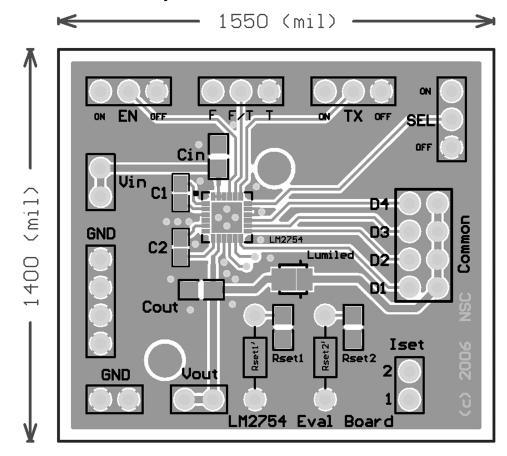


User's Guide SNVA194A–November 2006–Revised April 2013

AN-1546 LM2754 Evaluation Board

1 Schematic



2 Bill of Materials

Component Symbol	Value	Package [U.S. (Metric)]	Dimensions (mm)	Temperature Characteristic	Manufacturer	Part #
LM2754		WQFN-24 Non-pullback	4.0 × 4.0 × 0.8		Texas Instruments	LM2754
C _{IN}	2.2µF, 16V	0603 (1608)	1.6 × 0.8 × 0.8	X5R	TDK	C1608X5R1C225K
C _{OUT}	4.7µF, 10V	0603 (1608)	1.6 × 0.8 × 0.8	X5R	TDK	C1608X5R1A475K
C ₁ , C ₂	2.2µF, 16V	0603 (1608)	1.6 × 0.8 × 0.8	X5R	TDK	C1608X5R1C225K
D _x	Flash LED(s)		2.0 × 1.6 × 1		Lumiled	PWF1
Rset1	20kΩ	0603 (1608)	1.6 × 0.8 × 0.6		Vishay-Dale	CRCW06032002F
Rset2	5ΚΩ	0603 (1608)	1.6 × 0.8 × 0.6		Vishay-Dale	CRCW06034991F

All trademarks are the property of their respective owners.

www.ti.com

3 LM2754 Evaluation Board Layout

Figure 1. Top Layer

2

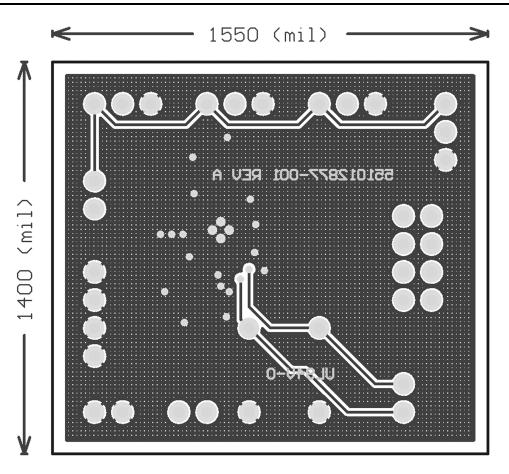


Figure 2. Bottom Layer (top view, unmirrored)

4 Board Operation

4.1 Basic Connections

To operate the LM2754 evaluation board, connect a supply voltage (2.7V to 5.5V) between board connectors Vin and GND.

Jumper Connections:

- EN: Connecting the jumper between the "ON" post and the center post of the "EN" header strip enables the part, and connecting the center post to the "OFF" post disables the part (Shutdown). The "EN" jumper block serves as the master enable for the device. Enabling the device is also referred to as Torch mode, where the LEDs are driven at a constant, nominal current level.
- F/T: Connecting the jumper between the "F" post and the center post of the "F/T" header strip enables Flash Mode (High Current Mode), and connecting the center post to the "T" post disables Flash Mode. The default mode for "F/T" is "T" (Torch Mode).
- TX: Connecting the jumper between the "ON" post and the center post of the "TX" header strip enables TX Mode (RF PA Transmission Flash Interrupt), and connecting the center post to the "OFF" post disables TX Mode. The default mode for "TX" is "OFF". In a typical application, the signal to the "TX" pin is a pulsed signal from the RF Power Amplifier when the RF PA is active.
- SEL: Connecting the jumper between the "ON" post and the center post of the "SEL" header strip enables SEL Mode (Selective D₄ disable), and connecting the center post to the "OFF" post disables SEL Mode. The default mode for "SEL" is "OFF", with all current sinks "D1-4" enabled.

3

Board Operation

(1)

4.2 R_{SETX}: Setting LED Currents

The resistance of the Rsetx resistor sets the DC output currents of the LM2754, approximated by the following equation:

I_{Dx} = 800 X (1.25V / Rsetx)

The default Rset1 on the evaluation board is $20k\Omega$ for Torch Mode, which sets a DC output current of 50mA (typ.) per current sink, or 200mA total continuous current. The default Rset2 on the evaluation board is $5k\Omega$ for Flash Mode, which sets a DC output current of 200mA (typ.) per current sink, or 800mA total pulsed current.

Components Rset1' and Rset2' are optional leaded resistor replacements for the surface mount Rset1 and Rset2, provided for ease of use.

4.3 Headers: LED Activation and PWM Brightness Control

All four jumpers on the "Common" header block must be in place for D1-4 current sinks to power the Flash LED. Removing any one of the "Common" jumpers disconnects the corresponding current sink from the LED and causes the LM2754 to default to a gain of 2x. However if a logic High voltage is placed on the "SEL" pin, removing the jumper for D4 does not affect device operation. The default connection for each jumper on the "Common" header block are from the side labeled with "D1-4" to the side labeled "Common". To connect a Flash LED to the LM2754, other than the one supplied on the evaluation board, remove all jumpers on the "Common" header block and connect each "D1-4" pin to the cathode(s) and the "Vout" pin to the anode(s) of the desired Flash LED.

Connecting the center post on the "EN" header strip to the "ON" post automatically turns on the LED(s) into Torch Mode. Upon enabling the device, the modes selected by the "F/T", "TX" and "SEL" jumper blocks will also apply. For example, the "EN" pin and "F/T" pin can be connected together to a logic High voltage to enable the LM2754 directly into Flash Mode from a shutdown state. The "TX" Mode Pin is for a pulsed signal from the RF Power Amplifier to momentarily reduce the Flash current to the Torch current level, lowering the load on the battery line during RF PA pulses. "SEL" Mode is designed to accommodate Flash LED modules with only 3 LED die, while still utilizing the adaptive gain transition topology of the LM2754. The "SEL" function turns off the "D4" current sink. This feature can also be used to instantly reduce the total Torch or Flash current levels by 25%, if all four currents sink are used in the application.

A pulse-width modulated (PWM) signal can be connected to the F/T pin (in the F/T header block) to adjust the average brightness level for Flash Mode, up to the maximum programmed current. The duty cycle of the PWM signal determines the net brightness, as perceived by the human eye. For example, with a duty cycle of 50%, the LEDs will only be ON for 50% of the time, and the perceived brightness will be approximately half of what the brightness is when the LEDs are driven at full current for the entire flash pulse. Recommended frequency range for PWM signals: 100Hz to 1000Hz.

Using a PWM signal to control Torch Mode current is not recommended due to the control loop delay that occurs when the device is enabled.

4

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated