio of 80/130 is 61.54% compared with the $2/\pi$ ratio of 63.66%. Thus the sine wave approximation gives an area deficiency of 2.12% (equal to 63.66 - 61.54), which is overly deficient. Consequently, two of the ten sine values are augmented to yield sine values of 0, 8, 12, 13*, 8, 0, -8, -12, -13^* , and -8. This gives an absolute total of 82 and a ratio of 82/130, which equals 63.08% and serves as a much better approximation to the $2/\pi$ ratio of 63.66%.

The sine wave area criteria is also used to modify two values in the DTMF 941 Hz frequency. The nine sine values calculated are 0 8 36 12 80 11 26 4 45 -4 45 -11 26 12.80, and -8.36. Rounding off to the nearest integer yields values of 0, 8, 13, 11, 4, -4, -11, -13, and -8. The total of these values (absolute numbers) is 72, while the area of the surrounding rectangle is 117 (9 x 13). The ratio of 72/117 is 61.54% compared to the $2/\pi$ ratio of 63.66%. Thus the sine wave approximation gives an area deficiency of 2.12% (equal to 63.66 - 61.54), which is overly deficient. Rounding up the two values of 4.45 and -4.45 to 5 and -5, rather than down to 4 and -4, yields values of 0, 8, 13, 11, 5, -5, -11, -13 and -8. This gives an absolute total of 74 and a ratio of 74/117, which equals 63.25% and serves as a much better approximation to the $2/\pi$ ratio of 63.66%. With these modified values for the 852 and 941 DTMF frequencies, the area criteria ratio of $2/\pi = 63.66\%$ for the sine wave compared to the surrounding rectangle has the following values:

DTMF Freq.	Sum of Values	Rectangle Area	Percentage	Diff.
697 Hz	406	49 x 13 = 637	63.74%	+0.08%
770 Hz	92	11 x 13 = 143	64.34%	+0.68%
852 Hz	82	$10 \times 13 = 130$	63.08%	-0.58%
941 Hz	74	9 x 13 = 117	63.25%	-0.41%
1209 Hz	72	7 x 16 = 112	64.29%	+0.63%
1336 Hz	196	$19 \times 16 = 304$	64.47%	+0.81%
1477 Hz	232	23 x 16 = 368	63.04%	-0.62%
1633 Hz	216	21 x 16 = 336	64.29%	+0.63%

The LUP42 program loop is interrupted by the COP820C/ 840C timer after 100 ms of DTMF output. As stated previously, the Stack Pointer (SP) must be adjusted (incremented by 2) following the timer interrupt before returning from the DTMFLP subroutine.

This second DTMF generation subroutine for the COP820C/840C uses 301 bytes of code, consisting of 88 bytes of program code and 213 bytes of ROM table. The following is a summary of the DTMFLP subroutine code allocation.

DTMFLP Code	# of
Allocation	Bytes
1. Subroutine Header Code	42
2. Interrupt Code	16
3. LUP42 Code	30
4. Telephone Key Table	64
5. Sine Value Tables	149

301

Total

A program test routine to sequentially call the DTMFLP subroutine for each of the 16 DTMF keyboard input digits is supplied with the listing for the DTMF35 program. This test routine uses a 16 byte ROM table to supply the low true encoded column/row keyboard input to the accumulator. An input from the IO pin of the I port is u DTMF generation subroutine is to be subroutine is selected with I0 = 1.

A TYPICAL RESISTOR LADDER NETV FIGURF 4

SUMMARY

In summary, the DTMF35 program assumes a COP820C/ 840C clocked with a 3.58 MHz crystal in divide by 10 mode. The DTMF35 program contains three subroutines, KBRDEC, DTMFGP, and DTMFLP. The KBRDEC subroutine is a low true DTMF keyboard decoder, while the DTMFGP and DTMFLP subroutines represent the alternative methods of DTMF generation.

The KBRDEC subroutine provides a low true decoding of the DTMF keyboard input and assumes that the keyboard input has been encoded in a low true column/row format, with the columns of the keyboard being sequentially strobed.

The DTMFGP subroutine produces two PWM (Pulse Width Modulation) outputs (representing the selected high and low band DTMF frequencies) for combination with an external op amp network (LM324 or equivalent).

The DTMFLP subroutine produces six bits of combined high band and low band DTMF frequency output for combination in an external resistor ladder network. This output represents a combined sine wave simulation of the two selected DTMF frequencies by combining values from two selected ROM tables, and updating these values every 118 μ s.

The three DTMF35 subroutines contain the following number of bytes of program and ROM table mem

he I port is used to sele	ect which					
tine is to be used. The h I0 = 1.	DTMFLP		Subroutine	# of Bytes of Program	# of Bytes of ROM Table	Total # of Bytes
ADDER NETWORK IS SH	HOWN IN		KBRDEC	19	16	35
			DTMFGP	78	16	94
			DTMFLP	88	213	301
	DTMF6 —	2R 	_ <u>t</u>	O DTMF	OUT	
	dtmf5 —	2R 	= =			
6 SINE WAVE OUTDUITS	DTMF4 —	2R 				
U SINE WAVE UUIFUIS	dtmf3 —	2R 	{			
	DTMF2 —	2R 				
	DTMF1 —	2R 				
FIGURE 4	. Typical R	esisto	$\int_{-\infty}^{\infty} K$	work	TL/DD/10740)-24

1	;
2 3 4	; DTMF GENERATION WITH A 3.58 MHZ VERNE H. WILSON ; CRYSTAL FOR COP820C/840C 10/28/89
5	, DTMF - DUAL TONE MULTIPLE FREQUENCY
7	; PROGRAM NAME: DTMF35.MAC
9 10 11	; .TITLE DTMF35 .CHIP 840 ;
12 13 14 15 16	; ; THIS DTMF PROGRAM IS BASED ON A COP820C/840C RUNNING ; WITH A CKI CLOCK OF 3.579545 MHZ (TV COLOR CRYSTAL ; FREQUENCY) IN DIVIDE BY 10 MODE, FOR AN INSTRUCTION ; CYCLE TIME OF 2.7936511 MICROSECONDS.
18 19 20 21 22	, THIS PROGRAM CONTAINS THREE SUBROUTINES, ONE FOR A LOW TRUE ROW/COLUMN DTMF KEYBOARD DECODING (KBRDEC), AND THE OTHER TWO (DTMFGP, DTMFLP) FOR ALTERNATE METHODS OF DTMF GENERATION.
23 24 25 26 27	: KEYBOARD INPUT DATA IS IN ACCUMULATOR WITH A ; LOW TRUE FORMAT AS FOLLOWS: ; BITS 7 TO 4 : LOW TRUE COLUMN VALUE (E,D,B,7) ; BITS 3 TO 0 : LOW TRUE ROW VALUE (E,D,B,7)
28 29 30	, ASSUMPTION MADE THAT COLUMN STROBES (LOW TRUE) ARE , OUTPUT, WHILE ROW VALUES (LOW TRUE) ARE INPUT.
31 32 33 34 35 36	THE FIRST METHOD OF DTMF GENERATION CONSISTS OF GENERATING TWO PWM OUTPUTS ON THE G PORT G2 AND G3 OUTPUT PINS. THESE TWO OUTPUTS NEED TO BE MIXED EXTERNALLY WITH AN APPROPIATE LM324 OP AMP FEEDBACK CIRCUIT TO GENERATE THE DTMF.
37 38 39 40 41 42 43	THE SECOND METHOD OF DTMF GENERATION USES ROM LOOKUP TABLES TO SIMULATE THE TWO DTMF SINE WAVES AND COMBINES THEM ARITHMETICALLY. THE RESULT IS OUTPUT ON THE LOWER SIX BITS OF THE L PORT (LO - L5). THESE SIX OUTPUTS ARE COMBINED EXTERNALLY WITH A LADDER NETWORK TO GENERATE THE DTMF.
43 44 45 46 47 48 49	THE SECOND DTMF GENERATION METHOD USES APPROXIMATELY THREE TIMES AS MUCH ROM CODE (INCLUDING PROGRAM CODE AND ROM TABLES) AS THE FIRST METHOD, BUT HAS THE ADVANTAGE OF ELIMINATING THE COST OF THE EXTERNAL ACTIVE COMPONENT (LM324 OR EQUIVALENT).
50 51	BOTH OF THE DTMF SUBROUTINES GENERATE THEIR OUTPUTS FOR A PERIOD OF 100 MILLISECONDS.
	TL/DD/10740-1

52 53 54	; ; declara ;	TIONS:		
55 0000 56 00D0 57 00D1 58 00D4 59 00D5 60 00D7 61 00DC 62 00EA 63 00EB 64 00EC 65 00ED		KDATA = PORTLD = PORTGD = PORTGC = PORTGC = PORTG = PORTG = PORTG = TMRLO = TAULO = TAUHI = CMTRI =	0 0D0 0D1 0D4 0D5 0D7 0DC 0EA 0EB 0EC 0ED 0EF	; *** KEYBOARD DATA *** ; PORTL DATA REG ; PORTL CONFIG REG ; PORTG DATA REG ; PORTG CONFIG REG ; PORTI INPUT PINS ; PORTD REG ; TIMER LOW COUNTER ; TIMER HIGH COUNTER ; TIMER HIGH COUNTER ; TMR AUTORELOAD REG LO ; TMR AUTORELOAD REG HI ; CONTROL REG
67 00EF 68 00F0 69 00F1 70 00F2 71 00F3 72		PSW = R0 = R1 = R2 = R3 =	0EF 0F0 0F1 0F2 0F3	; PROC STATUS WORD ; LB FREQ LOOP COUNTER ; LB FREQ LOOP COUNT ; LB FREQ Q COUNT ; LB FREQ R COUNT
73 0000 DD2F 74	START: ;	LD	SP,#02F	; INITIALIZE STACK PTR
75 76	;		K	EYBOARD HEX DIGIT MATRIX 1 2 3 A
77 0002 DEDC 78 0004 9E00 79 0006 A0 80 0007 AE 81 0008 9405 82 000A A6 83 000B 6C 84 000C 9420 85 000E A4 86 000F 3210 87 0011 A1 88 0012 DED7 89 0014 70 90 0015 03 91 0016 3040 92 0018 02 93 0019 308E 94 95 001B DEDC 96 001D E8 97 98 99	LOOP: BYPA: BYPB: ; ;	LD LD RC LD ADD X RBIT ADD LAID JSR SC LD JP JSR JP JSR JP JSR LD JP	<pre>B, #PORTD [B], #0 A, [B] A, #5 A, [B] 4, [B] A, #020 KBRDEC B, #PORTI 0, [B] BYPA DTMFGP BYPB DTMFLP B, #PORTD LOOP</pre>	<pre>4 5 6 B 7 8 9 C 7 8 9 C 7 8 0 # D DTMF TEST LOOP SEQUENCE IS 1,5,9,D,4, 8,#,A,7,0,3,B,*,2,6,C HEX MATRIX TO LOOKUP TABLE FOR LOW TRUE COLUMN/ROW INPUT TO KBRDEC SUBROUTINE SET C IF NOT SINGLE KEY TEST BIT 0 OF PORTI TO DETERMINE WHICH DTMF SUBROUTIINE TWO PWM OUTPUTS ON G PORT PINS G2,G3 SIX LADDER OUTPUTS ON L PORT PINS L0 - L5 D0 WILL TOGGLE FOR EACH CALL OF SUBROUTINE</pre>
				TL/DD/10740-2

100	
100	.FORM;
102 103	; KEYBOARD DIGIT MATRIX TABLE
104 0020	. = 020
105 106 107 0020 EE	; ; 1 5 9 D 4 8 # A .BYTE 0EE,0DD,0BB,077,0ED,0DB,0B7,07E
0022 BB 0023 77 0024 ED 0025 DB 0026 B7 0027 7E	• 7038*26C
109 0028 EB 0029 D7 002A BE 002B 7D 002C E7 002D DE 002E BD 002F 7B	, .BYTE OEB,OD7,OBE,O7D,OE7,ODE,OBD,O7B
110 111 112	
113 114	
115	FIRST DTMF SUBROUTINE (DTMFGP) PRODUCES TWO PWM
117	
118	; ; G PORT IS USED FOR THE TWO OUTPUTS
120 121	; - HIGH BAND (HB) FREQUENCY OUTPUT ON G3 ; - LOW BAND (LB) FREQUENCY OUTPUT ON G2
122 123	; : TIMER COUNTS OUT
124	- HB FREQUENCIES
126	PROGRAM COUNTS OUT
127 128	; - LB FREQUENCIES ; - 100 MSEC DIVIDED BY LB HALF PERIOD QUOTIENT
129 130	; - 100 MSEC DIVIDED BY LB HALF PERIOD REMAINDER ;
131 132	NOTE THAT ALL COUNTS MUST BE NORMALIZED TO THE 2.7936511 MICROSECOND INSTRUCTION CYCLE TC
134	; 100 MSEC REPRESENTS 35796 Tc's
135	
	TL/DD/10740-3

137	
138	
139	HALF PERIODS FOR THE 8 DTMF FREQUENCIES (697,770,852,
140	941,1209,1336,1477, AND 1633 KHZ) ARE 257,232,
141	210,190,148,134,121, AND 110 TC'S RESPECTIVELY
142	
143	THE 100 MSEC DIVIDED BY HALF PERIOD OUOTIENTS ARE
144	139 154 170 188 241 267 295 AND 325 RESPECTIVELY
145	
146	THE ING MEET DIVIDED BY HALE DEPIGD REMAINDERS ARE
140	
147	12,01,95,15,127,17,100, AND 45 RESPECTIVED
148	
149	
150	
151 ;	
152 ;	BINARY FORMAT FOR THE HEX DIGIT KEY VALUE FROM THE
153 ;	KBRDEC SUBROUTINE IS OCOORRCC,
154 ;	WHERE - RR IS ROW SELECT (LB FREQUENCIES)
155 :	 CC IS COLUMN SELECT (HB FREQUENCIES)
156 ;	
157 ;	FREQUENCY VECTORS (HB & LB) FOR FREQ PARAMETER TABLE
158 ;	MADE FROM KEY VALUE
159	
160	HB FREQ VECTORS (4) END WITH OO FOR TIMER COUNTS,
161	WHERE VECTOR FORMAT IS 0011CC00
162	
163	LB FREQUENCY VECTORS (12) END WITH:
164	11 FOR HALF PERIOD LOOP COUNTS
165	WHERE VECTOR FORMAT IS GOLLBRIL
165	A DO ING MSEC DIVIDED BY HALE DEDION ONOTIENTS
167	WIDE VEROP FORMATIS ANIADIA
167	WHERE VECTOR FORMAT IS OUTTRALD
168 ;	of FOR 100 MSEC DIVIDED BY HALF PERIOD REMAINDERS,
169 ;	WHERE VECTOR FORMAT IS COLLERED
170	
171 ;	FREQ PARAMETER TABLE AT HEX 003* (REQUIRED LOCATION)
172 ;	
173 ;	
174 ;	
175 ;	KEY VALUE
176 ;	0000RRCC
177	
178	
179	
180	
181	
182	
183 .	
103 ;	
104 ;	
	TL/DD/10740-4

185		.FOR	м		
186	;				
187	;				
188	FREQUENCY	AND 100	MSEC PARAMETER	A TABLE	
190 0030 93	,	BYTE	147	• T	
191 0031 0A		BYTE	10	R	
192 0032 8C		. BYTE	140	; Q	
193 0033 26		.BYTE	38	; F	
194 0034 85		.BYTE	133	; T	
195 0035 09		.BYTE	9	; R	
196 0036 98		BITE BVTF	122 122	; Q - F	
198 0038 78		BYTE	120	; T	
199 0039 OE		BYTE	14	; R	
200 003A AB		.BYTE	171	; Q	
201 003B 1F		.BYTE	31	; F	
202 003C 6D		.BYTE	109	; 1	
203 003D 0A		BITE BVTT	10	; r. • 0	
205 003F 1A		BYTE	26	: F	
206	:		20	, -	
207	;				
208	;				
209 0040 DED5	DTMFGP:	LD	B, #PORTGC ;	CONFIGURE G PORT	
210 0042 9B3F		LD	[B-],#03F ;	FOR OUTPUTS	
211 0044 68		KD11 DDTT	3,[D] 2	OPTIONAL IB RESET	
212 0045 BA		I.D	B. #KDATA	, or riowne ab kaber	
214 0047 A6		X	A,[B]	; STORE KEY VALUE	
215 0048 AE		LD	A,[B]	; KEY VALUE TO ACC	
216 0049 9733		OR	A,#033 ;	; CREATE LB FREQ VECT	'OR
217 004B DEF1		LD	B,#R1 :	; FROM KEY VALUE	
218 004D A6	LUP:	X	A,[B]		
219 004E AE			A, [D]	FROM LOW BAND	
221 0050 A2		X	A.[B+]	FREQ ROM TABLE	
222 0051 8B		DEC	A	; TO R1,R2,R3	
223 0052 44		IFBNE	#4		
224 0053 F9		JP	LUP		
225 0054 5F		LD LD	B, #KDATA	KEY VALUE TO ACC	
220 0055 AE		SMVD	A, [D]	CREATE HB FREO VECT	OR
228 0057 A0		RC	A	FROM KEY VALUE	
229 0058 B0		RRC	Α		
230 0059 B0		RRC	А		
231 005A 9730		OR	A,#030		
232 005C A4		LAID		; HD PREQ TADLE • () DARAMETER)	
233 005D DEEA 234 005E 940E		50 5.D	D,#1MRL0	· INSTRUCTION CYCLE	
235 0061 9400		LD	[B+],#0	; TIME UNTIL TOGGLE	:
				т	1/DD/10740-5
					2/22/10/40-3

236 0063	A2		х	A,[B+]	; HB FREQ PARAMETER TO
237 0064	9A00		LD	[B+],#O	; AUTORELOAD REGISTER
238 0066	9EB0		LD	[B],#OBO	; START TIMER PWM
239 0068	DED4		LD	B,#PORTGD	
240 006A	DCF1		LD	X,#Rl	
241 006C	BB	LUP1:	LD	A,[X-]	
242 006D	72		IFBIT	2,[B]	; TEST LB OUTPUT
243 006E	03		JP	BYP1	
244 006F	B2		Х	A,[X+]	
245 0070	7A		SBIT	2,[B]	; SET LB OUTPUT
246 0071	03		JP	BYP2	
247 0072	B8	BYP1:	NOP		
248 0073	6A		RBIT	2,[B]	; RESET LB OUTPUT
249 0074	B2		X	A,[X+]	
250 0075	C2	BYP2:	DRSZ	R2	; DECR. QUOT. COUNT
251 0076	01		JP	LUP2	
252 0077	OE		JP	FINI	; Q COUNT FINISHED
253 0078	CO	LUP2:	DRSZ	RO	; DECR. F COUNT
254 0079	FE		JP	LUP2	; LB (HALF PERIOD)
255		;			
256 007A	BE		LD	A,[X]	; *******
257 007B	921F		IFEQ	A,#31	; BALANCE ***
258 007D	EE		JP	LUP1	; LOW BAND ***
259 007E	B8		NOP		; FREQUENCY ***
260 007F	B8		NOP		; RESIDUE ***
261 0080	9226		IFEQ	A,#38	; DELAY FOR ***
262 0082	E9		JP	LUP1	; EACH OF THE ***
263 0083	A4		LAID		; FOUR LOW BAND ***
264 0084	B8		NOP		; FREQUENCIES ***
265 0085	E6		JP	LUP1	; *****
266 0086	СЭ	FINI:	DRSZ	R3 ;	DECR. REMAINDER COUNT
267 0087	FE		JP	FINI ;	REM. COUNT NOT FINISHED
268 0088	BDEE6C		RBIT	4,CNTRL ;	STOP TIMER
269 008B	6B		RBIT	3,[B] ;	OPTIONAL CLR HB OUTPUT
270 008C	6A		RBIT	2,[B] ;	OPTIONAL CLR LB OUTPUT
271 008D	8E		RET	;	RETURN FROM SUBROUTINE
272		;			
273		;			
274		;			
					TI /DD/10740-6

275			.FORM						
276		;							
277			SECOND DTMF SUB	ROU	TINE (D	TMFLP) PR	ODUCES SI	Х	
278		;	COMBINED LO	W BA	AND AND	HIGH BAN	D FREQUEN	CY	
279		;	SINE WAVE O	UTP	UTS ON 1	PINS LO -	L5		
280		;							
281		; ;	SIX L PORT OUTP	UTS	(LO -)	L5) FEED 1	INTO AN E	XTERNA	L
282		; 1	RESISTOR LADDER	NE	TWORK T	O CREATE !	THE DTMF	OUTPUT	ŗ.
283		;							
284		; 1	FOUR VALUES FRO	A M	KEYBOA	RD ROM TAI	BLE ARE L	OADED	
285		; ;	INTO LFTBSZ (LO	W FI	REQ TAB	LE SIZE),	LFTADR (LOW	
286		; 1	FREQ TABLE ADDR	ESS), HFTB:	SZ (HIGH 1	FREQ TABL	E SIZE	Ξ),
287		; ,	AND HFTADR (HIG	H FI	REQ TAB	LE ADDRES	S).		
288		;							
289		; 1	LUP42 USES THE	LFP	TR (LOW	FREQ POI	NTER) AND	HFPTH	2
290		;	(HIGH FREQ POIN'	TER) TO AC	CESS THE :	SINE DATA	TABLE	s
291		; 1	FOR THE SELECTE	DF	REQUENC	IES ONCE	PER LOOP.	THESE	5
292		; 1	POINTERS ARE BO	TH .	INCREME	NTED ONCE	PER LUP4	2.	
293		;							,
294		;	JUP42 PROGRAM L	00P	UPDATE	S THE OUT	PUT VALUE	EVERI O NEW	1
295		;	LIT 1/3 USEC DI	SE	LECTING	AND THEN	LOMBININ		
290			TALUES FROM THE	110	ES WUTCH		AND HIGH E BUE STN	DAND F WAVG	25
297		; .	CARUUENCI KUM I		LO WHICH	n SIMULAI		E WAVE	10
290		; .	FOR THE TWO FRE	QUE	NCIES.				
299		;		е м	ACTC NU			FT V	
300			NULTIPLES OF IN	0 C F	ADDDOV	TMATIONS '	TO ALL FT	CR4 UE	2
302			THE DEME EDECHE	NCT	FS	INATIONS		011 01	
303			THE DIME PREQUE	NCT.					
304			00820C/840C TT	MER	USED T	O INTERRU	PT THE DT	ME LUE	42
305			PROGRAM LOOP AF	TER	100 MS	EC TO FIN	ISH THE D	 Тмғ	
306		, ,	UTPUT AND RETU	RN	FROM TH	E DTMFLP	SUBROUTIN	E. NOT	"E
307			THAT THE STACK	POT	NTER (S	P) MUST B	E ADJUSTE	D AFTE	ER
308			THE INTERRUPT B	EFO	RE RETU	RNING FRO	M THE SUB	ROUTIN	IE.
309									
310		;							
311									
312		;							
313		;							
314		; 1	DECLARATIONS:						
315		;							
316	0005		LFPTR	=	05	;	LOW FREQ	POINT	ER
317	0006		TEMP	=	06	;	TEMPORAR	Y	
318	0007		HFPTR	=	07	;	HIGH FRE	Q POIN	ITER
319	0008		LFTBSZ	=	08	;	LO FREQ	TABLE	SIZE
320	0009		LFTADR	=	09	;	LO FREQ	TABLE	ADDR
321	000A		HFTBSZ	=	0 A 0	;	HI FREQ	TABLE	SIZE
322	000B		HFTADR	=	OB	;	HI FREQ	TABLE	ADDR
323		;							
324	0004		TRUN	=	04				
325		;							
									TL/DD/10740-7

27 008E BCD1FF 28 0091 BCD01D 29 0094 BC0500 30 0097 58 31 0098 9A00 32 009A A0 33 009B 65 34 009C B0 35 009D B0 36 009E 94B8	DTMFLP:	LD LD LD LD RC SWAP RRC RRC RRC ADD	PORTLC, #0FF PORTLD, #29 LFPTR, #0 B, #HFPTR [B+], #0 A A A, #0B8	; INITIALIZE PORT L ; FOR NO TONE OUT ; INITIALIZE OFFSET ; POINTERS FOR ; DTMF SINE WAVE ; TABLE LOOKUP ; QUADRUPLE KEY ; VALUE AND ADD ; OFFSET FOR KEY ; TABLE LOOKUP
37 00A0 A6 38 00A1 AE 39 00A2 A4 40 00A3 A2 41 00A4 8A 42 00A5 4C 43 00A6 F9 44 00A7 DEEA 45 00A9 9A00 46 00AB 9A8C 47 00AF 9A8C 48 00AF 9A80 50 00B3 9B11 51 00B5 7C 52 00B6 210F	FRLUP:	X LD LAID X IFBNE JP LD LD LD LD LD LD LD SBIT JMP	A,[B] A,[B] A,[B+] A #OC FRLUP B,#TMRLO [B+],#0 [B+],#140 [B+],#140 [B+],#140 [B+],#140 [B+],#140 [B+],#080 [B-],#011 TRUN,[B] LUP42	; LOAD FOUR VALUES ; FROM ROM KEY ; TABLE INTO LOW ; FREQ LFTBSZ, ; LFTADR, AND HI ; FREQ HFTBSZ, ; HFTADR ; INITIALIZE TIMER ; WITH A tC COUNT ; EQUIVALENT TO ; 100 MSEC PLUS ; A LUP42 TIME ; TIMER PWM, NO OUT ; ENABLE TMR INTRPT ; START TIMER
954 955 956	;;			
957 958	; TELEPHO ;	ONE KEY TA	BLE:	
159 160 161 162 163 164	; TABI ; ; ;	JE FORMAT: PARAMETE PARAMETE PARAMETE PARAMETE	R l: # OF LOW R 2: BASE ADDR R 3: # OF HIGH R 4: BASE ADDR	FREQ TABLE VALUES . OF LOW FREQ VALUES FREQ TABLE VALUES . OF HIGH FREQ VALUES
65 66 00B8 31 00B9 2D 00BA 07 00BB 7C	; KEY 1	.BYTE	49,02D,7,07C	
67 68 69 00BC 31 00BD 2D 00BE 13 00BF 83	; ; Key 2	. BYTE	49,02D,19,08 3	
70	;			TL/DD/10740

371 372 00C0 31 00C1 2D 00C2 17 00C3 86	; KEY 3 .BYTE	49,02D,23,096	
373 374 375 00C4 31 00C5 2D 00C6 15 00C7 AD	; ; KEY A .BYTE	49,02D,21,0AD	
376 377 378 00C8 0B 00C9 5E 00CA 07 00CB 7C	; ; KEY 4 .BYTE	11,05E,7,07C	
379 380 381 00CC 0B 00CD 5E 00CE 13 00CF 83	; ; KEY 5 .BYTE	11,05E,19,083	
382 383 384 00D0 0B 00D1 5E 00D2 17 00D3 96	; ; KEY 6 .BYTE	11,05E,23,096	
385 386 00D4 0B 00D5 5E 00D6 15 00D7 AD	; ; KEY B .BYTE	11,05E,21,0AD	
388 389 390 00D8 0A 00D9 69 00DA 07 00DB 7C	; ; KEY 7 .BYTE	10,069,7,07C	
391 393 00DC 0A 00DD 69 00DE 13 00DF 83	; ; KEY 8 .BYTE	10,069,19,083	
394 395 396 00E0 0A 00E1 69	; ; KEY 9 .BYTE	10,069,23,096	TL/DD/10740-9

	0052	17						
	0052	96						
397	00E0	30	•					
398			· KE	YС				
399	00E4	0 A	,		.BYTE	10,069,21,0AD		
	00E5	69						
	00E6	15						
	00E7	AD						
400			;					
401	0070	00	; KE	Y *	DVMP	0 073 7 083		
402	00E0	73			.DIIL	9,073,7,083		
	0069	73 07						
	OOEB	83						
403			:					
404			; KE	ΥO				
405	OOEC	09	-		.BYTE	9,073,19,07C		
	OOED	73						
	OOEE	13						
	00EF	7C						
406			;					
407	0070	00	; KE	1 #	DVMD	0 073 33 557		
408	UUFO	09 73			.BITE	9,073,23,096		
	0081	13 17						
	00F2	96						
409	0010		:					
410			, KE	YD				
411	00F4	09	,		.BYTE	9,073,21,0AD		
	00F5	73						
	00F6	15						
	00F7	AD						
412			;					
413			;					
414			;					
415		0055	;		-0055			
417		0011			00FF			
418	OOFF	BCD01D	ÍNTRI	PT:	LD	PORTLD.#29	: BASE LINE VAL	UE
419	0102	DEEF			LD	B,#PSW	; 100 MSEC INTE	RRUPT
420	0104	9B00			LD	[B-],#O	; FROM TIMER	l
421	0106	9E00			LD	[B],#O	; CLR PSW AND C	NTRL
422	0108	DEFD			LD	B,#SP	; RESTORE STACK	
423	AUIO	AE				A,[B]	; POINTER (S	5P)
424	0108	8A 8A			INC	A	; TU ITS VAL	UE
426	0100	46			Y	A A (B)	· INTERRIDT	
427	010E	8E			RET	n,[0]	: RETURN FROM	
428							: SUBROUTINE	
429			;				•	
430			;					
								TI /DD/10740-10
İ								
1								

431	.FORM		
433	, ; LUP42 CONSISTS OF	42 COP840C INSTR	UCTION CYCLE TIMES
434	; LUP42 TIMING LOOP	IS 42 / 0.357954	5 = 117 1/3 uSEC
436	7		
437 010F 5A	LUP42: LD	B,#LFPTR	
438 0110 AE	LD	A,[B] ;	INCREMENT LOW FREQ
439 0111 8A 440 0112 57	INC LD	A ; B #LFTRS7.	TEST IF LEPTR
441 0113 82	IFEQ	A,[B] ;	BEYOND LIMIT
442 0114 64	CLR	Α ;	REINITIALIZE LFPTR
443 0115 5A	LD	B,#LFPTR ;	FOR NEXT TIME
444 0116 A6 445 0117 56	х Г.D	A, [D] B #LFTADR :	ADD PTR TO LO FREO
446 0118 84	ADD	A,[B] ;	TABLE ADDRESS
447 0119 A4	LAID	;	LOW FREQ COMPONENT
448 011A 59	LD	B,#TEMP ;	RESULT TO TEMP
449 0116 AZ 450 011C AE		A,[B] :	INCREMENT HI FREQ
451 011D 8A	INC	A ;	OFFSET POINTER
452 011E 55	LD	B,#HFTBSZ ;	TEST IF HFPTR
453 011F 82	IFEQ	A,[B] ;	BEYOND LIMIT DETNITIATIZE HEDTR
455 0121 58	LD	B,#HFPTR ;	FOR NEXT TIME
456 0122 A6	x	A,[B]	
457 0123 54	LD	B,#HFTADR	ADD PTR TO HI FREQ
		A,[B]	HI FREO COMPONENT
460 0126 59	LD	B,#TEMP ;	ADD LOW FREQ VALUE
461 0127 84	ADD	A,[B] ;	TO HI FREQ VALUE
462 0128 9CD0	X	A, PORTLD ;	RESULT TO PORT L
463 0128 A4 464 0128 A4	LAID		SIX NOP'S
465 012C E2	JP	LUP42	TIMING LOOP OF
466		;	117 1/3 uSEC
467			
469	;		
470	;		
			TL/DD/10740-11

471	. FORM
472	;
473	: THE FREQUENCY APPROXIMATION IS EQUAL TO THE NUMBER OF
474	CYCLES OF SINE WAVE DIVIDED BY THE TIME IN THE TOTAL
475	NUMBER OF TUDA2 CYCLES BEFORE THE REDETITION OF THE
475	, NOMBER OF LOFFE CICALD DEFONE THE ANIMITY OF THE
476	; RUM TABLE. AS AN EXAMPLE, CONSIDER THE THREE CICLES
477	; OF SINE WAVE AND 19 VALUES IN THE ASSOCIATED 1336 HZ
478	; ROM TABLE. THE 19 CYCLES OF LUP42 TIMES THE LUP42
479	: TIME OF 117 1/3 USEC IS DIVIDED INTO THE THREE CYCLES
480	OF SINE WAVE TO YIELD A VALUE OF 1345.69 HZ AS THE
481	1336 HZ APPROXIMATION.
482	
102	,
483	; THE VALUES IN THE ROM TABLES FOR THE DIME SINE WAVES
484	; SHOULD WRAP AROUND END TO END IN EITHER DIRECTION TO
485	; FORM A SYMETRICAL LOOP. THE FIRST VALUE IN THE ROM
486	; TABLE REPRESENTS THE BASE LINE FOR THAT FREQUENCY.
487	
488	: THE HIGH BAND DTMF FREQUENCIES HAVE A BASE LINE VALUE
489	OF 16 AND A MAXIMUM VALUE OF 32. THE LOW BAND DIME
400	, of to AND A MATHON ABOUT OF VALUE OF JAAND A
490	; FREQUENCIES RAVE A DASE LINE VALUE OF IS AND A
491	; MAAIMUM VALUE OF 20. THIS DIFFERENCE IN BASE LINE
492	; VALUES IS NECESSARY TO SATISFY THE REQUIREMENT OF THE
493	; HIGH BAND FREQUENCIES NEEDING A LEVEL 2 dB ABOVE THE
494	; LEVEL OF THE LOW BAND FREQUENCIES TO COMPENSATE FOR
495	; LOSSES IN TRANSMISSION. THE SUM OF THE TWO BASE LINE
496	: VALUES YTELDS A BASE LINE VALUE OF 29. WHILE THE SUM
497	OF THE TWO MAXIMUM VALUES VIELDS & MAYTMUM VALUE OF
408	, of the two maximum values filles a maximum value of
490	; DO. THUS THE SIX DIT DIMF OUTPUT FROM THE E PORT TO
499	; THE LADDER NETWORK RANGES FROM 0 TO 58, WITH A BASE
500	; LINE VALUE OF 29.
501	
502	THE VALUES IN THE DTMF SINE WAVE TABLES ARE
503	CALCULATED BY COMPUTING THE SINE VALUE AT THE
500	
504	, AFFROMATE FOUND, SCALING THE SINE VALUE OF TO THE
505	; BASE LINE VALUE, AND THEN ADDING THE RESULT TO THE
506	; BASE LINE VALUE. THE FOLLOWING EXAMPLE WILL HELP TO
507	; CLARIFY THIS CALCULATION.
508	;
509	: CONSIDER THE THREE CYCLES OF SINE WAVE ACROSS 19
510	DATA POINTS FOR THE 1336 HZ DIME HIGH BAND FREQUENCY.
511	THE FIRST VALUE IN THE TABLE IS THE BASE LINE VALUE
511	, THE FIRST VALUE IN THE TABLE IS THE BASE STREE VALUE
512	; OF 10. WITH 2 FI RADIANS PER SINE WAVE CICLE,
513	; THE SUCCEEDING VALUES IN THE TABLE REPRESENT THE
514	; SINE VALUES OF 1 X (6 PI / 19), 2 X (6 PI / 19),
515	; 3 X (6 PI / 19), , UP TO 18 X (6 PI / 19).
516	; LET US NOW CONSIDER THE SEVENTH AND EIGHTH VALUES
517	: IN THE TABLE. REPRESENTING THE SINE VALUES OF
518	: 6 X (6 PI / 19) AND 7 X (6 PI / 19) RESPECTIVELY.
519	, THE CALCULATIONS OF 16 Y SIN 16 Y (6 PT / 19)1 AND
515	, The ended attacks of the A big to a local term (of the -2.2 AND
520	, TO A DIM [/ A (O FI / 17)] TIELD VALUED OF - 5.20 AND
126	; 9.03 RESPECTIVELI. ROUNDED TO THE NEAREST INTEGER
	TI /nn/10740-19

522 523 524 525 526 527 528 529 530 531 532 533 534 535 534 535 536 537 538 539 540 541 542 543 544 545 545	; GIVES VALUES OF - 5 AND 10. WHEN ADDED TO THE BASE ; LINE VALUE OF 16, THESE VALUES YIELD THE RESULTS ; 11 AND 26 FOR THE SEVENTH AND EIGHTH VALUES IN THE ; 1336 HZ DTMF TABLE. SYMMETRY IN THE LOOP OF 19 VALUES ; IN THE DTMF TABLE DICTATES THAT THE FOURTEENTH AND ; THIRTEENTH VALUES IN THE TABLE ARE 21 AND 6, ; REPRESENTING VALUES OF 5 AND - 10 FROM THE ; CALCULATIONS. ; THE AREA UNDER A HALF CYCLE OF SINE WAVE RELATIVE TO ; THE AREA OF THE SURROUNDING RECTANGLE IS 2/PI, WHERE ; PI RADIANS REPRESENT THE SINE WAVE HALF CYCLE. THIS ; SURROUNDING RECTANGLE HAS A LENGTH OF PI AND A HEIGHT ; OF 1, WITH THE HEIGHT REPRESENTING THE MAXIMUM SINE ; VALUE. CONSEQUENTLY, THE AREA OF THIS SURROUNDING ; RECTANGLE IS PI. THE INTEGRAL OF THE AREA UNDER THE ; HALF SINE WAVE FROM 0 TO PI IS EQUAL TO 2. THE RATIO ; OF 2/PI IS EQUAL TO 63.66 % , SO THAT THE TOTAL OF ; THE VALUES FOR EACH HALF SINE WAVE SHOULD APPROXIMATE ; 63.66 % OF THE SUN OF THE MAX VALUES. THE MAXIMUM ; VALUES (RELATIVE TO THE BASE LINE) ARE 13 AND 16 ; RESPECTIVELY, FOR THE LOW AND HIGH BAND FREQUENCIES.
547 548 549 550 551 552 553 554 555 012D 0D 012E 13 012F 18 0130 1A	; ; LF697: 4 CYCLES OF SINE WAVE SPREAD ; ACROSS 49 TIMING LOOP (LUP42) CYCLES ; FREQ. = 4 / (49 X 117 1/3) = 695.73 HZ ; ERROR = (697 - 695.73) / 697 = - 0.18 % ; .BYTE 13,19,24,26,25,20,14,7,2,0
0131 19 0132 14 0133 0E 0134 07 0135 02 0136 00 556 0137 01 0138 05 0139 0B 013A 12 013B 17 013C 1A 013D 19 013E 15	.BYTE 1,5,11,18,23,26,25,21,15,9
	12/00/10/40-13

013F 0F 0140 09 557 0141 03 0142 00 0143 01 0144 04		. BYTE	3,0,1,4,10,16,22,25,26,23	
0146 10 0147 16 0148 19 0149 1A 0144 17 558 014B 11 014C 0B 014D 05 014E 01 014F 00		. BYTE	17,11,5,1,0,3,8,15,21,25	
0150 03 0151 08 0152 0F 0153 15 0154 19 559 0155 1A 0156 18 0157 13 0158 0C 0159 06		.BYTE	26,24,19,12,6,1,0,2,7	
0158 00 015C 02 015D 07 560 561 562 563 564 565 566	; ; ; ; ; ; ; ;	1 CYCLE FREQ. = ERROR =	OF SINE WAVE SPREAD ACROSS 11 TIMING LOOP (LUP42) (1 / (11 X 117 1/3) = 774.79 HZ (774.79 - 770) / 770 = + 0.62	YCLES X
567 568 015E 0D 015F 14 0160 19 0161 1A 0162 17 0163 11 0164 09 0165 03 0166 00	;	.BYTE	13,20,25,26,23,17,9,3,0,1	
0167 01 569 0168 06 570	;	. BYTE	6	TL/DD/10740-14

571 ; 572 ; 573 ;	LF852:	1 CYCLE	OF SINE WAVE SPREAD ACROSS 10 TIMING LOOP (LUP42) CYCLES
574 ; 575 ; 576 ;		FREQ. = ERROR =	l / (10 X 117 1/3) = 852.27 HZ (852.27 - 852) / 852 = + 0.03 %
577 ; 578 0169 0D ; 016A 15 ; 016B 19 ; 016C 1A ; 016E 0D ; 016F 05 ; 0170 01 ; 0171 00 ; 0171 00 ; 0171 00 ; 0171 00 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		.BYTE	13,21,25,26,21,13,5,1,0,5
0172 05 579 ; 580 ;			
581 ; 582 ;	LF941:	1 CYCLE	OF SINE WAVE SPREAD ACROSS 9 TIMING LOOP (LUP42) CYCLES
585 ; 585 ;		FREQ. = ERROR =	1 / (9 X 117 1/3) = 946.97 HZ (946.97 - 941) / 941 = + 0.63 %
586 ; 587 0173 0D 0174 15 0175 1A 0176 18 0177 12 0178 08 0179 02		. BYTE	13,21,26,24,18,8,2,0,5
017A 00 017B 05 588 :			
589 ; 590 ;			OR CINE NAME CORRAD
591 ; 592 ; 593 ;	HF1209:	I CYCLE	ACROSS 7 TIMING LOOP (LUP42) CYCLES
594 ; 595 ;		FREQ. = ERROR =	1 / (7 X 117 1/3) = 1217.53 HZ (1217.53 - 1209) / 1209 = + 0.71 %
597 017C 10 017D 1D 017E 20 017F 17 0180 09 0181 00 0182 03 598		.BYTE	16,29,32,23,9,0,3
,			TL/DD/10740-15

Г

599 ; 600 ; H 601 ;	F1336: 3 CYCLES OF SINE WAVE SPREAD ACROSS 19 TIMING LOOP (LUP42) CYCLES
603 604 605	FREQ. = 3 / (19 X 117 1/3) = 1345.69 HZ ERROR = (1345.69 - 1336) / 1336 = + 0.73 %
605 ; 606 0183 10 0184 1D	.BYTE 16,29,31,19,4,0,11,26,32,24
0185 1F 0186 13 0187 04 0188 00 0189 0B 0184 1A 018B 20 018C 18 607 018D 08 018E 00 018F 06 0190 15 0191 20 0192 1C 0193 0D 0194 01 0195 03	.BYTE 8,0,6,21,32,28,13,1,3
608 ; 609 ;	
610 ; H 611 ;	F1477: 4 CYCLES OF SINE WAVE SPREAD ACROSS 23 TIMING LOOP (LUP42) CYCLES
612 ; 613 ; 614 ; 615	FREQ. = 4 / (23 X 117 1/3) = 1482.21 HZ ERROR = (1482.21 - 1477) / 1477 = + 0.35 %
616 0196 10 0197 1E	.BYTE 16,30,29,14,1,4,20,32,26,10
0199 0E 0194 01 0198 04 019C 14 019D 20 019E 1A 019F 0A 617 01A0 00 01A1 08 01A2 18 01A3 20 01A4 16 01A5 06	.BYTE 0,8,24,32,22,6,0,12,28,31
01A6 00	TL/DD/10740-16

618	01A7 01A8 01A9 01AA 01AB 01AC	0C 1C 1F 12 03 02	·	. BYTE	18,3,2	
620 621 622 623			; ; HF1633: ;	4 CYCL	ES OF SINE WAVE SPREAD ACROSS 21 TIMING LOOP (LUP42) CY(CLES
624 625 626			;	FREQ. ERROR	$= 4 / (21 \times 117 1/3) = 1623.38 HZ$ $= (1633 - 1623.38) / 1633 = -0.59$	3 %
627	01AD 01AE 01AF 01B0 01B1 01B2 01B3 01B4 01B5	10 1F 1B 09 00 0B 1D 1E 0E	,	. BYTE	16,31,27,9,0,11,29,30,14,0	
628	01B7 01B8 01B9 01BA 01BB 01BC 01BD 01BE 01BF 01C0	07 19 20 12 02 03 15 20 17 05		. BYTE	7,25,32,18,2,3,21,32,23,5	
629 630	01C1	01	;	.BYTE	1	
631 632			;;			
						TL/DD/10740-17

633 634	. FORM
635 695	; DTMF KEYBOARD DECODE SUBROUTINE (KBRDEC)
636 637 638 639 640	; ; KEYBOARD INPUT DATA IS IN ACCUMULATOR WITH A ; LOW TRUE FORMAT AS FOLLOWS: ; BITS 7 TO 4 : LOW TRUE COLUMN VALUE (E,D,B,7) ; BITS 3 TO 0 : LOW TRUE ROW VALUE (E,D,B,7)
641 642 643	; ; ASSUMPTION MADE THAT COLUMN STROBES (LOW TRUE) ARE ; OUTPUT, WHILE ROW VALUES (LOW TRUE) ARE INPUT.
644 645 646	; ; LOW TRUE COLUMN/ROW INPUT DIGIT IN ACCUMULATOR IS ; TRANSFORMED INTO A DTMF HEX DIGIT KEY VALUE
647 648 649 650 651 652 653	 TABLE LOOKUP TRANSFORMATION CHECKS FOR MULTIPLE KEYS, NO KEY, OR NO COLUMN SELECT, AND THEN PRODUCES A DTMF HEX DIGIT KEY VALUE WITH A BINARY FORMAT OF 0000RRCC FOR A SINGLE KEY INPUT, WHERE - RR IS LOW BAND (LB) FREQUENCY SELECT CC IS HIGH BAND (HB) FREQUENCY SELECT
654 655 656 657	; KBRDEC SUBROUTINE IS EXITED WITH A RETURN (RET) ; COMMAND TO INDICATE MULTIPLE KEYS, NO KEY, ; OR NO COLUMN SELECT
658 659 660 661	; ; KBRDEC SUBROUTINE IS EXITED WITH A RETURN AND SKIP ; (RETSK) COMMAND TO INDICATE A SINGLE KEY ENTRY ;
662 663 0200	;
664 665	; ; LOW TRUE TRANSLATION TABLE - ONLY E.D.B.7 ACCEPTABLE
666 667 0300 C0	
0201 C0 0202 C0 0203 C0 0204 C0 0205 C0 0206 C0 0207 0C 668 0208 C0 0209 C0 0209 C0 0208 08 0200 C0 0200 04 0200 C0	.BITE 0C0,0C0,0C0,0C0,0C0,0C0,0C0,0C0,0C0
020F C0 669	;
	TL/DD/10740-18

тулор/10740-19 Тулор/10740-19	670 671 0210 5F 672 0211 A6 673 0212 AE 674 0213 95F0 675 0215 65 676 0216 A4 677 0217 A0 678 0218 B0 679 0219 B0 680 021A A6 681 021B 950F 682 021D A4 683 021E 84 684 021F 930F 685 0221 8E 686 0222 8D 687 688 689 690	; KBRDEC: ; ;	LD X LD AND SWAP LAID RC RRC RRC X AND LAID ADD IFGT RET RETSK	B,#KDATA A,[B] A,[B] A,#OFO A A A A,[B] A,#OF A,[B] A,#OF	; STORE LOW TRUE ; COLUMN/ROW VALUE ; EXTRACT LOW TRUE COLUMN ; & PUT IN LOWER NIBBLE ; OOOOCCOO FROM TABLE ; SHIFT TABLE VALUE DOWN ; TWO BITS TO PRODUCE ; OOOOOCC ; STORE RESULT ; EXTRACT LOW TRUE ROW ; OOOORROO FROM TABLE ; ADD TO PRODUCE OOOORRCC ; RETURN IF MULTIPLE KEYS, ; NO KEYS, OR NO COLUMN ; RETURN AND SKIP ; IF SINGLE KEY
	ра <u>т</u>		. END		TL/DD/10740-19

Г

DTMF Generation with a 3.58 MHz Crysta	B BYPB FINI HFTBSZ LFPTR LUP PORTD PORTD R1 START TMRHI	00FE 001B 0086 000A 0005 004D 00DC 0001 00F1 0000 * 00EB *	BYP1 00 CNTRL 00 FRLUP 00 LFTADR 00 LUP1 00 PORTGC 00 PORTLD 00 R2 00 TAUHI 00 TMRLO 00	072 H DEE I DAO H DFF * H 009 H D6C I D55 H D62 H D52 H D52 H D52 H D54 7 DEA 7	BYP2 0075 DTMFGP 0040 HFPTR 0007 GRDEC 0210 LFTBSZ 0008 LUP2 0078 PORTGD 0004 PSW 00EF R3 00F3 FRUN 0004	BYPA DTMFLP HFTADR KDATA LOOP LUP42 PORTI RO SP TEMP X	0019 008E 0000 0006 010F 00FD 00FD 000F0 00FC 7L/DD/10740-20
	LIFE SU	PPORT POLIC	Y				
	NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF I SEMICONDUCTOR CORPORATION. As used herein:						IN LIFE SUPPORT DENT OF NATIONAL
	1. Life syster into th failure with ir be rea to the	 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to result in a significant injury to the user. 					
AN-666	Nati Corr 2900 P.O. Sani Tel: TWX	onal Semiconductor poration D Semiconductor Drive Box 58090 ta Clara, CA 95052-8090 1800) 272-9959 G: (910) 339-9240	National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1	National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bidg, 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, 261 Chiba-City, 261 Tel: (043) 299-2500 Fax: (043) 299-2500	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshataiu, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Do Brazil Ltda. Rue Deputado Lacorda F 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSB Fax: (55-11) 212-1181	es National Semiconductor (Australia) Pty, Ltd. Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia R BR Tel: (3) 558-9999 Fax: (3) 558-9998

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated