

AN-2097 LM3444 - 230VAC, 8W Isolated Flyback LED Driver

1 Introduction

This demonstration board highlights the performance of a LM3444 based Flyback LED driver solution that can be used to power a single LED string consisting of 4 to 10 series connected LEDs from an 180 V_{RMS} to 265 V_{RMS} , 50 Hz input power supply. The key performance characteristics under typical operating conditions are summarized in this application note.

This is a four-layer board using the bottom and top layer for component placement. The demonstration board can be modified to adjust the LED forward current, the number of series connected LEDs that are driven and the switching frequency. Refer to the LM3444 datasheet for detailed instructions.

A bill of materials is included that describes the parts used on this demonstration board. A schematic and layout have also been included along with measured performance characteristics.

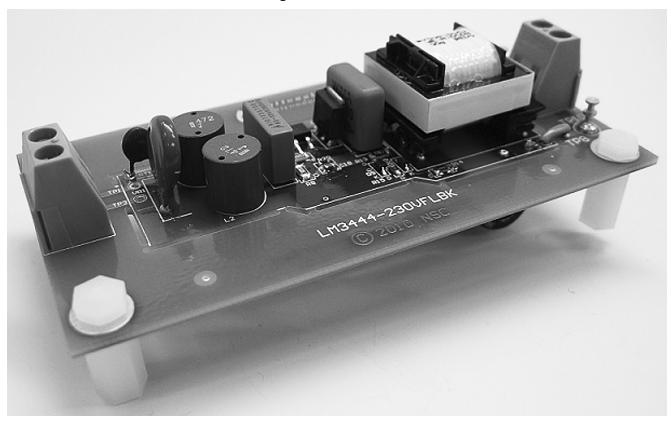
2 Key Features

- Line injection circuitry enables PFC values greater than 0.98
- Adjustable LED current and switching frequency
- · Flicker free operation

3 Applications

- Solid State Lighting
- Industrial and Commercial Lighting
- · Residential Lighting

4 Performance Specifications


Based on an LED V_f = 3.6V

Symbol	Parameter	Min	Тур	Max
V _{IN}	Input voltage	180 V _{RMS}	230 V _{RMS}	265 V _{RMS}
V _{OUT}	LED string voltage	13 V	21.5 V	36 V
I _{LED}	LED string average current	-	350 mA	-
P _{OUT}	Output power	-	7.5 W	-
f _{sw}	Switching frequency	-	67 kHz	-

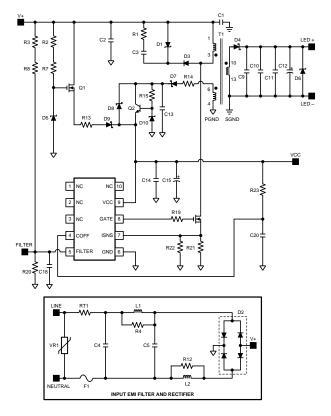

PowerWise is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

Figure 1. Demo Board

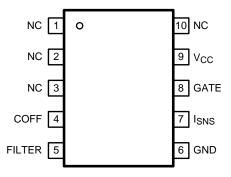
5 LM3444 230VAC, 8W Isolated Flyback LED Driver Demo Board Schematic

WARNING

The LM3444 evaluation board has exposed high voltage components that present a shock hazard. Caution must be taken when handling the evaluation board. Avoid touching the evaluation board and removing any cables while the evaluation board is operating.

WARNING

The ground connection on the evaluation board is NOT referenced to earth ground. If an oscilloscope ground lead is connected to the evaluation board ground test point for analysis and the mains AC power is applied (without any isolation), the fuse (F1) will fail open. For bench evaluation, either the input AC power source or the bench measurement equipment should be isolated from the earth ground connection. Isolating the evaluation board (using 1:1 line isolation transformer) rather than the oscilloscope is highly recommended.


WARNING

The LM3444 evaluation board should not be powered with an open load. For proper operation, ensure that the desired number of LEDs are connected at the output before applying power to the evaluation board.

LM3444 Device Pin-Out www.ti.com

6 LM3444 Device Pin-Out

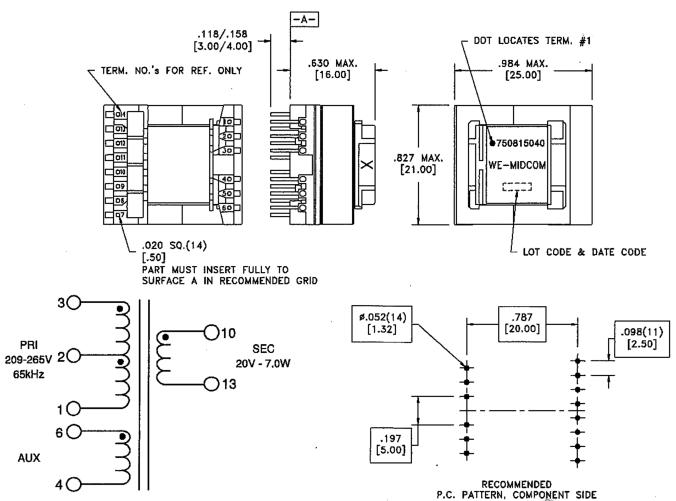
7 Pin Descriptions – 10 Pin VSSOP

Pin #	Name	Description
1	NC	No internal connection.
2	NC	No internal connection.
3	NC	No internal connection.
4	COFF	OFF time setting pin. A user set current and capacitor connected from the output to this pin sets the constant OFF time of the switching controller.
5	FILTER	Filter input. A capacitor tied to this pin filters the error amplifier. Could also be used as an analog dimming input.
6	GND	Circuit ground connection.
7	ISNS	LED current sense pin. Connect a resistor from main switching MOSFET source, ISNS to GND to set the maximum LED current.
8	GATE	Power MOSFET driver pin. This output provides the gate drive for the power switching MOSFET of the buck controller.
9	V _{cc}	Input voltage pin. This pin provides the power for the internal control circuitry and gate driver.
10	NC	No internal connection.

8 Bill of Materials

Designator	Description	Manufacturer	Part Number	RoHS
U1	Offline LED Driver, PowerWise™	Texas Instruments	LM3444	Υ
C1	Ceramic, X7R, 250VAC, 10%	Murata Electronics North America	DE1E3KX332MA5BA01	Y
C2	Ceramic, Polypropylene, 400VDC, 10%	WIMA	MKP10033/400/5P10	Υ
C3	CAP, CERM, 330pF, 630V, +/-5%, C0G/NP0, 1206	TDK	C3216C0G2J331J	Υ
C4	Ceramic, X7R, 250V, X2, 10%, 2220	Murata Electronics North America	GA355DR7GF472KW01L	Y
C5	CAP, Film, 0.033µF, 630V, +/-10%, TH	EPCOS Inc	B32921C3333K	Υ
C9, C11	CAP, CERM, 1µF, 50V, +/-10%, X7R, 1210	MuRata	GRM32RR71H105KA01L	Υ
C10	CAP, CERM, 0.47µF, 50V, +/-10%, X7R, 0805	MuRata	GRM21BR71H474KA88L	Υ
C12	Aluminium Electrolytic, 680uF, 35V, 20%,	Nichicon	UHE1V681MHD6	Υ
C13	CAP, CERM, 1µF, 35V, +/-10%, X7R, 0805	Taiyo Yuden	GMK212B7105KG-T	Υ
C14	CAP, CERM, 0.1µF, 25V, +/-10%, X7R, 0603	MuRata	GRM188R71E104KA01D	Υ
C15	CAP, TANT, 47uF, 16V, +/-10%, 0.35 ohm, 6032-28 SMD	AVX	TPSC476K016R0350	Y
C18	CAP, CERM, 2200pF, 50V, +/-10%, X7R, 0603	MuRata	GRM188R71H222KA01D	Υ
C20	CAP, CERM, 330pF, 50V, +/-5%, C0G/NP0, 0603	MuRata	GRM1885C1H331JA01D	Υ
D1	DIODE TVS 250V 600W UNI 5% SMD	Littelfuse	P6SMB250A	Υ

www.ti.com Bill of Materials


Designator	Description	Manufacturer	Part Number	RoHS
D2	Diode, Switching-Bridge, 600V, 0.8A, MiniDIP	Diodes Inc.	HD06-T	Y
D3	Diode, Silicon, 1000V, 1A, SOD-123	Comchip Technology	CGRM4007-G	Y
D4	Diode, Schottky, 100V, 1A, SMA	STMicroelectronics	STPS1H100A	Y
D5, D10	Diode, Zener, 13V, 200mW, SOD-323	Diodes Inc	DDZ13BS-7	Y
D6	Diode, Zener, 36V, 550mW, SMB	ON Semiconductor	1SMB5938BT3G	Υ
D7, D8, D9	Diode, Schottky, 100V, 150 mA, SOD-323	STMicroelectronics	BAT46JFILM	Υ
F1	Fuse, 500mA, 250V, Time-Lag, SMT	Littelfuse Inc	0443.500DR	Y
H1, H2, H5, H6	Standoff, Hex, 0.5"L #4-40 Nylon	Keystone	1902C	Y
H3, H4, H7, H8	Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	B&F Fastener Supply	NY PMS 440 0025 PH	Y
J1, J2	Conn Term Block, 2POS, 5.08mm PCB	Phoenix Contact	1715721	Y
L1, L2	Inductor, Radial Lead Inductors, Shielded, 4.7mH, 130mA, 12.20ohm, 7.5mm Radial,	TDK Corporation	TSL080RA-472JR13-PF	Y
LED+, LED-, TP7, TP8	Terminal, 22 Gauge Wire, Terminal, 22 Guage Wire	3M	923345-02-C	Y
Q1	MOSFET, N-CH, 600V, 200mA, SOT-223	Fairchild Semiconductor	FQT1N60CTF_WS	Y
Q2	Transistor, NPN, 300V, 500mA, SOT-23	Diodes Inc.	MMBTA42-7-F	Y
Q3	MOSFET, N-CH, 650V, 800mA, IPAK	Infineon Technologies	SPU01N60C3	Y
R1	RES, 221 ohm, 1%, 0.25W, 1206	Vishay-Dale	CRCW1206221RFKEA	Υ
R2, R7	RES, 200k ohm, 1%, 0.25W, 1206	Vishay-Dale	CRCW1206200KFKEA	Y
R3, R8	RES, 309k ohm, 1%, 0.25W, 1206	Vishay-Dale	CRCW1206309KFKEA	Y
R4, R12	RES, 10k ohm, 5%, 0.25W, 1206	Vishay-Dale	CRCW120610K0JNEA	Y
R13	RES, 33.0 ohm, 1%, 0.25W, 1206	Vishay-Dale	CRCW120633R0FKEA	Y
R14	RES, 10 ohm, 5%, 0.125W, 0805	Vishay-Dale	CRCW080510R0JNEA	Y
R15	RES, 10.0k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW060310K0FKEA	Y
R19	RES, 10 ohm, 5%, 0.1W, 0603	Vishay-Dale	CRCW060310R0JNEA	Y
R20	RES, 1.91k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW06031K91FKEA	Y
R21	RES, 2.70 ohm, 1%, 0.25W, 1206	Panasonic	ERJ-8RQF2R7V	Y
R22	RES, 10.7 ohm, 1%, 0.125W, 0805	Vishay-Dale	CRCW080510R7FKEA	Y
R23	RES, 324k ohm, 1%, 0.1W, 0603	Vishay-Dale	CRCW0603324KFKEA	Y
RT1	Current Limitor Inrush, 60Ohm, 20%, 5mm Raidal	Cantherm	MF72-060D5	Y
T1	FLBK TFR, 2.07 mH, Np=140T, Ns=26T, Na= 20T	Wurth Elektornik	750815040 REV 1	Y
TP9, TP10	Terminal, Turret, TH, Double	Keystone Electronics	1502-2	Y
VR1	Varistor 275V 55J 10mm DISC	EPCOS Inc	S10K275E2	Y

Transformer Design www.ti.com

9 Transformer Design

Mfg: Wurth Electronics, Part #: 750815040 Rev. 01

Parameter	Test Conditions	Value
D.C. Resistance (3-1)	20°C	1.91 Ω ± 10%
D.C. Resistance (6-4)	20°C	0.36 Ω ± 10%
D.C. Resistance (10-13)	20°C	0.12 Ω ± 10%
Inductance (3-1)	10 kHz, 100 mVAC	2.12 mH ± 10%
Inductance (6-4)	10 kHz, 100 mVAC	46.50 μH ± 10%
Inductance (10-13)	10 kHz, 100 mVAC	74.00 μH ± 10%
Leakage Inductance (3-1)	100 kHz, 100 mAVAC (tie 6+4, 10+13)	18.0 µH Тур., 22.60 µH Мах.
Dielectric (1-13)	tie (3+4), 4500 VAC, 1 second	4500 VAC, 1 minute
Turns Ratio	(3-1):(6-4)	7:1 ± 1%
Turns Ratio	(3-1):(10:13)	5.384:1 ± 1%

10 Demo Board Wiring Overview

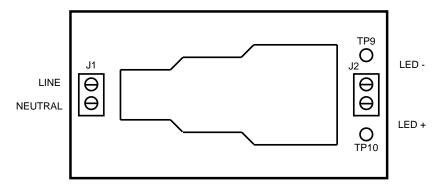


Figure 2. Wiring Connection Diagram

Test Point	Name	I/O	Description	
TP10, J2- 1	LED +	Output	LED Constant Current Supply Supplies voltage and constant-current to anode of LED string.	
TP9, J2-2	LED -	Output	LED Return Connection (not GND) Connects to cathode of LED string. Do NOT connect to GND.	
J1-1	LINE	Input	AC Line Voltage Connects directly to AC line of a 230VAC system.	
J1-2	NEUTRAL	Input	AC Neutral Connects directly to AC neutral of a 230VAC system.	

11 Demo Board Assembly

Figure 3. Top View

Demo Board Assembly www.ti.com

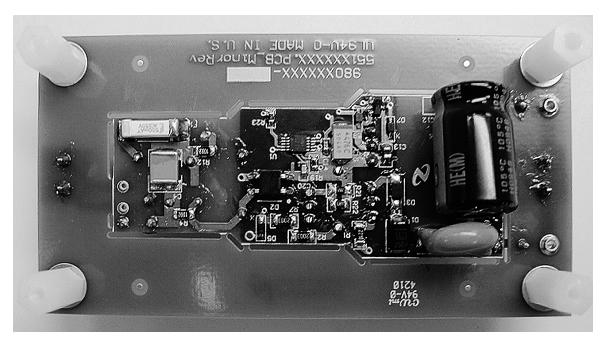
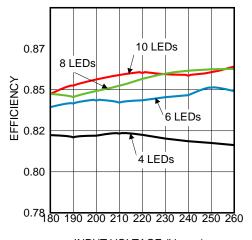


Figure 4. Bottom View



12 Typical Performance Characteristics

Original Circuit (6 LEDs operating at 350mA): R21 = 2.7Ω ; Modification A (10 LEDs operating at 375mA): R21 = 1.8Ω ; Modification B (8 LEDs operating at 350mA): R21 = 2.2Ω ; Modification C (4 LEDs operating at 315mA): R21 = 3.9Ω

The output power can be varied to achieve desired LED current by interpolating R21 values between the maximum of 3.9 Ω and minimum of 1.8 Ω

The maximum output voltage is clamped to 36 V. For operating LED string voltage > 36 V, replace D6 with suitable alternative

 $\label{eq:NPUT VOLTAGE (VRMS)}$ Figure 5. Efficiency vs. Line Voltage

Original Circuit

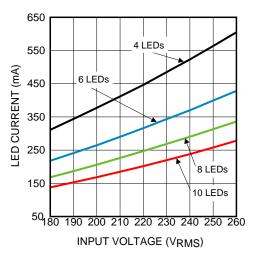


Figure 7. LED Current vs. Line Voltage Original Circuit

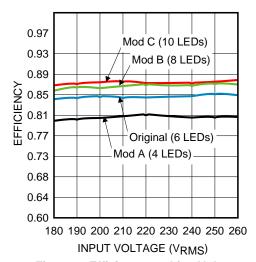


Figure 6. Efficiency vs. Line Voltage Modified Circuits

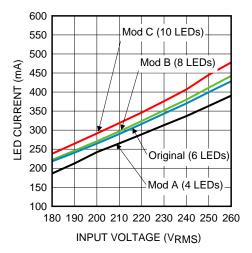


Figure 8. LED Current vs. Line Voltage Modified Circuits

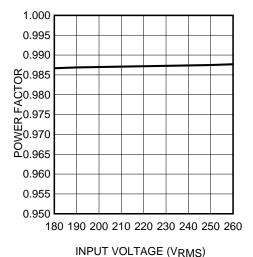


Figure 9. Power Factor vs. Line Voltage

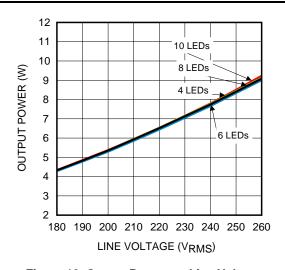


Figure 10. Output Power vs. Line Voltage Original Circuit

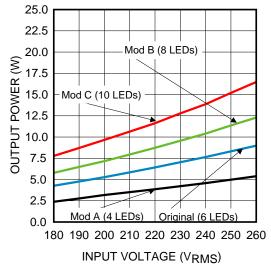


Figure 11. Output Power vs. Line Voltage Modified Circuits

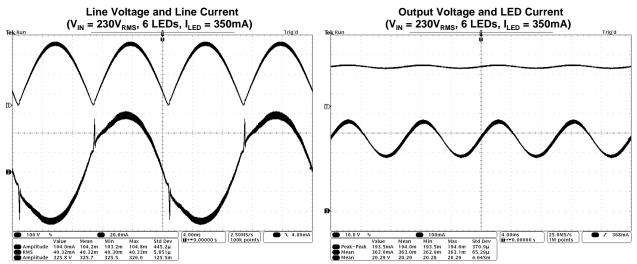


Figure 12. Ch1: Line Voltage (100 V/div); Ch3: Line Current (20 mA/div); Time (4 ms/div)

Figure 13. Ch1: Output Voltage (10 V/div); Ch3: LED Current (100 mA/div); Time (4 ms/div)

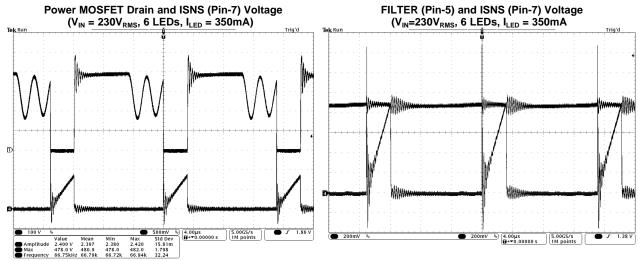


Figure 14. Ch1: Drain Voltage (100V/div); Ch4: ISNS Voltage (500 mV/div); Time (4 µs/div)

Figure 15. Ch1: FILTER Voltage (200 mV/div); ISNS Voltage (200 mV/div); Time (4 µs/div)

PCB Layout www.ti.com

13 PCB Layout

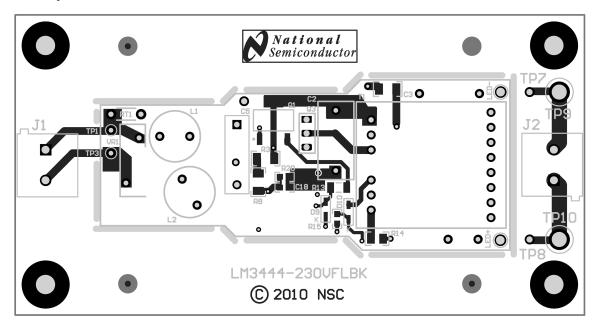


Figure 16. Top Layer

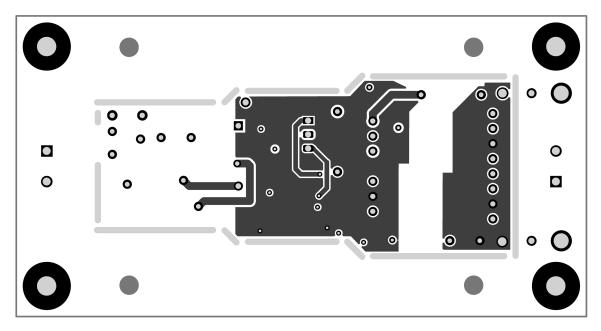


Figure 17. Top Middle Layer

www.ti.com Experimental Results

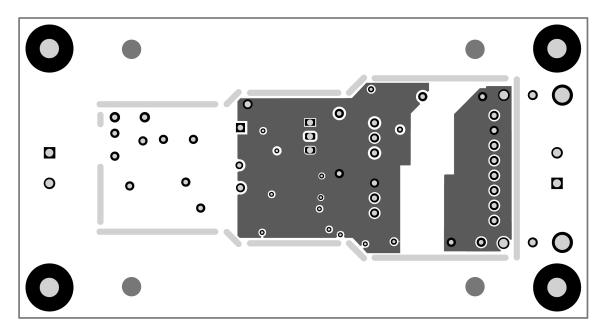


Figure 18. Bottom Middle Layer

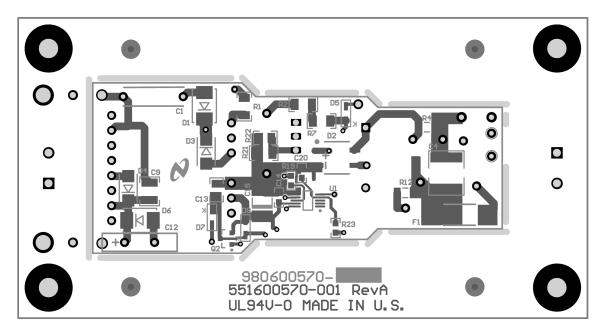


Figure 19. Bottom Layer

14 Experimental Results

The LED driver is designed to accurately emulate an incandescent light bulb and therefore behave as an emulated resistor. The resistor value is determined based on the LED string configuration and the desired output power. The circuit then operates in open-loop, with a fixed duty cycle based on a constant on-time and constant off-time that is set by selecting appropriate circuit components.

Experimental Results www.ti.com

14.1 Performance

In steady state, the LED string voltage is measured to be 21.55 V and the average LED current is measured as 347.5 mA. The 100 Hz current ripple flowing through the LED string was measured to be 194 mA_{pk-pk} at full load. The magnitude of the ripple is a function of the value of energy storage capacitors connected across the output. The ripple current can be reduced by increasing the value of energy storage capacitor or by increasing the LED string voltage.

The LED driver switching frequency is measured to be close to the specified 67 kHz. The circuit operates with a constant duty cycle of 0.21 and consumes near 9W of input power. The driver steady state performance for an LED string consisting of 6 series LEDs is summarized in the following table.

V _{IN} (V _{RMS})	I _{IN} (mA _{RMS})	P _{IN} (W)	V _{out} (V)	I _{LED} (mA)	P _{out} (W)	Efficiency (%)	Power Factor
180	30.65	5.42	20.59	219.40	4.52	83.3	0.9867
190	32.35	6.06	20.80	242.55	5.05	83.3	0.9869
200	34.21	6.75	21.00	267.37	5.62	83.2	0.9870
210	36.01	7.47	21.18	293.39	6.21	83.2	0.9871
220	37.74	8.20	21.37	320.18	6.84	83.3	0.9872
230	39.44	8.96	21.55	347.51	7.49	83.6	0.9873
240	41.22	9.76	21.72	375.52	8.15	83.6	0.9874
250	4329	10.62	21.90	404.82	8.86	83.5	0.9875
260	45.06	11.57	22.07	436.75	9.64	83.3	0.9877

Table 1. Measured Efficiency and Line Regulation (6 LEDS)

14.2 Current THD

The LED driver is able to achieve close to unity power factor (PF \sim 0.98) which meets Energy Star requirements. This design also exhibits low current harmonics as a percentage of the fundamental current (as shown in the following table) and therefore meets the requirements of the IEC 61000-3-2 Class-3 standard. Total harmonic distortion was measured to be less than 1.2%.

Harmonic	Class C Limit (mA)	Measured (mA)
2	0.78	0.022
3	11.61	0.125
5	3.90	0.11
7	2.73	0.105
9	1.95	0.11
11	1.73	0.15
13	1.73	0.093
15	1.73	0.071
17	1.73	0.154
19	1.73	0.165
21	1.73	0.065
23	1.73	0.065
25	1.73	0.08
27	1.73	0.084
29	1.73	0.065
31	1.73	0.07

Table 2. Measured Harmonic Current

15 Electromagnetic Interference (EMI)

The EMI input filter of this evaluation board is configured as shown in the following circuit diagram.

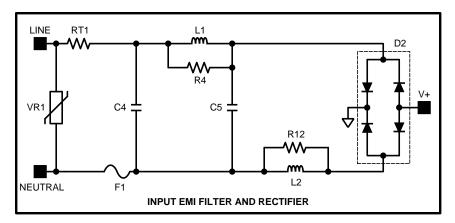
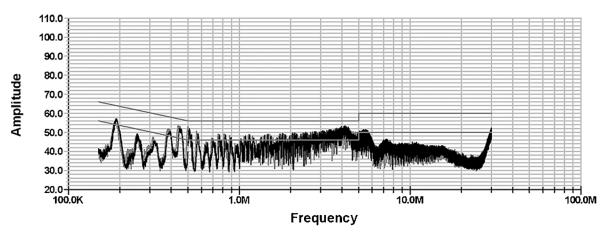



Figure 20. Input EMI Filter and Rectifier Circuit

In order to get a quick estimate of the EMI filter performance, only the PEAK conductive EMI scan was measured and the data was compared to the Class B conducted EMI limits published in FCC – 47, section 15.

CISPR 15 compliance pending

Figure 21. Peak Conductive EMI scan per CISPR-22, Class B Limits

Thermal Analysis www.ti.com

16 Thermal Analysis

The board temperature was measured using an IR camera (HIS-3000, Wahl) while running under the following conditions:

 $V_{\text{IN}} = 230 \ V_{\text{RMS}}$

 $I_{LED} = 348 \text{ mA}$

of LEDs = 6

 $P_{OUT} = 7.2 \text{ W}$

The results are shown in the following figures.

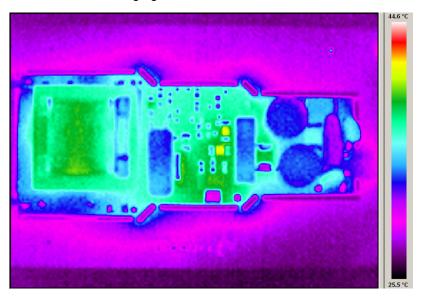


Figure 22. Top Side Thermal Scan

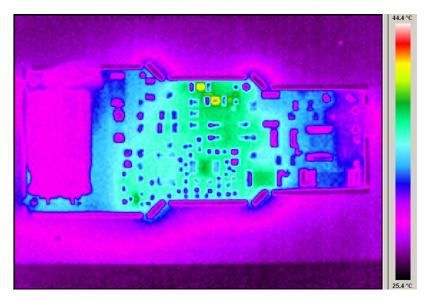


Figure 23. Bottom Side Thermal Scan

17 Circuit Analysis and Explanations

17.1 Injecting Line Voltage Into Filter (Achieving PFC > 0.98)

If a small portion (750mV to 1.00V) of line voltage is injected at FILTER of the LM3444, the circuit is essentially turned into a constant power flyback as shown in Figure 24.

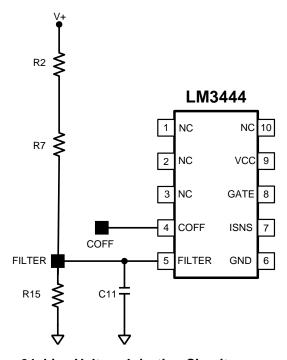


Figure 24. Line Voltage Injection Circuit

The LM3444 works as a constant off-time controller normally, but by injecting the 1.0V rectified AC voltage into the FILTER pin, the on-time can be made to be constant. With a DCM Flyback, Δi needs to increase as the input voltage line increases. Therefore_{Pk} a constant on-time (since inductor L is constant) can be obtained.

By using the line voltage injection technique, the FILTER pin has the voltage wave shape shown in Figure 25 on it. Voltage at V_{FILTER} peak should be kept below 1.25V. At 1.25V current limit is tripped. C11 is small enough not to distort the AC signal but adds a little filtering.

Although the on-time is probably never truly constant, it can be observed in Figure 26 how (by adding the rectified voltage) the on-time is adjusted.

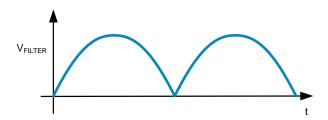


Figure 25. FILTER Waveform

For this evaluation board, the following resistor values are used:

 $R3 = R8 = 309 \text{ k}\Omega$

 $R20 = 1.91 \text{ k}\Omega$

Therefore the voltages observed on the FILTER pin will be as follows for listed input voltages:

For VIN = $180V_{RMS}$, $V_{FILTER, Pk} = 0.78V$

For VIN = $230V_{RMS}$, $V_{FILTER. Pk} = 1.00V$

For VIN = $265V_{RMS}$, $V_{FILTER, Pk} = 1.15V$

Using this technique, a power factor greater than 0.98 can be achieved without additional passive active power factor control (PFC) circuitry.

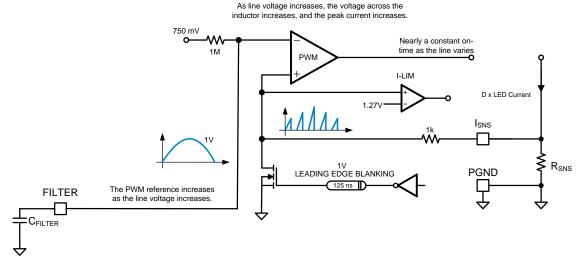


Figure 26. Typical Operation of FILTER Pin

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>