COP884BC,COP888EK

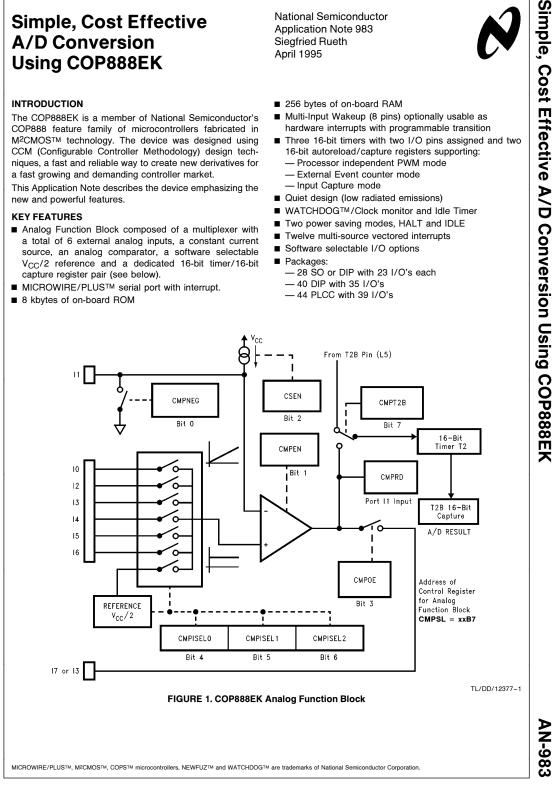
Simple, Cost Effective A/D Conversion Using COP888EK

Literature Number: SNOA344

Simple, Cost Effective A/D Conversion Using COP888EK

National Semiconductor Application Note 983 Siegfried Rueth April 1995

INTRODUCTION


The COP888EK is a member of National Semiconductor's COP888 feature family of microcontrollers fabricated in $\mathsf{M}^2\mathsf{C}\mathsf{M}\mathsf{O}\mathsf{S}^{\mathsf{T}\mathsf{M}}$ technology. The device was designed using CCM (Configurable Controller Methodology) design techniques, a fast and reliable way to create new derivatives for a fast growing and demanding controller market.

This Application Note describes the device emphasizing the new and powerful features.

KEY FEATURES

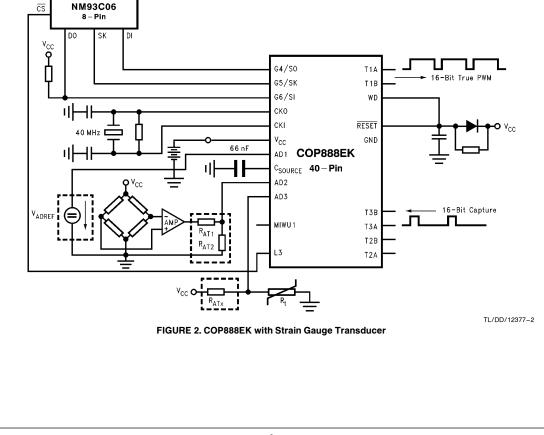
- Analog Function Block composed of a multiplexer with a total of 6 external analog inputs, a constant current source, an analog comparator, a software selectable $V_{\mbox{CC}}/2$ reference and a dedicated 16-bit timer/16-bit capture register pair (see below).
- MICROWIRE/PLUSTM serial port with interrupt.
- 8 kbytes of on-board ROM

- 256 bytes of on-board RAM
- Multi-Input Wakeup (8 pins) optionally usable as hardware interrupts with programmable transition
- Three 16-bit timers with two I/O pins assigned and two 16-bit autoreload/capture registers supporting: - Processor independent PWM mode
 - External Event counter mode - Input Capture mode
- Quiet design (low radiated emissions)
- WATCHDOGTM/Clock monitor and Idle Timer
- Two power saving modes, HALT and IDLE
- Twelve multi-source vectored interrupts
- Software selectable I/O options
- Packages:
 - 28 SO or DIP with 23 I/O's each
 - 40 DIP with 35 I/O's
- 44 PLCC with 39 I/O's

© 1996 National Semiconductor Corporation TL/DD12377 RRD-B30M106/Printed in U. S. A.

THE ANALOG FUNCTION BLOCK

The analog function block allows single slope (integration) type of A/D conversion on 6 analog multiplexed input pins. With this alternate function on the 8-bit I-port (which is an "input only" port in other devices) this derivative received a powerful enhancement.


Figure 1 illustrates the principles of the whole block. One of the six I-pins (I0, I2, ..., I6) or an internally available $V_{CC}/2$ reference can be multiplexed onto the positive terminal of an internal analog comparator. A ramp can be fed to the negative comparator terminal by simply applying a capacitor on pin I1 and initializing the on-chip constant current source. The 16-bit "T2B" capture register completes the analog function block and will be directly triggered from the output of the on-chip comparator. T2B is one of the two 16-bit autoreload/capture registers assigned to Timer 2.

A/D CONSIDERATIONS

Single slope (integration) A/D converters have sources of inaccuracy affecting the quality of the digital result of the conversion. In addition, this serial approach is slower than successive approximation type A/D's and can not be applied in cases where fast conversion is required. The following considerations may help the user to judge if this technique is adequate for the particular A/D conversion task(s) the microcontroller has to perform.

A resolution of 11 bits can be established with a CKI frequency of 2 MHz and a 66 nF capacitor. The linearity of the ramp is dependent on the constant current source, the common mode range of the comparator and the type of capacitor. The optimum linearity can be obtained if the voltage level on the selected input channel does not exceed a maximum of $V_{\rm CC}$ – 1.5V. Therefore it may be necessary to attenuate the input levels as shown in *Figure 2*. In order to maximize the accuracy of the A/D conversion there are some guidelines the user should follow:

- An accurate reference is required. This can be a fixed reference (for example a reference diode) directly applied to one of the analog inputs. In many applications there is an EEPROM present which could hold a digital reference "burned in" during the manufacturing process. This can eliminate the need for an accurate and expensive crystal oscillator and a much cheaper RC clock can be used instead.
- The user should limit the levels at the analog inputs to values less than or equal to V_{CC}\,- 1.5V.
- Relating all measurements to the on-chip V_{CC}/2 reference will help to compensate for temperature variations.
- Capacitors with values higher than 100 nF may not be useful because of decreasing linearity. For values higher than 33 nF, it is recommended to use styroflex capacitors or similar quality.

The constant current delivered from the on-chip current source can vary in the range of 10 μ A-30 μ A. To calculate the minimum resolution, the following equation can be used:

$$X_{RES} = \frac{C \bullet dV}{I_{MAX} \bullet t_c}$$

with:

C = Value of capacitance in [nF]

dV = Range of channel input voltage in [V]

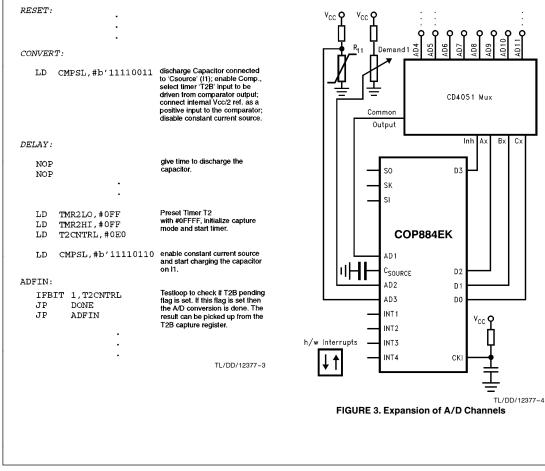
 I_{MAX} = Max. current delivered from current source [μ A]

 t_c = Instruction cycle rate of microcontroller [10/CKI]

 X_{RES} = Resolution of Digital value (found in T2B).

APPLICATIONS EXAMPLES

Frequently used sensors in industrial and consumer applications are "NTC's" and strain gauge transducers. *Figure 2* shows a configuration with both types connected. Using the above equation, the minimum resolution at 2 MHz CKI clock input and a 66 nF capacitor, is 10-bits with an input signal varying between 0V and 3V and a V_{CC} voltage of 5V. The typical resolution with these parameters is more than 11-bit and the achievable accuracy is already better than the accuracy of an 8-bit successive approximation type of A/D converter. Doubling the CKI frequency will increase the resolution by 1-bit. A typical software initialization sequence for an A/D conversion (measuring the on-chip $V_{CC}/2$ ref) looks as follows:


Similarly, the other (external) sources can be measured by appropriately setting bits 4, 5 and 6 in the **CMPSL** register, discharging the capacitor, setting the timer, and charging the capacitor.

A/D CONVERSION TIME

The minimum specified constant current fed into the capacitor connected to pin C_{SOURCE} (i1) is 10 μ A and causes the longest possible conversion time. With the values given, the $X_{RESmax} = 3960$ counts. A 2 MHz crystal will yield a t_c-cycle of 5 μ s in a COP800 microcontroller. This means the conversion time to measure one channel is maximum:

$T = 3960 \times 5 \ \mu s = 18.8 \ ms$

To ensure secure and stable measurements however it is recommended to do a minimum of 2 or 3 conversions on a particular input channel and compare subsequent results with each other. Taking the worst case with 3 A/D-cycles plus additional 3 cycles measuring the internal V_{CC}/2 reference will result in a total conversion time of 6×18.8 ms which gives 113 ms. The processing time to find the final digital value representing the analog level at the A/D channel will not contribute a significant period of time so that a total conversion time of 120 ms is a reasonable assumption for a worst case scenario. Likewise the total conversion time will be half with a CKI frequency of 4 MHz and a capacitance at pin C_{SOURCE} equal to half the original value.

EXPANDING THE NUMBER OF A/D CHANNELS

Figure 3 shows an inexpensive way to establish additional A/D channels by using a CD4051 analog multiplexer. The COP884EK is a 28-pin version of the COP888EK and provides 3 analog inputs. One input must be used to connect the common output of the external mux which carries the channel selected via the pins (Ax, Bx, Cx). An additional control pin is required to enable the desired channel. The whole setup is capable of handling a total of 10 A/D channels. In many automotive and industrial applications, a controller has to scan temperature sensors, monitor fluid-levels and measure pots which hold "demand-values" for open- or closed-loop control systems. In these applications, timing is typically not a critical requirement. Also, the internal $V_{CC}/2$ reference is most likely adequate to gain sufficient accuracy.

TABLE I. Resolution and Accurac	y vs dV and CKI
---------------------------------	-----------------

	Ex1	Ex2	Ex3	Ex4	Ex5
V _{CC} [V]	5	5	5	5	3
dV[V]	3	3	3	3	1.8
CKI[MHz]	1	2	4	5	2
t _c [μs]	10	5	2.5	2	5
X _{RESmin}	8-bit	9-bit	11-bit	12-bit	9-bit
X _{REStyp}	>9-bit	>10-bit	>12-bit	14-bit	>10
Acc	6-bit	7-bit	8-bit	>9-bit	7-bit
C[nF]	33	33	66	100	66

Table I shows some examples of achievable minimum resolution (row: X_{RESmin}) and accuracy (row: Acc) dependent on the V_{CC} voltage, the CKI frequency and the capacitor value (connected to pin 11).

OTHER FEATURES

I. Timers

The COP888EK has three 16-bit timers with two I/O pins assigned and two autoreload/capture registers associated with each.

Figure 4 shows one of the timers configured for PWM mode. The contents of the 2 autoreload registers are copied alternately into the 16-bit timer (upon underflow) one holding the high time and the other holding the low time of the pulses presented to the Timer I/O pin TxA (with x = 1, 2 or 3), thus being able to establish duty-cycles from 1/65535 to 65535/1.

In capture mode both I/O's assigned to a timer can be incorporated into time or frequency measurements. Inputs on TxA trigger measurements in capture register TxRA and inputs to pin TxB trigger measurements in capture register TxRB.

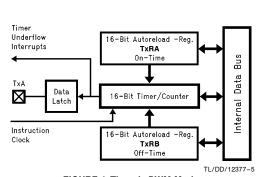


FIGURE 4. Timer in PWM-Mode

Thereby all possible combinations of transitions can be programmed.

There are many interrupt sources associated with all timer modes such as timer underflow, autoreloads on TxRA and TxRB and positive or negative transitions on the timer pins TxA and TxB thus allowing a very flexible use.

In addition, there is the free running 16-bit timer T0 that can be used for time base and to establish the low current idlemode.

II. Low EMI and Low Current Oscillator

Low radiated emissions are achieved by gradual turn-on output drivers and internal I_{CC} filters on the chip logic and crystal oscillator. All precautions taken lowered the radiated noise by about 20 dB compared to older COP888 family devices.

III. Multi-Input Wakeup/Hardware Interrupts

The 8 pins of the 8-bit L-port can alternately be configured as wakeup inputs. The trigger condition can be either programmed on the "high to low" or "low to high" transition. The Multi-Input Wake-up can be used with the power saving Halt- (with Halt currents less than 10 μ A) or Idle mode, to wakeup the device via one of the eight wakeup pins. Alternately these pins can serve as additional hardware interrupts with programmable transition polarity.

CONCLUSIONS

- With the performance and the combination of functions provided (low EMI, multi-channel high resolution A/D, powerful timer structure ...) the COP888EK is ideally suited for many applications in automotive and industrial/ consumer markets.
- The analog function block can be configured to perform integration type A/D conversions with resolutions of up to 14 bits and achievable accuracies significantly better than the 8-bit approximation type deliver.
- The strengths of the COP888EK can be supplemented from National's NeuFuz4™ development environment which supports the generation of intelligent control algorithms for open- and closed loop control systems delivering the final COP8 assembler code as a result.

http://www.national.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arington, TX 76017 Tel: 1(800) 272-9959	National Semiconductor Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 180-530 85 85	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon	National Semiconductor Japan Ltd. Tel: 81-043-299-2308 Fax: 81-043-299-2408
Fax: 1(800) 737-7018 http://www.national.com	English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 93 58 Italiano Tel: +49 (0) 180-534 16 80	Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

AN-983

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

	Products		Applications	
	Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
	Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
	Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
	DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
	DSP	dsp.ti.com	Industrial	www.ti.com/industrial
	Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
	Interface	interface.ti.com	Security	www.ti.com/security
	Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
	Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
	Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
	RFID	www.ti-rfid.com		
	OMAP Mobile Processors	www.ti.com/omap		
	Wireless Connectivity	www.ti.com/wirelessconnectivity		
TI E2E Community Home Dage			a O a Al a a m	

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated