# Using the LP8860-Q1EVM Evaluation Module

# **User's Guide**



Literature Number: SNVU382A April 2014–Revised June 2014



### **Contents**

| Prefa      | ice     |                                                                                                 | 5                |
|------------|---------|-------------------------------------------------------------------------------------------------|------------------|
| 1          | Intro   | duction                                                                                         | 6                |
| 1.1        | Trade   | emarks                                                                                          | 6                |
| 2          | Desc    | ription of the LP8860-Q1                                                                        | 7                |
|            | 2.1     | Features                                                                                        | . 7              |
|            | 2.2     | Applications                                                                                    | . 7              |
|            | 2.3     | Typical Applications                                                                            | . <mark>8</mark> |
| 3          | Hard    | ware Setup                                                                                      | 12               |
| 4          | Boar    | d Layout                                                                                        | 13               |
| 5          | Boar    | d Stackup                                                                                       | 15               |
| 6          | Powe    | er Sequences                                                                                    | 16               |
| •          | 61      | Start-up Sequence                                                                               | 16               |
|            | 6.2     | Shutdown Sequence                                                                               | 16               |
| 7          | Fvalı   | lation Board Schematic                                                                          | 17               |
| ,<br>,     |         | f Mataviala                                                                                     | 40               |
| 8          |         |                                                                                                 | 19               |
| 9          | Evalu   | ation Software                                                                                  | 21               |
|            | 9.1     | Setup                                                                                           | 21               |
|            | 9.2     | Usage                                                                                           | 21               |
|            |         | 9.2.1 Pin Control Tab                                                                           | 23               |
|            |         | 9.2.2 Brightness Control Tab                                                                    | 24               |
|            |         | 9.2.3 Faults and Status Tab                                                                     | 25               |
|            |         | 9.2.4 Boost Tab                                                                                 | 26               |
|            |         | 9.2.5 Fault and Adaptive Voltage Control Tab                                                    | 27               |
|            |         | 9.2.6 LED Drivers Tab                                                                           | 28               |
|            |         | 9.2.7 Temperature Tab                                                                           | 31               |
|            |         | 9.2.8 EEPROM Map Tab                                                                            | 32               |
|            |         | 9.2.9 History Tab                                                                               | 33               |
| Α          | Virtu   | al COM Port Configuration                                                                       | 34               |
| в          | Virtu   | al COM Port Communication                                                                       | 37               |
| С          | LED     | Load Board                                                                                      | 38               |
| D          | Quic    | k Start Guide                                                                                   | 41               |
| -          | D.1     | EVM Board Default Jumper and Cable Positions                                                    | 41               |
|            | D.2     | First Step: Light up LEDs                                                                       | 46               |
|            | D.3     | Changing EEPROM Parameters                                                                      | 48               |
|            | D.4     | Recovering Original FEPROM Parameters                                                           | 49               |
|            | D.5     | Changing Brightness Control from I <sup>2</sup> C/SPI Register Control to PWM Input Pin Control | 51               |
|            | D.6     | Smooth Brightness Change with Slope Control                                                     | 52               |
|            | D.7     | Changing Boost Switching Frequency to 2.2 MHz.                                                  | 53               |
|            | D.8     | Cluster Mode 4 LED Strings with Independent Brightness Control                                  | 55               |
|            | D.9     | Using EVM without MCU (MSP430) Standalone Mode                                                  | 57               |
| <b>.</b> . | D.3     |                                                                                                 | 57               |
| Kevis      | sion Hi | story                                                                                           | 59               |



### List of Figures

| 2-1.  | Typical Application, Simple PWM Control, VDD = 3.3 V, Charge Pump On, 4 Strings            | . 8 |
|-------|--------------------------------------------------------------------------------------------|-----|
| 2-2.  | Typical Application, SPI Control, VDD = 5 V, Charge Pump Off, 2 Strings                    | . 9 |
| 2-3.  | Typical Application, I <sup>2</sup> C Control, VDD = 3.3 V, Charge Pump On, 4 Strings      | 10  |
| 2-4.  | Typical Application, without Serial Interface, VDD = 5 V, Charge Pump Off, 3 Strings       | 11  |
| 3-1.  | Evaluation Board Connectors and Setup                                                      | 12  |
| 4-1.  | Top Layer                                                                                  | 13  |
| 4-2.  | Bottom Layer (GND)                                                                         | 13  |
| 4-3.  | PCB Layout Example                                                                         | 14  |
| 5-1.  | Evaluation Board Stackup                                                                   | 15  |
| 7-1.  | Evaluation Board Schematic, Microcontroller and Related Components                         | 17  |
| 7-2.  | Evaluation Board Schematic, LP8860-Q1 and Main Components                                  | 18  |
| 9-1.  | Main Window Structure                                                                      | 22  |
| 9-2.  | Main Window and Pin Control Tab                                                            | 23  |
| 9-3.  | Brightness Control Tab                                                                     | 24  |
| 9-4.  | Fault and Status Tab                                                                       | 25  |
| 9-5.  | Boost Controls Tab                                                                         | 26  |
| 9-6.  | Interactive Boost Diagram Window                                                           | 26  |
| 9-7.  | Fault and Adaptive Voltage Control Tab                                                     | 27  |
| 9-8.  | LED Fault And Adaptive Voltage Control Functionality Diagram                               | 27  |
| 9-9.  | LED Driver Controls                                                                        | 28  |
| 9-10. | LED Driver Diagram Window                                                                  | 28  |
| 9-11. | PLL Diagram Window                                                                         | 29  |
| 9-12. | PLL Calculator for External VSYNC (Steps Show Order for Applying Commands)                 | 29  |
| 9-13. | PLL Calculator for Internal Oscillator                                                     | 30  |
| 9-14. | Temperature Sensors Control                                                                | 31  |
| 9-15. | ЕЕРROM Мар                                                                                 | 32  |
| 9-16. | History Tab                                                                                | 33  |
| A-1.  | Device Manager View. Select the Virtual COM Port                                           | 34  |
| A-2.  | Open Properties by Clicking Right Mouse Button on Virtual COM Port                         | 35  |
| A-3.  | Select Port Settings from the Virtual COM Port Properties                                  | 35  |
| A-4.  | Select Advanced from Virtual COM Port Properties and Select COM Port Number (9 or smaller) | 36  |
| C-1.  | LED Load Board - Top Side                                                                  | 38  |
| C-2.  | LED Load Board - Bottom View                                                               | 38  |
| C-3.  | LED Load Board - Schematic Diagram                                                         | 39  |
| C-4.  | Forward Voltage for Cree Xlamp ML-B LEDs                                                   | 40  |
| D-1.  | Jumper Positions                                                                           | 43  |
| D-2.  | CPUMP Jumper                                                                               | 44  |
| D-3.  | Interface Jumpers                                                                          | 58  |





# **Read This First**

#### **About this Manual**

This user's guide describes the module used to evaluate characteristics, operation, and use of the LP8860-Q1 low EMI, high-performance 4-channel LED driver for automotive lighting. This document includes a schematic diagram, PCB layout, and bill of materials (BOM). Evaluation software (SW) usage is also described.

#### How to Use This Manual

This document contains the following chapters:

- Chapter 1: Introduction
- Chapter 2: Description of the LP8860-Q1
- Chapter 3: Hardware Setup
- Chapter 4: Board Layout
- Chapter 5: Board Stackup
- Chapter 6: Power Sequences
- Chapter 7: Evaluation Board Schematic
- Chapter 8: Bill of Materials
- Chapter 9: Evaluation Software
- Appendix A: Virtual COM Port Configuration
- Appendix B: Virtual COM Port Communication
- Appendix C: LED Load Board
- Appendix D: Quick Start Guide

#### **Related Documentation from Texas Instruments**

#### LP8860-Q1 data sheet

#### FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user, at their own expense, will be required to take whatever measures may be required to correct this interference.

#### If You Need Assistance

Contact your local TI sales representative.



### Introduction

The Texas Instruments LP8860-Q1EVM evaluation module (EVM) helps designers evaluate the operation and performance of the LP8860-Q1 device. The LP8860-Q1EVM uses the LP8860-Q1 to drive up to 4 LED strings for LCD backlighting with high efficiency. Information about output voltage and current ratings of the LP8860-Q1 can also be found in the device datasheet.

In order to facilitate ease of testing and evaluation of this circuit, the EVM contains a TI MSP430 microprocessor to provide easy communication via USB. Power supply connection for the VIN, VDD, and test points for each signal can be found on the evaluation board. Windows<sup>®</sup> SW is used to control I<sup>2</sup>C/SPI<sup>™</sup> registers of the device. A separate LED board can be used as a load; it is also possible to connect LCD panel to the output connectors.

For evaluation purposes, the EVM has been tested over a 3-V to 48-V input range. This voltage range is within the recommended operating range for input voltage of the LP8860-Q1. Users are cautioned to evaluate their specific operating conditions and choose components with the appropriate voltage ratings before designing this support circuitry into a final product.

#### 1.1 Trademarks

Windows is a registered trademark of Microsoft Corporation. SPI is a trademark of Motorola. All other trademarks are the property of their respective owners.



# Description of the LP8860-Q1

The LP8860-Q1 is an automotive high-efficiency LED driver with integrated boost controller. It has 4 high-precision current sinks that can be controlled by a PWM input signal, an SPI/I<sup>2</sup>C master, or both.

The boost converter has adaptive output voltage control based on the LED current sink headroom voltages. This feature minimizes the power consumption by adjusting the voltage to the lowest sufficient level in all conditions. A boost controller supports spread spectrum for switching frequency and an external synchronization with a dedicated pin. The high switching frequency allows the LP8860-Q1 to avoid disturbance for AM radio band.

The LP8860-Q1 supports built-in Hybrid PWM and Current Dimming which reduces EMI, extends the LED lifetime, and increases the total optical efficiency. Phase-shift PWM allows reduced audible noise and smaller boost output capacitors.

The LP8860-Q1 can drive an external p-FET to disconnect the input supply from the system in the event of a fault and reduce inrush current and standby power consumption.

The input voltage range for LP8860-Q1 is 3 V to 48 V to support car stop/start conditions. The device integrates extensive safety and protection features.

#### 2.1 Features

- Four High-Precision Current Sinks
  - Current Matching 0.5% typ
  - Output Current up to 150 mA/Channel
  - Individual LED String Current Adjustment
  - Dimming Ratio >13000:1 with External PWM Brightness Control
  - 16-bit dimming control with SPI or I<sup>2</sup>C Control
  - Two Modes: Display Mode and Cluster Mode with Individual Control
- Hybrid PWM and Current Dimming for Higher LED Drive Optical Efficiency
- Synchronization for LED PWM
- Boost Controller With Programmable Switching Frequency 100 kHz to 2.2 MHz and Spread Spectrum Option
- Boost Synchronization Input
- Input Voltage Operating Range 3 V to 48 V
- Power Line FET Control for Inrush Current Protection and Standby Energy Saving
- Automatic LED Current Reduction with External Temperature Sensor
- Extensive Safety and Fault Tolerance Features
- SPI or I<sup>2</sup>C Interface

#### 2.2 Applications

• Automotive Infotainment, Instrument Cluster and Backlighting Systems



### 2.3 Typical Applications



Figure 2-1. Typical Application, Simple PWM Control, VDD = 3.3 V, Charge Pump On, 4 Strings



Typical Applications



Figure 2-2. Typical Application, SPI Control, VDD = 5 V, Charge Pump Off, 2 Strings

![](_page_9_Picture_0.jpeg)

#### Typical Applications

www.ti.com

![](_page_9_Figure_3.jpeg)

Figure 2-3. Typical Application, I<sup>2</sup>C Control, VDD = 3.3 V, Charge Pump On, 4 Strings

![](_page_10_Picture_0.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_10_Figure_4.jpeg)

![](_page_11_Picture_0.jpeg)

# Hardware Setup

![](_page_11_Figure_3.jpeg)

Figure 3-1 shows connectors and main components on the board.

Figure 3-1. Evaluation Board Connectors and Setup

Note. If charge pump is not in use, J10 "CPUMP" should be shorted.

![](_page_12_Picture_0.jpeg)

Chapter 4 SNVU382A–April 2014–Revised June 2014

## **Board Layout**

![](_page_12_Figure_3.jpeg)

Figure 4-1. Top Layer

![](_page_12_Figure_5.jpeg)

Figure 4-2. Bottom Layer (GND)

![](_page_13_Picture_0.jpeg)

![](_page_13_Figure_2.jpeg)

Figure 4-3. PCB Layout Example

See the LP8860-Q1 datasheet for PCB layout guidelines.

![](_page_14_Picture_0.jpeg)

Chapter 5 SNVU382A – April 2014 – Revised June 2014

# **Board Stackup**

![](_page_14_Figure_3.jpeg)

Figure 5-1. Evaluation Board Stackup

#### Details:

- 2-layer board FR4
- Top layer copper 35 µm
- Core 1.6 mm
- Bottom Layer copper 35 µm
- Surface finish immersion gold

![](_page_15_Picture_0.jpeg)

### **Power Sequences**

The LP8860-Q1 has a dual function VDDIO/EN pin. It acts as enable for the chip as well as supply/reference voltage for IO logic. Device starts when VDD voltage is present and above the VDD\_UVLO voltage level and the VDDIO/EN voltage is set above threshold voltage (1.2 V).

#### 6.1 Start-up Sequence

The backlight is started either by setting PWM input high or by writing not zero brightness value to registers, depending on the brightness control mode and phase shift configuration. See the LP8860-Q1 datasheet for details.

#### 6.2 Shutdown Sequence

The backlight is shut down either with setting PWM input low or by writing zero brightness value to registers, depending on the brightness control mode and phase shift configuration. See the LP8860-Q1 datasheet for details.

Chapter 7 SNVU382A–April 2014–Revised June 2014

# **Evaluation Board Schematic**

![](_page_16_Picture_2.jpeg)

![](_page_16_Figure_3.jpeg)

Figure 7-1. Evaluation Board Schematic, Microcontroller and Related Components

Texas Instruments

SNVU382A-April 2014-Revised June 2014 Submit Documentation Feedback

![](_page_17_Figure_0.jpeg)

![](_page_17_Figure_2.jpeg)

Figure 7-2. Evaluation Board Schematic, LP8860-Q1 and Main Components

![](_page_18_Picture_0.jpeg)

### **Bill of Materials**

The following is the bill of materials for the LP8860-Q1EVM:

| Designator                 | Description                                                   | Manufacturer             | Part Number          | Qty |
|----------------------------|---------------------------------------------------------------|--------------------------|----------------------|-----|
| C1, C10, C12, C14,<br>C19  | CAP, CERM, 10uF, 16V, +/-20%,<br>X5R, 0603                    | Taiyo Yuden              | EMK107BBJ106MA-T     | 5   |
| C2, C3                     | CAP, AL, 33uF, 50V, +/-20%, 40<br>mohm, SMD                   | Panasonic                | EEHZC1H330XP         | 2   |
| C4, C5, C6, C7, C9         | CAP, CERM, 10uF, 50V, +/-10%,<br>X5R, 1206_190                | TDK                      | CGA5L3X5R1H106K160AB | 5   |
| C8                         | CAP, CERM, 2200pF, 50V, +/-10%,<br>X7R, 0603                  | Kemet                    | C0603C222K5RACTU     | 1   |
| C11, C15                   | CAP, CERM, 10pF, 50V, +/-5%,<br>C0G/NP0, 0603                 | AVX                      | 06035A100JAT2A       | 2   |
| C13                        | CAP, CERM, 0.01uF, 50V, +/-5%,<br>X7R, 0603                   | Kemet                    | C0603C103J5RACTU     | 1   |
| C16                        | CAP, CERM, 1000pF, 100V, +/-10%,<br>X7R, 0603                 | AVX                      | 06031C102KAT2A       | 1   |
| C17                        | CAP, CERM, 10uF, 16V, +/-20%,<br>X5R, 0603                    | Taiyo Yuden              | EMK107BBJ106MA-T     | 1   |
| C18                        | CAP, CERM, 47pF, 50V, +/-5%,<br>C0G/NP0, 0603                 | Kemet                    | C0603C470J5GACTU     | 1   |
| C20, C24, C27, C28,<br>C29 | CAP, CERM, 0.1uF, 16V, +/-20%,<br>X7R, 0603                   | Kemet                    | C0603C104M4RACTU     | 5   |
| C21, C22, C23, C26         | CAP, CERM, 1uF, 10V, +/-10%, X5R, 0603                        | Kemet                    | C0603C105K8PACTU     | 4   |
| C25                        | CAP, CERM, 0.22uF, 16V, +/-10%,<br>X7R, 0603                  | Kemet                    | C0603C224K4RACTU     | 1   |
| C30, C31                   | CAP, CERM, 22pF, 50V, +/-5%,<br>C0G/NP0, 0603                 | Kemet                    | C0603C220J5GACTU     | 2   |
| C32                        | CAP, CERM, 1.2uF, 6.3V, +/-10%,<br>X5R, 0603                  | Kemet                    | C0603C125K9PACTU     | 1   |
| C33                        | CAP, CERM, 0.1uF, 25V, +/-5%,<br>X7R, 0603                    | AVX                      | 06033C104JAT2A       | 1   |
| C34, C35, C36, C37         | CAP, CERM, 2200pF, 50V, +/-10%,<br>X7R, 0603                  | Kemet                    | C0603C222K5RACTU     | 4   |
| D1                         | Diode, Schottky, 100V, 5A, TO-277A                            | Vishay-<br>Semiconductor | SS5P10-M3/86A        | 1   |
| D2                         | LED, Green, SMD                                               | Lite-On                  | LTST-C190GKT         | 1   |
| D3                         | LED, Orange, SMD                                              | Lite-On                  | LTST-C190KFKT        | 1   |
| D4                         | Diode, Schottky, 90V, 1A, SMA                                 | Diodes Inc.              | B190-13-F            | 1   |
| J1, J20                    | Header, TH, 100mil, 3x1, Gold plated, 230 mil above insulator | Samtec                   | TSW-103-07-G-S       | 2   |
| J2, J6                     | Conn Term Block, 2POS, 3.81mm,<br>TH                          | Phoenix Contact          | 1727010              | 2   |

![](_page_19_Picture_0.jpeg)

| J3, J7, J10, J19         Header, TH, 100mil, 2x1, Gold         Samtec         TSW-102-07-G-S         4           J4         Conn Ropt Mill USB2 0 Type B<br>SPOS SMD         TE Connectivity         1734035-2         1           J5         Header, TH, 100mil, 4x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-104-07-G-S         1           J8         Header, TH, 100mil, 4x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-106-07-G-S         1           J9         Header, TH, 100mil, 6x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-106-07-G-S         1           J1         Header, TH, 100mil, 6x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-101-07-G-D         1           J11         Header, TH, 100mil, 2x2, Gold         Samtec         TSW-101-07-G-D         9           J12, J13, J14, J15,<br>L16, J17, J21, J22, J23         CONN HEADER 1POS, 100° SNGL         Samtec         TSW-101-07-G-D         9           J18         Header, TH, 100mil, 2x2, Gold         Samtec         TSW-101-07-G-D         9           J14         Inductor, Shioldad, Powdered tron,<br>P224, S01         Vishay-Dale         HILP5050FDER220M5A         1           J18         Rest, 000 hm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320R0JNEA         1           Q2         MOSFE                                                                                                                                                                   | Designator                                     | Description                                                                             | Manufacturer                   | Part Number         | Qty |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------|---------------------|-----|
| J4         Conn Rept Mini USB2.0 Type B<br>SPOS SMD         TE Connectivity         1734035-2         1           J5         Header, TH, 100mil, 4YI, Gold<br>plated, 230 mil above insulator         Samtec         TSW-104-07-G-S         1           J9         Header, TH, 100mil, 6X1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-104-07-G-S         1           J9         Header, TH, 100mil, 6X1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-110-07-G-D         1           J11         Header, TH, 100mil, 102, Gold<br>plated, 230 mil above insulator         Samtec         TSW-110-07-G-D         1           J14         Header, TH, 100mil, 222, Gold<br>plated, 230 mil above insulator         Samtec         TSW-101-17-T-S         1           J18         Plated, 230 mil above insulator<br>powerPAK, SO-8L         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powderel from,<br>220 mil above insulator         Vishay-Dale         HLP5050FDE220M5A         1           Q2         MOSFET, P-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N065H2430         1           R1         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310RJNEA         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         1 <t< td=""><td>J3, J7, J10, J19</td><td>Header, TH, 100mil, 2x1, Gold plated, 230 mil above insulator</td><td>Samtec</td><td>TSW-102-07-G-S</td><td>4</td></t<> | J3, J7, J10, J19                               | Header, TH, 100mil, 2x1, Gold plated, 230 mil above insulator                           | Samtec                         | TSW-102-07-G-S      | 4   |
| J5         Header, TH, 100mil, 4x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-104-07-G-S         1           J8         Header, 100mil, 3x2, Tin, TH         Sullins Connector<br>Solutions         PEC03DAAN         1           J9         Header, TH, 100mil, 6x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-104-07-G-S         1           J1         Header, TH, 100mil, 1024, Gold<br>plated, 230 mil above insulator         Samtec         TSW-101-07-G-D         1           J14         Header, TH, 100mil, 2x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-101-07-G-D         9           J18         Header, TH, 100mil, 2x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powdered tron,<br>220 MOSFET, P-CH. 40V, 230A,<br>PowerPAK, SO-BL         Vishay-Dale         IHLP5050FDER220M5A         1           Q2         MOSFET, P-CH. 40V, 23A,<br>PowerPAK, SO-BL         Vishay-Dale         CRCW0603100RJNEA         1           R1         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320KUNEA         1           R2         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320KUNEA         1           R3         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-F2-R025ELF         1                                                                                                                                                  | J4                                             | Conn Rcpt Mini USB2.0 Type B<br>5POS SMD                                                | TE Connectivity                | 1734035-2           | 1   |
| J8         Header, 100mil, 3x2, Tin, TH         Sullins Connector<br>Solutions         PEC03DAAN         1           J9         Header, TH, 100mil, 6x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-106-07-G-S         1           J11         Header, TH, 100mil, 16x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-110-07-G-D         1           J12, J13, J14, J15,<br>J16, J17, J21, J22, J23         CONN HEADER, POS, 100° SNGL<br>TN, TH         Samtec         TSW-101-07-G-D         9           J18         Plated, 230 mil above insulator         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powdered Iron,<br>22WH, 5-5A, 00313 ohn, SMD         Vishay-Dale         IHLP5050FDER220MSA         1           Q2         MOSFET, P-CH, 60V, 30A,<br>PowerPAK, SO-8L         Vishay-Siliconix         SQJ461EP         1           Q2         MOSFET, N-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           R1         RES, 002 ohm, 1%, 3W, 2512         Bourns         CRA2612-FZ-R020ELF         1           R4         RES, 202 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R5         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R6, R7         RES, 27 ohm, 5%,                                                                                                                                                                    | J5                                             | Header, TH, 100mil, 4x1, Gold plated, 230 mil above insulator                           | Samtec                         | TSW-104-07-G-S      | 1   |
| J9         Header. TH, 100mil, 6x1, Gold<br>plated, 230 mil above insulator         Samtec         TSW-106-07-G-S         1           J11         Header, TH, 100mil, 16x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-110-07-G-D         1           J12, J13, J14, J15,<br>J16, J17, J21, J22, J23         CONN HEADER 1POS, 100° SNGL<br>TN, TH         Samtec         TSW-101-17-TS         1           J18         Header, TH, 100mil, 2x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powdered Iron,<br>22041, 5.5A, 0.0313 ohm, SMD         Vishay-Dale         IHLP5050FDER220M5A         1           Q2         MOSFET, P-CH, 60V, 26A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           R1         RES, 100, hm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06032R-0747KL         1           R2         R25, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-F2-R02ELF         1           R4         RES, 0.02 hm, 1%, 3W, 2512         Bourns         CRA2512-F2-R02ELF         1           R6, R7         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06037R0JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06037R-071KSL         3           R11, R14                                                                                                                                                                     | J8                                             | Header, 100mil, 3x2, Tin, TH                                                            | Sullins Connector<br>Solutions | PEC03DAAN           | 1   |
| J11         Header, TH, 100mil, 102, Gold<br>plated, 230 mil above insulator         Samtec         TSW-110-07-G-D         1           J12, J13, J14, J15,<br>J16, J17, J21, J22, J23         CNN HEADER 1POS. 100° SNGL<br>TIN, TH         Samtec         TSW-101-17-T-S         1           J18         Header, TH, 100mil, 2x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powdered Iron,<br>22UH, 55A, 0303 ohm, SMD         Vishay-Dale         IHLP6050FDER220M5A         1           Q1         MOSFET, P-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           Q2         MOSFET, N-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           R1         RES, 47k ohm, 5%, 0.1W, 0603         Yageo America         RC60030R,0747KL         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06032N0,NIEA         1           R4         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0,INEA         2           R6, R7         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0,JIEA         2           R6, R7         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0,JIEA         2           R11, R14         RES, 24                                                                                                                                                                         | J9                                             | Header, TH, 100mil, 6x1, Gold plated, 230 mil above insulator                           | Samtec                         | TSW-106-07-G-S      | 1   |
| J12, J13, J14, J15,<br>J16, J17, J21, J22, J23         CONN HEADER 1POS 100' SNGL<br>TIN, TH         Samtec         TSW-101-17-T-S         1           J18         Header, TH, 100mi, 2x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powdered Iron,<br>220H, 5.5A, 0.0313 ohm, SMD         Vishay-Dale         IHLP5050FDER220M5A         1           Q1         MOSFET, P-CH, 60V, 30A,<br>PowerPAK, SO-8L         Vishay-Siliconix         SQJ461EP         1           Q2         MOSFET, N-CH, 60V, 35A, DPAK         Infineon Technologies         IPD2SN06S4L-30         1           R1         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R4         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327K0JNEA         2           R6, R7         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327K0JNEA         2           R8, R12         RES, 10.0hm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603300RJNEA         2           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603300RJNEA         2           R11, R14         RES, 10.Mog ohm, 5%, 0.1W, 060                                                                                                                                                                         | J11                                            | Header, TH, 100mil, 10x2, Gold plated, 230 mil above insulator                          | Samtec                         | TSW-110-07-G-D      | 1   |
| J18         Header TH, 100mil, 2x2, Gold<br>plated, 230 mil above insulator         Samtec         TSW-102-07-G-D         9           L1         Inductor, Shielded, Powdered Iron,<br>22UH, 5,5A, 0.0313 ohm, SMD         Vishay-Dale         IHLP5050FDER220M5A         1           Q1         MOSFET, P.CH, 60V, 30A,<br>PowerPAK, SO-8L         Vishay-Siliconix         SQJ461EP         1           Q2         MOSFET, N-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N0654L-30         1           R1         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R4         RES, 20k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R6, R7         RES, 0.025 ohm, 1%, 3W, 2512         Bourns         CR212-FZ-R02ELF         1           R6, R7         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R8, R12         RES, 1.00 Mg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R9, R16, R17         RES, 1.00 Mg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R11         RES, 1.00 Mg ohm, 5%, 0.1W, 0603         Vishay-Dale </td <td>J12, J13, J14, J15,<br/>J16, J17, J21, J22, J23</td> <td>CONN HEADER 1POS .100" SNGL<br/>TIN, TH</td> <td>Samtec</td> <td>TSW-101-17-T-S</td> <td>1</td>                        | J12, J13, J14, J15,<br>J16, J17, J21, J22, J23 | CONN HEADER 1POS .100" SNGL<br>TIN, TH                                                  | Samtec                         | TSW-101-17-T-S      | 1   |
| L1         Inductor, Shielded, Powdered Iron,<br>22uH, 5.5A, 0.0313 ohm, SMD         Vishay-Dale         IHLP5050FDER220M5A         1           Q1         MOSFET, PCH, -60V, 30A,<br>PowerPAK, SO-8L         Vishay-Siliconix         SQJ461EP         1           Q2         MOSFET, N-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           R1         RES, 47K ohm, 5%, 0.1W, 0603         Yageo America         RC0003JR-0747KL         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R4         RES, 20k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R5         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-F2-R020ELF         1           R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R8, R12         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         2           R13         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA <td>J18</td> <td>Header, TH, 100mil, 2x2, Gold plated, 230 mil above insulator</td> <td>Samtec</td> <td>TSW-102-07-G-D</td> <td>9</td>                                                                   | J18                                            | Header, TH, 100mil, 2x2, Gold plated, 230 mil above insulator                           | Samtec                         | TSW-102-07-G-D      | 9   |
| Q1         MOSFET, P-CH, =00V, 30A,<br>PowerPAK_SO-8L         Vishay-Siliconix         SQJ461EP         1           Q2         MOSFET, N-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           R1         RES, 100 ohm, 5%, 0.1W, 0603         Yageo America         RC0603JR-0747KL         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R3         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R02ELF         1           R4         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R02ELF         1           R6         RES, 0.02 ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         2           R5         RES, 0.02 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         2           R6, R7         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         2           R8, R12         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R13         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1                                                                                                                                                                                                                                          | L1                                             | Inductor, Shielded, Powdered Iron,<br>22uH, 5.5A, 0.0313 ohm, SMD                       | Vishay-Dale                    | IHLP5050FDER220M5A  | 1   |
| Q2         MOSFET, N-CH, 60V, 25A, DPAK         Infineon Technologies         IPD25N06S4L-30         1           R1         RES, 47k ohm, 5%, 0.1W, 0603         Yageo America         RC0603JR-0747KL         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R3         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R4         RES, 200 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R5         RES, 202 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R8, R12         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 20 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R13         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 25.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1                                                                                                                                                                                                                                           | Q1                                             | MOSFET, P-CH, -60V, 30A,<br>PowerPAK_SO-8L                                              | Vishay-Siliconix               | SQJ461EP            | 1   |
| R1         RES, 47k ohm, 5%, 0.1W, 0603         Yageo America         RC0603JR-0747KL         1           R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R3         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R4         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R4         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R5         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R6, R7         RES, 1.00 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R8, R12         RES, 1.50k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         2           R13         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R15         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R14         RES, 25.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R20                                                                                                                                                                                                                                                     | Q2                                             | MOSFET, N-CH, 60V, 25A, DPAK                                                            | Infineon Technologies          | IPD25N06S4L-30      | 1   |
| R2         RES, 100 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100RJNEA         1           R3         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R4         RES, 20k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R5         RES, 0.025 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R025ELF         1           R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R8, R12         RES, 1.0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031R00JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603000020EA         1           R11, R14         RES, 0.0hm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R15         RES, 1.0k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100K0JNEA         1           R18         RES, 10.0 hm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R19         RES, 10.0 kohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031FK0JXEA         1                                                                                                                                                                                                                                             | R1                                             | RES, 47k ohm, 5%, 0.1W, 0603                                                            | Yageo America                  | RC0603JR-0747KL     | 1   |
| R3         RES, 0.02 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R020ELF         1           R4         RES, 20k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R5         RES, 0.025 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R025ELF         1           R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R8, R12         RES, 1.50k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031R0JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06031M0JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M0JNEA         2           R13         RES, 0.60m, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M0JNEA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M6JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M6JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M6JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW0603FR-0725K5L         1                                                                                                                                                                                                                                                   | R2                                             | RES, 100 ohm, 5%, 0.1W, 0603                                                            | Vishay-Dale                    | CRCW0603100RJNEA    | 1   |
| R4         RES, 20k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060320K0JNEA         1           R5         RES, 0.025 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R025ELF         1           R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R8, R12         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         1           R10         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310M0JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310M0JNEA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310M0JNEA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW0603FR-073KL         1                                                                                                                                                                                                                                  | R3                                             | RES, 0.02 ohm, 1%, 3W, 2512                                                             | Bourns                         | CRA2512-FZ-R020ELF  | 1   |
| R5         RES, 0.025 ohm, 1%, 3W, 2512         Bourns         CRA2512-FZ-R025ELF         1           R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R8, R12         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-071K5L         3           R10         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603100JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060300020EA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R21         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1 <td>R4</td> <td>RES, 20k ohm, 5%, 0.1W, 0603</td> <td>Vishay-Dale</td> <td>CRCW060320K0JNEA</td> <td>1</td>                                                                                                                    | R4                                             | RES, 20k ohm, 5%, 0.1W, 0603                                                            | Vishay-Dale                    | CRCW060320K0JNEA    | 1   |
| R6, R7         RES, 27 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060327R0JNEA         2           R8, R12         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-071K5L         3           R10         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031000020EA         1           R13         RES, 0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R21         RES, 84.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1     <                                                                                                                                                                                                                        | R5                                             | RES, 0.025 ohm, 1%, 3W, 2512                                                            | Bourns                         | CRA2512-FZ-R025ELF  | 1   |
| R8, R12         RES, 10 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310R0JNEA         2           R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-071K5L         3           R10         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         2           R13         RES, 0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603000020EA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031K0JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-0725K5L         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R21         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R22         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1 </td <td>R6, R7</td> <td>RES, 27 ohm, 5%, 0.1W, 0603</td> <td>Vishay-Dale</td> <td>CRCW060327R0JNEA</td> <td>2</td>                                                                                                           | R6, R7                                         | RES, 27 ohm, 5%, 0.1W, 0603                                                             | Vishay-Dale                    | CRCW060327R0JNEA    | 2   |
| R9, R16, R17         RES, 1.50k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-071K5L         3           R10         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         2           R13         RES, 0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06030000Z0EA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-0725K5L         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R21         RES, 45.8k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06034K5FKEA         1           R22         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW06034K5FKEA         1           R23         RES, 0 ohm, 5%, 2W, 2512 WIDE         Vishay Draloric         RCL12250000Z0EG         1           R11         Thermistor NTC, 47.0k ohm, 1%, 0.1W, 0603         Vishay Draloric         RCL12250000Z0EG                                                                                                                                                                                                                        | R8, R12                                        | RES, 10 ohm, 5%, 0.1W, 0603                                                             | Vishay-Dale                    | CRCW060310R0JNEA    | 2   |
| R10         RES, 1.0Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M00JNEA         1           R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         2           R13         RES, 0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06030000Z0EA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R18         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-0725K5L         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R21         RES, 84.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R21         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R22         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R23         RES, 0 ohm, 5%, 2W, 2512 WIDE         Vishay Draloric         RCL12250000Z0EG         1           R11         Thermistor NTC, 47.0k ohm, 1%, 0603         Mureata         NCP18WB473F10RB         1 <td>R9, R16, R17</td> <td>RES, 1.50k ohm, 1%, 0.1W, 0603</td> <td>Yageo America</td> <td>RC0603FR-071K5L</td> <td>3</td>                                                                                                        | R9, R16, R17                                   | RES, 1.50k ohm, 1%, 0.1W, 0603                                                          | Yageo America                  | RC0603FR-071K5L     | 3   |
| R11, R14         RES, 240 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603240RJNEA         2           R13         RES, 0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW0603000020EA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R18         RES, 1.0k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-0725K5L         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R21         RES, 84.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R22         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R23         RES, 0 ohm, 5%, 2W, 2512 WIDE         Vishay Draloric         RCL1225000020EG         1           R11         Thermistor NTC, 47.0k ohm, 1%, 0.1W, 0603         Vishay Draloric         RCL1225000020EG         1           R15         Switch, Push Button, SMD         Alps         SKRKAEE010         2           U1         Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23         Texas Instruments         LP2985AIM5-3                                                                                                                                                                                                    | R10                                            | RES, 1.0Meg ohm, 5%, 0.1W, 0603                                                         | Vishay-Dale                    | CRCW06031M00JNEA    | 1   |
| R13         RES, 0 ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06030000Z0EA         1           R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-0725K5L         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R21         RES, 84.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060384K5FKEA         1           R21         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R22         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R23         RES, 0 ohm, 5%, 2W, 2512 WIDE         Vishay Draloric         RCL12250000Z0EG         1           R11         Thermistor NTC, 47.0k ohm, 1%, 0603         MuRata         NCP18WB473F10RB         1           S1, S2         Switch, Push Button, SMD         Alps         SKRKAEE010         2           U1         Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23         Texas Instruments         LP2985AIM5-3.3                                                                                                                                                                                                                  | R11, R14                                       | RES, 240 ohm, 5%, 0.1W, 0603                                                            | Vishay-Dale                    | CRCW0603240RJNEA    | 2   |
| R15         RES, 1.6Meg ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW06031M60JNEA         1           R18         RES, 10k ohm, 5%, 0.1W, 0603         Vishay-Dale         CRCW060310K0JNEA         1           R19         RES, 25.5k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-0725K5L         1           R20         RES, 3.00k ohm, 1%, 0.1W, 0603         Yageo America         RC0603FR-073KL         1           R21         RES, 84.5k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060318K0FKEA         1           R22         RES, 15.0k ohm, 1%, 0.1W, 0603         Vishay-Dale         CRCW060315K0FKEA         1           R23         RES, 0 ohm, 5%, 2W, 2512 WIDE         Vishay Draloric         RCL1225000020EG         1           R11         Thermistor NTC, 47.0k ohm, 1%, 0603         MuRata         NCP18WB473F10RB         1           S1, S2         Switch, Push Button, SMD         Alps         SKRKAEE010         2           U1         Micropower 150 mA Low-Noise Ultra Low-Dropout Regulator, 5-pin SOT-23         Texas Instruments         LP2985AIM5-3.3         1           U2         Mixed Signal MicroController, RGC0064B         Texas Instruments         LP8860QVFPRQ1         1           U3         LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive Lighting, VFP0032B                                                                                                                                                                                                   | R13                                            | RES, 0 ohm, 5%, 0.1W, 0603                                                              | Vishay-Dale                    | CRCW06030000Z0EA    | 1   |
| R18RES, 10k ohm, 5%, 0.1W, 0603Vishay-DaleCRCW060310K0JNEA1R19RES, 25.5k ohm, 1%, 0.1W, 0603Yageo AmericaRC0603FR-0725K5L1R20RES, 3.00k ohm, 1%, 0.1W, 0603Yageo AmericaRC0603FR-073KL1R21RES, 84.5k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060384K5FKEA1R22RES, 15.0k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060315K0FKEA1R23RES, 0 ohm, 5%, 2W, 2512 WIDEVishay DraloricRCL12250000Z0EG1RT1Thermistor NTC, 47.0k ohm, 1%, 0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsLP8860QVFPRQ11U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R15                                            | RES, 1.6Meg ohm, 5%, 0.1W, 0603                                                         | Vishay-Dale                    | CRCW06031M60JNEA    | 1   |
| R19RES, 25.5k ohm, 1%, 0.1W, 0603Yageo AmericaRC0603FR-0725K5L1R20RES, 3.00k ohm, 1%, 0.1W, 0603Yageo AmericaRC0603FR-073KL1R21RES, 84.5k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060384K5FKEA1R22RES, 15.0k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060315K0FKEA1R23RES, 0 ohm, 5%, 2W, 2512 WIDEVishay DraloricRCL12250000Z0EG1RT1Thermistor NTC, 47.0k ohm, 1%, 0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsLP8860QVFPRQ11U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R18                                            | RES, 10k ohm, 5%, 0.1W, 0603                                                            | Vishay-Dale                    | CRCW060310K0JNEA    | 1   |
| R20RES, 3.00k ohm, 1%, 0.1W, 0603Yageo AmericaRC0603FR-073KL1R21RES, 84.5k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060384K5FKEA1R22RES, 15.0k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060315K0FKEA1R23RES, 0 ohm, 5%, 2W, 2512 WIDEVishay DraloricRCL12250000Z0EG1RT1Thermistor NTC, 47.0k ohm, 1%, 0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsLP8860QVFPRQ11U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R19                                            | RES, 25.5k ohm, 1%, 0.1W, 0603                                                          | Yageo America                  | RC0603FR-0725K5L    | 1   |
| R21RES, 84.5k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060384K5FKEA1R22RES, 15.0k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060315K0FKEA1R23RES, 0 ohm, 5%, 2W, 2512 WIDEVishay DraloricRCL12250000Z0EG1RT1Thermistor NTC, 47.0k ohm, 1%, 0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsMSP430F5510IRGC1U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R20                                            | RES, 3.00k ohm, 1%, 0.1W, 0603                                                          | Yageo America                  | RC0603FR-073KL      | 1   |
| R22RES, 15.0k ohm, 1%, 0.1W, 0603Vishay-DaleCRCW060315K0FKEA1R23RES, 0 ohm, 5%, 2W, 2512 WIDEVishay DraloricRCL12250000Z0EG1RT1Thermistor NTC, 47.0k ohm, 1%, 0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra Low-Dropout Regulator, 5-pin SOT-23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController, RGC0064BTexas InstrumentsMSP430F5510IRGC1U3LOW EMI, High Performance 4-Channel LED Driver for Automotive Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R21                                            | RES, 84.5k ohm, 1%, 0.1W, 0603                                                          | Vishay-Dale                    | CRCW060384K5FKEA    | 1   |
| R23RES, 0 ohm, 5%, 2W, 2512 WIDEVishay DraloricRCL12250000Z0EG1RT1Thermistor NTC, 47.0k ohm, 1%, 0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsMSP430F5510IRGC1U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R22                                            | RES, 15.0k ohm, 1%, 0.1W, 0603                                                          | Vishay-Dale                    | CRCW060315K0FKEA    | 1   |
| RT1Thermistor NTC, 47.0k ohm, 1%,<br>0603MuRataNCP18WB473F10RB1S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsMSP430F5510IRGC1U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R23                                            | RES, 0 ohm, 5%, 2W, 2512 WIDE                                                           | Vishay Draloric                | RCL12250000Z0EG     | 1   |
| S1, S2Switch, Push Button, SMDAlpsSKRKAEE0102U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsMSP430F5510IRGC1U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RT1                                            | Thermistor NTC, 47.0k ohm, 1%, 0603                                                     | MuRata                         | NCP18WB473F10RB     | 1   |
| U1Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23Texas InstrumentsLP2985AIM5-3.31U2Mixed Signal MicroController,<br>RGC0064BTexas InstrumentsMSP430F5510IRGC1U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S1, S2                                         | Switch, Push Button, SMD                                                                | Alps                           | SKRKAEE010          | 2   |
| U2       Mixed Signal MicroController,<br>RGC0064B       Texas Instruments       MSP430F5510IRGC       1         U3       LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032B       Texas Instruments       LP8860QVFPRQ1       1         Y1       Crystal, 24.000MHz, 18pF, SMD       Abracon Corportation       ABM8-24.000MHZ-B2-T       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U1                                             | Micropower 150 mA Low-Noise Ultra<br>Low-Dropout Regulator, 5-pin SOT-<br>23            | Texas Instruments              | LP2985AIM5-3.3      | 1   |
| U3LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032BTexas InstrumentsLP8860QVFPRQ11Y1Crystal, 24.000MHz, 18pF, SMDAbracon CorportationABM8-24.000MHZ-B2-T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U2                                             | Mixed Signal MicroController,<br>RGC0064B                                               | Texas Instruments              | MSP430F5510IRGC     | 1   |
| Y1 Crystal, 24.000MHz, 18pF, SMD Abracon Corportation ABM8-24.000MHZ-B2-T 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U3                                             | LOW EMI, High Performance 4-<br>Channel LED Driver for Automotive<br>Lighting, VFP0032B | Texas Instruments              | LP8860QVFPRQ1       | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y1                                             | Crystal, 24.000MHz, 18pF, SMD                                                           | Abracon Corportation           | ABM8-24.000MHZ-B2-T | 1   |

![](_page_20_Picture_0.jpeg)

### **Evaluation Software**

#### 9.1 Setup

Evaluation software is available for download from the TI web site.

The LP8860-Q1EVM is connected via USB to the computer and controlled with special evaluation software (Windows). An MSP430 microcontroller is used with the EVM to provide easy I<sup>2</sup>C/SPI communication, external PWM, boost SYNC and VSYNC control, VDDIO/EN, IF, and FAULT pins control with the LP8860-Q1 via USB. The EVM board and LP8860-Q1 VDDIO is powered by default via USB. VDD and VIN for the LP8860-Q1 must be supplied with an external power supply with high enough current limit.

When the board is connected to a computer, Windows should recognize it automatically and start to install the driver. A "Found New Hardware" dialog box prompts the user to locate the missing driver. Select "No, not this time" and continue with "Next". Select "Install from a list or specific location (Advanced)" to install the driver. Select the directory where the supplied TI\_CDC\_Virtual\_Port driver is. Windows should now install the driver, and the PC can communicate with the evaluation module using a virtual COM port. If Windows cannot find the driver, the user needs to manually install the TI\_CDC\_Virtual\_Port driver from the Device Manager. There should be a "USB OK" message on the status bar at the bottom of evaluation program, when the board is recognized. The green LED should blink on the evaluation board, when the board is powered from USB. If the board is not recognized, check the USB address from Windows Control Panel. The USB address should always be less than or equal to 9 (from COM1 to COM9) (see Appendix A). Also switching to another USB port might solve the issue.

I<sup>2</sup>C/SPI, PWM, SYNC, VSYNC, VDDIO/EN, IF, and FAULT communication can be controlled from an external source using pin headers if needed. Test point for all of the signals is provided, but jumpers to the on-board microcontroller must be removed if an external source is used for control.

#### 9.2 Usage

The LP8860-Q1 evaluation software helps the user to control the evaluation hardware connected to the computer. The evaluation software consists of three sections: tab selection, register selection, and register control section. In the tab selection the user can switch between **Pin Control**, **Brightness Controls**, **Fault and status**, **Boost**, **Fault and adaptive voltage control**, **LED Drivers**, **Temperature**, **EEPROM map** and **History** tabs. In the left-hand side of the evaluation program the register view (see Figure 9-1) is always visible. From this view the user can see the register addresses, register names, and register values. The user can select the register that needs to be changed. Selected register is marked with red X beside the register value. When the user selects the register, the selected register can be viewed in detail at the bottom of the evaluation software. This view tells the register address, register name, register default value, register bits and current register value. The user can also read and write the register bits by pushing the **RD**-button (read) and **WR**-button (write).

In the **File** menu the user can save register or EEPROM settings to a file, or load ready-made register or EEPROM setups from a file to the LP8860-Q1 registers.

In the **Operation** menu the user can read register settings or EEPROM context with **Read Registers** from the LP8860-Q1 memory so that the GUI reflects the current state of the LP8860-Q1. **Operation** menu has controls for EEPROM, such as **Unlock**, **Lock**, **Read** and **Burn EEPROM**. With **Direct control** the user can manually control registers by selecting address and data in hexadecimal format. **Execute macro** executes macro from text file, where first hexadecimal number in string is register address and second is data which should be written.

TEXAS INSTRUMENTS

www.ti.com

![](_page_21_Figure_3.jpeg)

Figure 9-1. Main Window Structure

![](_page_22_Picture_0.jpeg)

#### 9.2.1 Pin Control Tab

From the Pin Control tab (see Figure 9-2) the user can control all the basic functions of the device:

| ф т          | exas Instruments - LP8 | 860-Q1 ev | aluat | ion kit 🖂 🗖 🗖 🗾                                                                                   |
|--------------|------------------------|-----------|-------|---------------------------------------------------------------------------------------------------|
| <u>F</u> ile | Operation <u>H</u> elp |           |       |                                                                                                   |
| ADR          | Register               | Value     |       | 🐡 Pin Control 🕽 📾 Brightness Controls 🕽 📾 Faults and status 🕽 📾 Boost 🖬 Faults and adaptive vol 🔨 |
| 00H          | DISP_CL1_BRT MSB       | 0000 0000 | ×     |                                                                                                   |
| 01H          | DISP_CL1_BRT LSB       | 0000 0000 |       | Interface should be defined before enable                                                         |
| 02H          | DISP_CL1_CURRENT MSB   | 0000 1101 |       | CLOV/Diskle GLOC(Device ID 3D)                                                                    |
| 03H          | DISP_CL1_CURRENT LSB   | 1101 1111 |       | C LUW Disable (• 12L (Device ID=2D)                                                               |
| 04H          | CL2_BRT MSB            | 0000 0000 |       | FIGH Enable     C SPI     Eirmware TLL P8860 EVM Jan 27 2014 13:15:47                             |
| 05H          | CL2_BRT LSB            | 0000 0000 |       | PW/M generator                                                                                    |
| 06H          | CL2_CURRENT            | 0000 0000 |       | Francisco (100 5001-) Dutu %                                                                      |
| 07H          | CL3_BRT MSB            | 0000 0000 |       | riequency (Tou-Souniz) Ducy, &                                                                    |
| 08H          | CL3_BRT LSB            | 0000 0000 |       | 100 Uto Update Enable PWM generator                                                               |
| 09H          | CL3_CURRENT            | 0000 0000 |       |                                                                                                   |
| 0AH          | CL4_BRT MSB            | 0000 0000 |       |                                                                                                   |
| 0BH          | CL4_BRT MSB            | 0000 0000 |       |                                                                                                   |
| 0CH          | CL4_CURRENT            | 0000 0000 |       | -Boost SYNC                                                                                       |
| 0DH          | CONFIGURATION          | 0111 1100 |       | Erequency (100-2200kHz) Boost sync frequency should                                               |
| 0EH          | STATUS                 | 0000 1000 |       | be running before enable for                                                                      |
| 0FH          | FAULT                  | 0000 0000 |       | external boost sync mode                                                                          |
| 10H          | LED_FAULT              | 0000 0000 |       | PLL sunc (VSYNC)                                                                                  |
| 11H          | FAULT CLEAR            | 0000 0000 |       | Low frequency (35150Hz) VSYNC should be running                                                   |
| 12H          | ID                     | 0001 0000 |       | Frequency (35150Hz) C High frequency (35150kHz) berore enable for external                        |
| 13H          | TEMP MSB               | 0000 0100 |       | 50 Sync PLL mode                                                                                  |
| 14H          | TEMP LSB               | 0001 1110 |       | Duty, % Update                                                                                    |
| 15H          | DISP LED CURRENT R/O   | 0000 1101 |       | 10                                                                                                |
| 16H          | DISP_LED_CURRENT R/O   | 1101 1111 |       |                                                                                                   |
| 17H          | DISP_LED_PWM R/O       | 0000 0000 |       |                                                                                                   |
| 18H          | DISP_LED_PWM R/O       | 0000 0000 |       |                                                                                                   |
| 19H          | EEPROM_CONTROL         | 1000 0000 |       |                                                                                                   |
| 1AH          | EEPROM_UNLOCK          | 1110 1111 |       |                                                                                                   |
|              |                        |           |       |                                                                                                   |
|              |                        |           |       |                                                                                                   |
| 00H          | DISP_CL1_BRT MSB       | 0000      | 0000  | 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 00 RD WR                           |
| USB-         | >Comm4 USB OK          |           | 12D78 | 8 Ver. Dec 13 2013 11:27:08                                                                       |

Figure 9-2. Main Window and Pin Control Tab

In this tab Interface mode (I<sup>2</sup>C/SPI) can be set, **VDDIO/EN** control enables/disables the device. Frequency generators – **PWM** for brightness control, **SYNC** for boost and **VSYNC** for LED output PWM synchronization are in this tab.

![](_page_23_Picture_0.jpeg)

#### Usage

#### 9.2.2 Brightness Control Tab

From the **Brightness Control** tab (see Figure 9-3) the user controls all brightness control functions of the device. Here are provided additional register based controls, like slope control, current control, current scale and EEPROM control. If all outputs are configured as display mode outputs, only Display/Cluster\_1 brightness and current controls can be used. Additional controls are functional when one or more outputs are in cluster mode. Please refer to the LP8860-Q1 datasheet for details.

| 🚸 Т          | exas Instruments - LP8 | 860-Q1 ev | aluati | on kit                                                                                              |
|--------------|------------------------|-----------|--------|-----------------------------------------------------------------------------------------------------|
| <u>F</u> ile | Operation <u>H</u> elp |           |        |                                                                                                     |
| ADR          | Register               | Value     |        | 🕷 Brightness Controls ] 📾 Faults and status ] 📾 Boost ] 📾 Faults and adaptive voltage control ] 📾 🕨 |
| 00H          | DISP_CL1_BRT MSB       | 0000 0000 | ×      |                                                                                                     |
| 01H          | DISP_CL1_BRT LSB       | 0000 0000 |        | Content                                                                                             |
| 02H          | DISP_CL1_CURRENT MSB   | 0000 1101 |        | Display/Cluster 1 Display/Cluster 1                                                                 |
| 03H          | DISP_CL1_CURRENT LSB   | 1101 1111 |        | 0% 130mA                                                                                            |
| 04H          | CL2_BRT MSB            | 0000 0000 |        |                                                                                                     |
| 05H          | CL2_BRT LSB            | 0000 0000 |        |                                                                                                     |
| 06H          | CL2_CURRENT            | 0000 0000 |        |                                                                                                     |
| 07H          | CL3_BRT MSB            | 0000 0000 |        | Cluster 2                                                                                           |
| 08H          | CL3_BRT LSB            | 0000 0000 |        | 0% 0mA                                                                                              |
| 09H          | CL3_CURRENT            | 0000 0000 |        |                                                                                                     |
| 0AH          | CL4_BRT MSB            | 0000 0000 |        |                                                                                                     |
| 0BH          | CL4_BRT MSB            | 0000 0000 |        |                                                                                                     |
| 0CH          | CL4_CURRENT            | 0000 0000 |        | Cluster 3                                                                                           |
| 0DH          | CONFIGURATION          | 0111 1100 |        | 0% 0mA                                                                                              |
| 0EH          | STATUS                 | 0000 1000 |        |                                                                                                     |
| 0FH          | FAULT                  | 0000 0000 |        |                                                                                                     |
| 10H          | LED_FAULT              | 0000 0000 |        |                                                                                                     |
| 11H          | FAULT CLEAR            | 0000 0000 |        | Cluster 4                                                                                           |
| 12H          | ID                     | 0001 0000 |        | 0% 0mA                                                                                              |
| 13H          | TEMP MSB               | 0000 0100 |        |                                                                                                     |
| 14H          | TEMP LSB               | 0001 1110 |        |                                                                                                     |
| 15H          | DISP LED CURRENT R/O   | 0000 1101 |        |                                                                                                     |
| 16H          | DISP_LED_CURRENT R/O   | 1101 1111 |        | Current scale Brightness slope time                                                                 |
| 17H          | DISP_LED_PWM R/O       | 0000 0000 |        | C 25mA C 50mA C 80mA C 120mA C 0ms C 2ms ⊙ 105ms C 315ms                                            |
| 18H          | DISP_LED_PWM R/O       | 0000 0000 |        | C 30mA C 60mA C 100mA @ 150mA C 1ms C 52ms C 210ms C 511ms                                          |
| 19H          | EEPROM_CONTROL         | 1000 0000 |        | Revision Slope type                                                                                 |
| 1AH          | EEPROM_UNLOCK          | 1110 1111 |        | 1.0 Read C Linear @ Advanced                                                                        |
|              |                        |           |        | FFPROM                                                                                              |
|              |                        |           |        | Unlock Lock Bead Burn Beadu? 🚳                                                                      |
|              |                        |           |        |                                                                                                     |
| 00H          | DISP. CI 1. BRT MSB    | 0000      | 0000   |                                                                                                     |
| USB-         | Comm4 USB OK           |           | 12078  | Ver Der 13 2013 11-27-08                                                                            |

Figure 9-3. Brightness Control Tab

![](_page_24_Picture_0.jpeg)

#### 9.2.3 Faults and Status Tab

From the **Fault and Status** tab (see Figure 9-4) the user has access to LP8860-Q1 faults and status bits. Faults can be reset by software fault reset (register write) or hardware NSS pin in I<sup>2</sup>C interface mode. Temperature and output current/PWM reading are available from this tab as well. Output PWM and current reading can help to understand better Hybrid PWM and Current dimming functionality.

|      | exas Instruments - LP8 | 860-Q1 eva | luati | ion kit                        |                                    |                              |
|------|------------------------|------------|-------|--------------------------------|------------------------------------|------------------------------|
| Eile | Operation <u>H</u> elp |            |       |                                |                                    |                              |
| ADR  | Register               | Value      |       | 📾 Faults and status 🔤 Boost 🕯  | Eaults and adaptive voltage contro | al 🐼 LED drivers 🐼 Tempe 🔍 🕨 |
| 00H  | DISP_CL1_BRT MSB       | 0000 0000  | ×     |                                |                                    |                              |
| 01H  | DISP_CL1_BRT LSB       | 0000 0000  |       | Status                         | Fault                              | LED fault                    |
| 02H  | DISP_CL1_CURRENT MSB   | 0000 1101  |       | NTC high temperature limit     | Charge pump fault                  | 🔘 LED string 1 fault         |
| 03H  | DISP_CL1_CURRENT LSB   | 1101 1111  |       | NTC low temperature limit      | Powerline FET fault                | LED string 2 fault           |
| 04H  | CL2_BRT MSB            | 0000 0000  |       | NTC sensor missing             | Boost overvoltage fault            | 🔘 LED string 3 fault         |
| 05H  | CL2_BRT LSB            | 0000 0000  |       | Brigthness slope done          | Boost overcurrent fault            | LED string 4 fault           |
| 06H  | CL2_CURRENT            | 0000 0000  |       | _                              | Thermal shutdown                   | Short LED string fault       |
| 07H  | CL3_BRT MSB            | 0000 0000  |       |                                | Vin low voltage fault              | 🔘 Open LED string fault      |
| 08H  | CL3_BRT LSB            | 0000 0000  |       |                                | Vin high voltage fault             |                              |
| 09H  | CL3_CURRENT            | 0000 0000  |       |                                |                                    |                              |
| 0AH  | CL4_BRT MSB            | 0000 0000  |       | ( Based                        | Pand                               | Based                        |
| 0BH  | CL4_BRT MSB            | 0000 0000  |       | L. neau                        | heau                               | neau                         |
| 0CH  | CL4_CURRENT            | 0000 0000  |       |                                |                                    |                              |
| 0DH  | CONFIGURATION          | 0111 1100  |       | Software Hardw                 | are (NSS)                          |                              |
| 0EH  | STATUS                 | 0000 1000  |       | fault reset fau                | It reset                           |                              |
| 0FH  | FAULT                  | 0000 0000  |       |                                |                                    |                              |
| 10H  | LED_FAULT              | 0000 0000  |       | SelfTest                       |                                    |                              |
| 11H  | FAULT CLEAR            | 0000 0000  |       | For VDD=5V Temperature         | _ 41EH Display                     | current Current PWM          |
| 12H  | ID                     | 0001 0000  |       | C For VDD=3.6V                 | 21.3°Cand                          | PWM DDFH 000H                |
| 13H  | TEMP MSB               | 0000 0100  |       |                                |                                    |                              |
| 14H  | TEMP LSB               | 0001 1110  |       |                                |                                    |                              |
| 15H  | DISP LED CURRENT R/O   | 0000 1101  |       |                                |                                    |                              |
| 16H  | DISP_LED_CURRENT R/O   | 1101 1111  |       |                                |                                    |                              |
| 17H  | DISP_LED_PWM R/O       | 0000 0000  |       |                                |                                    |                              |
| 18H  | DISP_LED_PWM R/O       | 0000 0000  |       |                                |                                    |                              |
| 19H  | EEPROM_CONTROL         | 1000 0000  |       |                                |                                    |                              |
| 1AH  | EEPROM_UNLOCK          | 1110 1111  |       |                                |                                    |                              |
|      |                        |            |       |                                |                                    |                              |
| 00H  | DISP_CL1_BRT MSB       | 0000       | 0000  | 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_C | L1_BR P_CL1_BR P_CL1_BR P_CL1_BR   | P_CL1_BF 00 RD WR            |
| USB- | >Comm4 USB OK          | 1          | 2D78  |                                | Ver. Dec 13 2013 11:27:08          |                              |

Figure 9-4. Fault and Status Tab

### 9.2.4 Boost Tab

From the **Boost Control** tab (see Figure 9-5) the user controls all boost functions of the device:

|              | exas Instruments - LP8 | 860-Q1 ev | aluati | ion kit                                                                                |
|--------------|------------------------|-----------|--------|----------------------------------------------------------------------------------------|
| <u>F</u> ile | Operation <u>H</u> elp |           |        |                                                                                        |
| ADR          | Register               | Value     |        | 📾 Boost 🕼 Faults and adaptive voltage control 📾 LED drivers 📾 Temperature 📾 EEPROM I 🔍 |
| 00H          | DISP_CL1_BRT MSB       | 0000 0000 | ×      |                                                                                        |
| 01H          | DISP_CL1_BRT LSB       | 0000 0000 |        | Initial Voltage 31.5V                                                                  |
| 02H          | DISP_CL1_CURRENT MSB   | 0000 1101 |        | Diagram                                                                                |
| 03H          | DISP_CL1_CURRENT LSB   | 1101 1111 |        |                                                                                        |
| 04H          | CL2_BRT MSB            | 0000 0000 |        | Off/Blank Time Pulse Generator Charge Pump                                             |
| 05H          | CL2_BRT LSB            | 0000 0000 |        | Blank time CP enabled                                                                  |
| 06H          | CL2_CURRENT            | 0000 0000 |        | 162ns   I31ns  IFrequency 833KHz  SQW enable                                           |
| 07H          | CL3_BRT MSB            | 0000 0000 |        | Boost Oscillator                                                                       |
| 08H          | CL3_BRT LSB            | 0000 0000 |        | Frequency Second cooptrum Max gate current                                             |
| 09H          | CL3_CURRENT            | 0000 0000 |        | Boost Imax sink/source Gate driver powering                                            |
| 0AH          | CL4_BRT MSB            | 0000 0000 |        | 303.45 kHz VDD VDD VDD V                                                               |
| 0BH          | CL4_BRT MSB            | 0000 0000 |        | Current Ramp Generator                                                                 |
| 0CH          | CL4_CURRENT            | 0000 0000 |        | Inductor size Iramp slope selection                                                    |
| 0DH          | CONFIGURATION          | 0111 1100 |        | 4 • 13A/s •                                                                            |
| 0EH          | STATUS                 | 0000 1000 |        | E Deley 35%                                                                            |
| 0FH          | FAULT                  | 0000 0000 |        | Delay 33%                                                                              |
| 10H          | LED_FAULT              | 0000 0000 |        | RC filter                                                                              |
| 11H          | FAULT CLEAR            | 0000 0000 |        | Filter select 30kHz 💌                                                                  |
| 12H          | ID                     | 0001 0000 |        |                                                                                        |
| 13H          | TEMP MSB               | 0000 0100 |        | Voltage feedback amplifier                                                             |
| 14H          | TEMP LSB               | 0001 1110 |        | PID control                                                                            |
| 15H          | DISP LED CURRENT R/O   | 0000 1101 |        | integral 2 💌                                                                           |
| 16H          | DISP_LED_CURRENT R/O   | 1101 1111 |        | Light load comparator threshold 5 10 -                                                 |
| 17H          | DISP_LED_PWM R/O       | 0000 0000 |        | (PFM/PWM mode switch level)                                                            |
| 18H          | DISP_LED_PWM R/O       | 0000 0000 |        |                                                                                        |
| 19H          | EEPROM_CONTROL         | 1000 0000 |        |                                                                                        |
| 1AH          | EEPROM_UNLOCK          | 1110 1111 |        |                                                                                        |
|              |                        |           |        |                                                                                        |
| 00H          | DISP_CL1_BRT MSB       | 0000      | 0000   | 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 00 RD WR                |
| USB-         | >Comm4 USB OK          |           | I2D78  | Ver. Dec 13 2013 11:27:08                                                              |

Figure 9-5. Boost Controls Tab

This tab controls all boost functionality bits, charge pump, and gate driver controls. By clicking **Diagram** button the user can open interactive boost diagram window, which shows all parameters in block diagram.

![](_page_25_Figure_7.jpeg)

#### Figure 9-6. Interactive Boost Diagram Window

![](_page_26_Picture_0.jpeg)

#### 9.2.5 Fault and Adaptive Voltage Control Tab

From the **Fault and adaptive voltage control** tab (see Figure 9-7) the user controls fault and adaptive boost settings:

|              | exas Instruments - LP8 | 860-Q1 eva | luat | ion kit                                                                                   |
|--------------|------------------------|------------|------|-------------------------------------------------------------------------------------------|
| <u>F</u> ile | Operation Help         |            |      |                                                                                           |
| ADR          | Register               | Value      |      | 📾 Faults and adaptive voltage control  📾 LED drivers 🖬 Temperature 🖬 EEPBOM Map 🕽 🐲 H 🔸 🕨 |
| 00H          | DISP_CL1_BRT MSB       | 0000 0000  | X    |                                                                                           |
| 01H          | DISP_CL1_BRT LSB       | 0000 0000  |      | LED Fault Comparators and adatptive volatage control                                      |
| 02H          | DISP_CL1_CURRENT MSB   | 0000 1101  |      | Low level Hysteresis: (mid-low) High level Filter, PWM clock cycles                       |
| 03H          | DISP_CL1_CURRENT LSB   | 1101 1111  |      | VSAT = 50 mV = 500mV = 10.6V = 10                                                         |
| 04H          | CL2_BRT MSB            | 0000 0000  |      |                                                                                           |
| 05H          | CL2_BRT LSB            | 0000 0000  |      | Adaptive voltage control Voltage jump control Boost fault control                         |
| 06H          | CL2_CURRENT            | 0000 0000  |      | Adaptive voltage                                                                          |
| 07H          | CL3_BRT MSB            | 0000 0000  |      | control enable Mask boost UCP                                                             |
| 08H          | CL3_BRT LSB            | 0000 0000  |      | Boost slope speed Brightness change                                                       |
| 09H          | CL3_CURRENT            | 0000 0000  |      | 8 (evenu 8th PW/M cucle)                                                                  |
| 0AH          | CL4_BRT MSB            | 0000 0000  |      | 30% The steps (2.0V) Status and rault pin                                                 |
| 0BH          | CL4_BRT MSB            | 0000 0000  |      | Boost faulte control LED fault control                                                    |
| 0CH          | CL4_CURRENT            | 0000 0000  |      |                                                                                           |
| 0DH          | CONFIGURATION          | 0111 1100  |      | Fault in display mode enable                                                              |
| 0EH          | STATUS                 | 0000 1000  |      | Input voltage faulte control                                                              |
| 0FH          | FAULT                  | 0000 0000  |      |                                                                                           |
| 10H          | LED_FAULT              | 0000 0000  |      | 22 5V - Revenue - Gate current pFET/nFET Power linr FET type                              |
| 11H          | FAULT CLEAR            | 0000 0000  |      | 440µA/2.2mA V DMOSFET V                                                                   |
| 12H          | ID                     | 0001 0000  |      | Mask VIN UVP                                                                              |
| 13H          | TEMP MSB               | 0000 0100  |      | VDD UVL0 level Soft start time                                                            |
| 14H          | TEMP LSB               | 0001 1110  |      |                                                                                           |
| 15H          | DISP LED CURRENT R/O   | 0000 1101  |      |                                                                                           |
| 16H          | DISP_LED_CURRENT R/O   | 1101 1111  |      | - Mask VIN UVLO recovery,                                                                 |
| 17H          | DISP_LED_PWM R/O       | 0000 0000  |      | status and fault pin                                                                      |
| 18H          | DISP_LED_PWM R/O       | 0000 0000  |      |                                                                                           |
| 19H          | EEPROM_CONTROL         | 1000 0000  |      |                                                                                           |
| 1AH          | EEPROM_UNLOCK          | 1110 1111  |      |                                                                                           |
|              |                        |            |      |                                                                                           |
| 00H          | DISP_CL1_BRT MSB       | 0000       | 0000 | 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 00 RD WR          |
| USB-         | >Comm4 USB OK          | Ľ          | 2D78 | Ver. Dec 13 2013 11:27:08                                                                 |

Figure 9-7. Fault and Adaptive Voltage Control Tab

Fault comparators are used for LED fault detection and adaptive boost control. Clicking **Diagram** button opens LED fault and adaptive voltage control diagram, see Figure 9-8. This window explains LED fault and adaptive boost control functionality:

![](_page_26_Figure_7.jpeg)

Figure 9-8. LED Fault And Adaptive Voltage Control Functionality Diagram

![](_page_27_Picture_0.jpeg)

### 9.2.6 LED Drivers Tab

Usage

From the **LED Drivers** tab (see Figure 9-9) the user controls all EEPROM settings related to LED driver of the device:

| <b>4</b> 9 T | exas Instruments - LP8 | 860-Q1 eval | uat | ion kit 📃 🗖 🗾 🔀                                                                                         |
|--------------|------------------------|-------------|-----|---------------------------------------------------------------------------------------------------------|
| <u>F</u> ile | Operation <u>H</u> elp |             |     |                                                                                                         |
| ADR          | Register               | Value       | ľ   | 📾 LED drivers 🔝 Temperature 📾 EEPBOM Map 🐟 History 🔹 🔍                                                  |
| 00H          | DISP_CL1_BRT MSB       | 0000 0000 💙 | ĸ   |                                                                                                         |
| 01H          | DISP_CL1_BRT LSB       | 0000 0000   |     | Display mode current preset 130.07 mA Diagram                                                           |
| 02H          | DISP_CL1_CURRENT MSB   | 0000 1101   |     | Riset(k)                                                                                                |
| 03H          | DISP_CL1_CURRENT LSB   | 1101 1111   |     | 25 Calculate I-0mó                                                                                      |
| 04H          | CL2_BRT MSB            | 0000 0000   |     | Max LED current scale Driver FET size control LED current rise time                                     |
| 05H          | CL2_BRT LSB            | 0000 0000   |     | 150mó V Large FET V 200ps V Current set with external resistor                                          |
| 06H          | CL2_CURRENT            | 0000 0000   |     |                                                                                                         |
| 07H          | CL3_BRT MSB            | 0000 0000   |     |                                                                                                         |
| 08H          | CL3_BRT LSB            | 0000 0000   |     |                                                                                                         |
| 09H          | CL3_CURRENT            | 0000 0000   |     |                                                                                                         |
| 0AH          | CL4_BRT MSB            | 0000 0000   |     | PwM                                                                                                     |
| 0BH          | CL4_BRT MSB            | 0000 0000   |     | LED string 4 separate LED strings with 90° phase shift                                                  |
| 0CH          | CL4_CURRENT            | 0000 0000   |     | configuration 14 separate EED strainings with do prices anime                                           |
| 0DH          | CONFIGURATION          | 0111 1100   |     | Display brightness mode Dither Hybrid brightness control                                                |
| 0EH          | STATUS                 | 0000 1000   |     | C PWM input duty x Brightness register                                                                  |
| 0FH          | FAULT                  | 0000 0000   |     | C Brightness register                                                                                   |
| 10H          | LED_FAULT              | 0000 0000   |     | C Direct PWM control from PWM input pin                                                                 |
| 11H          | FAULT CLEAR            | 0000 0000   |     | PWM input PWM counter Slope 1154                                                                        |
| 12H          | ID                     | 0001 0000   |     | Hysteresis PWM frequency divider                                                                        |
| 13H          | TEMP MSB               | 0000 0100   |     | ±8 bit (16bit resolution) V 8 V Slope time                                                              |
| 14H          | TEMP LSB               | 0001 1110   |     | PWM resolution 105ms                                                                                    |
| 15H          | DISP LED CURRENT R/O   | 0000 1101   |     | and slow PLL divider                                                                                    |
| 16H          | DISP_LED_CURRENT R/O   | 1101 1111   |     |                                                                                                         |
| 17H          | DISP_LED_PWM R/O       | 0000 0000   |     |                                                                                                         |
| 18H          | DISP_LED_PWM R/O       | 0000 0000   |     | PLL enable Diagram Diagram                                                                              |
| 19H          | EEPROM_CONTROL         | 1000 0000   |     | Vsync enable Sync predivider PLL Divider PLL divider                                                    |
| 1AH          | EEPROM_UNLOCK          | 1110 1111   |     | - Clear Pw/M counter 16 - Fast - 128 -                                                                  |
|              |                        |             |     | with Vsync input Sync type Slow PLL divider (08191)  PLL synchronized 50150Hz  Source input 5879 Update |
| 00H          | DISP_CL1_BRT MSB       | 0000 0      | 000 | 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 00 RD WR                        |
| USB-         | >Comm4 USB OK          | 12          | D7  | Ver. Dec 13 2013 11:27:08                                                                               |

Figure 9-9. LED Driver Controls

In this tab the user controls LED driver settings: maximum current scale for all modes, initial current for display mode and current correction for every outputs. LED output PWM controls, input brightness PWM controls, and PLL controls are available from this tab as well. By clicking the **Diagram** button opens window with LED driver diagram (Figure 9-10) and PLL Diagram (Figure 9-11). PLL calculator for defining settings for external V/HSYNC (Figure 9-12) or internal oscillator (Figure 9-13) is available by clicking the **PWM/PLL Calculator** button.

![](_page_27_Figure_7.jpeg)

Figure 9-10. LED Driver Diagram Window

![](_page_28_Picture_0.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

![](_page_28_Figure_5.jpeg)

![](_page_28_Figure_6.jpeg)

|    |    |     | ~  | ~ |
|----|----|-----|----|---|
| ww | w. | u.c | :0 | ш |

| nternar oseinat                              |                            | ic j   |                          |                 |        |
|----------------------------------------------|----------------------------|--------|--------------------------|-----------------|--------|
|                                              | PWM_RESOLU                 | 00     | 01                       | 10              | 11     |
| WM_FREQ                                      | Frequency, Hz              | 5 MHz  | 10 MHz                   | 20 MHz          | 40 MHz |
| 1111                                         | 39062                      | 7      | 8                        | 9               | 10     |
| 1110                                         | 34179                      | 7      | 8                        | 9               | 10     |
| 1101                                         | 30517                      | 7      | 8                        | 9               | 10     |
| 1100                                         | 29296                      | 7      | 8                        | 9               | 10     |
| 1011                                         | 28076                      | 7      | 8                        | 9               | 10     |
| 1010                                         | 26855                      | 7      | 8                        | 9               | 10     |
| 1001                                         | 25634                      | 7      | 8                        | 9               | 10     |
| 1000                                         | 24414                      | 7      | 8                        | 9               | 10     |
| 0111                                         | 23193                      | 7      | 8                        | 9               | 10     |
| 0110                                         | 21972                      | 7      | 8                        | 9               | 10     |
| 0101                                         | 20751                      | 7      | 8                        | 9               | 10     |
| 0100                                         | 19531                      | 8      | 9                        | 10              | 11     |
| 0011                                         | 17089                      | 8      | 9                        | 10              | 11     |
| 0010                                         | 13427                      | 8      | 9                        | 10              | 11     |
| 0001                                         | 9765                       | 9      | 10                       | 11              | 12     |
| 0000                                         | 4882                       | 10     | 11                       | 12              | 13     |
| EN_PLL=1<br>En_sync=<br>Sel_divid<br>En_pwm_ | :0<br> ER=1<br>CNTR_RESET= | F<br>F | 'WM_RESOLU<br>'WM_FREQ=0 | JTION=11<br>001 |        |

Figure 9-13. PLL Calculator for Internal Oscillator

![](_page_30_Picture_0.jpeg)

#### 9.2.7 Temperature Tab

From the **Temperature** tab (see Figure 9-14) the user controls internal and external sensors functionality: current de-rating with internal temperature sensor, LED temperature control mode, and current dimming with external temperature sensor.

![](_page_30_Figure_4.jpeg)

Figure 9-14. Temperature Sensors Control

![](_page_31_Picture_0.jpeg)

### 9.2.8 EEPROM Map Tab

From the **EEPROM Map** tab (see Figure 9-15) the user can see actual value of EEPROM registers bit and control bits directly by writing or reading bytes (buttons **W** and **R** on the right side).

| 🔶 1                                               | 🌞 Texas Instruments - LP8860-Q1 evaluation kit |             |    |             |           |                                  |                          |   |         |
|---------------------------------------------------|------------------------------------------------|-------------|----|-------------|-----------|----------------------------------|--------------------------|---|---------|
| Eile                                              | File Operation Help                            |             |    |             |           |                                  |                          |   |         |
| ADR                                               | Register                                       | Value       |    | LED drivers | 📄 💓 Tempe | erature  😹 EEPROM Map 😽 Hi       | story                    |   | 4   +   |
| 00H                                               | DISP_CL1_BRT MSB                               | 0000 0000 🗙 | c0 | FEDDOMOO    | T.D. (101 |                                  |                          | D | المبدا  |
| 01H                                               | DISP_CL1_BRT LSB                               | 0000 0000   | 00 | EEFRUMUU    |           |                                  |                          |   | <u></u> |
| 02H                                               | DISP_CL1_CURRENT MSB                           | 0000 1101   | ы  | EEPRUMUI    |           |                                  |                          | 문 | W       |
| 03H                                               | DISP_CL1_CURRENT LSB                           | 1101 1111   | 62 | EEPRUMU2    | [2]       | PWM_SLUPE[I]                     | PWM_SLUPE[U]             | R | W       |
| 04H                                               | CL2_BRT MSB                                    | 0000 0000   | 63 | EEPROM03    |           | LED_STRING_CONF[0]               | EN_PWM_I                 | В | W       |
| 05H                                               |                                                | 0000 0000   | 64 | EEPROM04    | [2]       | DRV_HEADR[1]                     | DRV_HEADR[0]             | R | W       |
| 06H                                               | CL2_CURRENT                                    | 0000 0000   | 65 | EEPROM05    |           | DITHER[1]                        | DITHER[0]                | R | W       |
| 0/H                                               |                                                | 0000 0000   | 66 | EEPROM06    | FET       | BRT_MODE[1]                      | BRT_MODE[0]              | R | W       |
| 000                                               | CL3_DR1 L3D                                    | 0000 0000   | 67 | EEPROM07    | RR[2]     | DRV_OUT1_CORR[1]                 | DRV_OUT1_CORR[0]         | R | W       |
| 0AH                                               | CLA BRT MSB                                    | 0000 0000   | 68 | EEPROM08    | RR[2]     | DRV_OUT3_CORR[1]                 | DRV OUT3 CORR[0]         | B | W       |
| OBH                                               | CL4_BRT MSB                                    | 0000 0000   | 69 | EEPROM09    | _SEL[2]   | BL_COMP_FILTER_SEL[1]            | BL_COMP_FILTER_SEL[0]    | R | W       |
| 0CH                                               | CL4_CURRENT                                    | 0000 0000   | 6A | EEPROM10    | .[0]      | PL_SD_SINK_LEVEL[1]              | PL_SD_SINK_LEVEL[0]      | R | W       |
| 0DH                                               | CONFIGURATION                                  | 0111 1100   | 6B | EEPROM11    | V[7]      | SLOW_PLL_DIV[6]                  | SLOW_PLL_DIV[5]          | R | W       |
| 0EH                                               | STATUS                                         | 0000 1000   | 6C | EEPROM12    | V[2]      | SLOW PLL DIV[1]                  | SLOW PLL DIV[0]          | R | W       |
| 0FH                                               | FAULT                                          | 0000 0000   | 6D | EEPROM13    | DEB[2]    | SYNC PRE DIVIDER[1]              | SYNC PRE DIVIDEBIO       | B | W       |
| 10H                                               | LED_FAULT                                      | 0000 0000   | 6E | EEPBOM14    | 21        | PWM EBEQ[1]                      | PWM FBEQIOL              | B | W       |
| 11H                                               | FAULT CLEAR                                    | 0000 0000   | 6E | EEPBOM15    | [0]       |                                  |                          | B | Ŵ       |
| 12H                                               | ID                                             | 0001 0000   | 70 | CEDDOM10    | EL (11)   |                                  |                          |   | w       |
| 13H                                               | TEMP MSB                                       | 0000 0100   | 70 | EEFRUMIO    |           | BOOST_IMAX_SEL[0]                |                          |   | <u></u> |
| 14H                                               | TEMP LSB                                       | 0001 1110   | 71 | EEPHUM17    |           | BUUSI_FREQ_SEL[I]                |                          |   | W       |
| 15H                                               | DISP LED CURRENT R/O                           | 0000 1101   | 72 | EEPRUM18    | THRES[U]  | JUMP_STEP_SIZE[1]                | JUMP_STEP_SIZE[U]        | B | W       |
| 10H                                               | DISP_LED_CORRENT R/O                           | 1101 1111   | 73 | EEPRUM19    | LIAGE[2]  | BUUST_INITIAL_VULTAGE[1]         | BUUST_INITIAL_VULTAGE[U] | R | W       |
| 100                                               | DISP_LED_PWM R/O                               | 0000 0000   | 74 | EEPROM20    |           | BOOST_SEL_P[1]                   | BOOST_SEL_P[0]           | B | W       |
| 100                                               | EERROM CONTROL                                 | 1000 0000   | 75 | EEPROM21    | _CTRL[2]  | BOOST_VO_SLOPE_CTRL[1]           | BOOST_VO_SLOPE_CTRL[0]   | R | W       |
| 14H                                               | EEPROM LINLOCK                                 | 1110 1111   | 76 | EEPROM22    | 0]        | CP_2X_EN                         | SQW_PULSE_GEN_EN         | R | W       |
| 1011                                              |                                                |             | 77 | EEPROM23    | _LOW[2]   | EXT_TEMP_LEVEL_LOW[1]            | EXT_TEMP_LEVEL_LOW[0]    | R | W       |
|                                                   |                                                |             | 78 | EEPROM24    | IOD[1]    | EXT_TEMP_PERIOD[0]               | EXT_TEMP_COMP_EN         | R | W       |
|                                                   | ۲ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (        |             |    |             |           |                                  |                          |   |         |
| 00H                                               | DISP_CL1_BRT MSB                               | 0000 000    | D  | P_CL1_BR    | CL1_BRCL1 | _BR P_CL1_BR P_CL1_BR P_CL1_BR P | _CL1_BF P_CL1_BF 00 RD   | V | VR      |
| USB->Comm4 USB OK I2D78 Ver. Dec 13 2013 11:27:08 |                                                |             |    |             |           |                                  |                          |   |         |

Figure 9-15. EEPROM Map

![](_page_32_Picture_0.jpeg)

#### 9.2.9 History Tab

The **History** tab (see Figure 9-16 ) provides information on the  $I^2C/SPI$  writes used to configure/control the LP8860-Q1 device. This can be used as a reference for developing software for real application.

| 👋 Texas Instruments - LP8860-Q1 evaluation kit |                      |          |           |                                                                            |       |  |
|------------------------------------------------|----------------------|----------|-----------|----------------------------------------------------------------------------|-------|--|
| Eile                                           | File Operation Help  |          |           |                                                                            |       |  |
| ADR                                            | Register             | Value    |           | 📾 LED drivers 🕪 Temperature 📾 EEPBOM Map 🚿 History                         |       |  |
| 00H                                            | DISP_CL1_BRT MSB     | 0000 000 | × ×       |                                                                            |       |  |
| 01H                                            | DISP_CL1_BRT LSB     | 0000 000 | 0         | Clear                                                                      |       |  |
| 02H                                            | DISP_CL1_CURRENT MSB | 0000 110 | )1        |                                                                            |       |  |
| 03H                                            | DISP_CL1_CURRENT LSB | 1101 111 | 1         | Read (20[2D] 61 - DF                                                       | ·     |  |
| 04H                                            | CL2_BRT MSB          | 0000 000 | 0         | write (20/20) 61 - 20<br>Read (20) 201 61 - DE                             |       |  |
| 05H                                            | CL2_BRT LSB          | 0000 000 | 0         | Write [20][20] 1A - 08                                                     |       |  |
| 06H                                            | CL2_CURRENT          | 0000 000 | 0         | Write I2C[2D] 1A - BA                                                      |       |  |
| 07H                                            | CL3_BRT MSB          | 0000 000 | 0         | Write I2C[2D] 1A - EF                                                      |       |  |
| 08H                                            | CL3_BRT LSB          | 0000 000 | 0         | Head (2012) 50 - EU<br>Read (2012) 51 - DE                                 |       |  |
| 09H                                            | CL3_CURRENT          | 0000 000 | 0         | Read (20(20) 62 - DC                                                       |       |  |
| 0AH                                            | CL4_BRT MSB          | 0000 000 | 0         | Read I2C[2D] 63 - F0                                                       |       |  |
| 0BH                                            | CL4_BRT MSB          | 0000 000 | 0         | Read 12C[2D] 64 - DF                                                       |       |  |
| 0CH                                            | CL4_CURRENT          | 0000 000 | 0         | Read (20) 55 - 65<br>Read (20) 55 - 65                                     |       |  |
| 0DH                                            | CONFIGURATION        | 0111 110 | 0         | Read (20) 66 - FO                                                          |       |  |
| 0EH                                            | STATUS               | 0000 100 | 10        | Read I2C[2D] 68 - 77                                                       |       |  |
| 0FH                                            | FAULT                | 0000 000 | 0         | Read I2C[2D] 69 - 71                                                       |       |  |
| 10H                                            | LED_FAULT            | 0000 000 | 0         | Read (20[2D] 6A - 3F                                                       |       |  |
| 11H                                            | FAULT CLEAR          | 0000 000 | 0         | nead (20/20/366 - 67<br>Read (20/20) 66 - 17                               |       |  |
| 12H                                            | ID                   | 0001 000 | 0         | Read 12C(2D) 6D - EF                                                       |       |  |
| 13H                                            | TEMP MSB             | 0000 010 | 10        | Read I2C[2D] 6E - B0                                                       |       |  |
| 14H                                            | TEMP LSB             | 0001 111 | 10        | Read 12C[2D] 6F - 87                                                       |       |  |
| 15H                                            | DISP LED CURRENT R/O | 0000 110 | 01        | Head (20(20) 70 - CE<br>Read (20(20) 71 - 72                               |       |  |
| 16H                                            | DISP_LED_CURRENT R/O | 1101 111 | 1         | Read (20(2D) 71 - 72                                                       |       |  |
| 17H                                            | DISP_LED_PWM R/O     | 0000 000 | 10        | Read I2C[2D] 73 - DF                                                       |       |  |
| 18H                                            | DISP_LED_PWM R/O     | 0000 000 | 0         | Read I2C[2D] 74 - 35                                                       |       |  |
| 19H                                            | EEPROM_CONTROL       | 1000 000 | 0         | Head (20) 75 - 06<br>Read (20) 75 - 06                                     |       |  |
| 1AH                                            | EEPROM_UNLOCK        | 1110 111 | 1         | Read (20) 77 - 88                                                          |       |  |
|                                                |                      |          |           | Read I2C[2D] 78 - 3E                                                       |       |  |
|                                                |                      |          |           |                                                                            |       |  |
|                                                |                      |          |           |                                                                            | *     |  |
| 00H                                            | DISP_CL1_BRT MSB     | 0        | 0000 0000 | 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 2_CL1_BR 00 | RD WR |  |
| USB-                                           | >Comm4 USB OK        |          | I2D7      | Ver. Dec 13 2013 11:27:08                                                  |       |  |
|                                                |                      |          |           |                                                                            |       |  |

Figure 9-16. History Tab

Usage

![](_page_33_Picture_0.jpeg)

# Virtual COM Port Configuration

When the USB COM port number is bigger than 9, the evaluation program is not able to recognize the board. COM port number can be manually changed from Windows Device Manager. The below figures describe this sequence in Windows7. The Device Manager can be found from the Control Panel. Note that one may need to have Administrator rights to make the changes.

![](_page_33_Picture_4.jpeg)

Figure A-1. Device Manager View. Select the Virtual COM Port

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

![](_page_34_Figure_3.jpeg)

#### Figure A-2. Open Properties by Clicking Right Mouse Button on Virtual COM Port

![](_page_34_Picture_5.jpeg)

Figure A-3. Select Port Settings from the Virtual COM Port Properties

![](_page_35_Picture_0.jpeg)

![](_page_35_Figure_2.jpeg)

![](_page_35_Figure_3.jpeg)

Figure A-4. Select Advanced from Virtual COM Port Properties and Select COM Port Number (9 or smaller)

![](_page_36_Picture_0.jpeg)

# Virtual COM Port Communication

The user can use their own software to communicate with evaluation board trough virtual serial port commands. List of commands is below.

| Command     | Description                                                                                                                                                                                                                                                                | Example (command/response)                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ?           | Check firmware version                                                                                                                                                                                                                                                     | ?<br>TI LP8860 EVK Jul 1 2013 09:58:54<0x0A>                                                                                                                |
| C123456     | Configure ports, <b>12</b> - port number, <b>34</b> – direction<br>byte (output, if bit high. Input otherwise), <b>56</b> –<br>function selection (special function if corresponding<br>bit is high, input/output otherwise), see<br>MSP430F5528 DS for the reference.     | <b>C010300</b><br><i>OK&lt;0x0A&gt;</i><br>Port 01, bits 0 and 1 are configured as outputs.                                                                 |
| 11234       | Serial interface read, <b>12</b> - interface and address for I2C, 0x80 - SPI otherwise I2C, <b>34</b> – register. Returns error code and data.                                                                                                                             | I8010<br>00_28_OK<0x0A><br>SPI Read, register 0x10. Return error 00 (no<br>errors) and date 0x28 (LED_FAULTS for LP8860-<br>Q1)                             |
| O123456     | Serial interface write, <b>12</b> - interface and address for $I^2C$ , 0x80 - SPI otherwise $I^2C$ , <b>34</b> – register, <b>56</b> – data. Returns error code.                                                                                                           | O2D1101<br>00_OK<0x0A><br>I2C Write, device ID 0x2D, register 0x11, data<br>0x01 (clear faults command for LP8860-Q1), return<br>error code, 00 – no errors |
| P0123456789 | <b>0</b> - timer number (0-PWM for brightness ,1-VSYNC,<br>2-SYNC for boost) <b>1</b> - divider (3bit TAxEX0) <b>2345</b> –<br>period (TAxCCR0) <b>6789</b> - duty (TAxCCR1)<br>f <sub>OSC</sub> =24MHz Divider 0->1, 1->2,, 7->8 See<br>MSP430F5528 DS for the reference. | P03EA5F2EE0<br>OK<0x0A><br>PWM 100Hz duty=20%<br>P20000A0005<br>OK<0x0A><br>Boost SYNC 2.2MHz duty=50%                                                      |
| R1234       | Reset masked bits, 12 - port number, 34 - mask                                                                                                                                                                                                                             | <b>R0101</b><br><i>OK&lt;0x0A&gt;</i><br>Reset bit 0 port 01                                                                                                |
| S1234       | Set masked bits, 12 - port number, 34 - mask                                                                                                                                                                                                                               | <b>S0101</b><br><i>OK&lt;0x0A&gt;</i><br>Set bit 0 port 01                                                                                                  |

#### Table B-1. Command Set

![](_page_37_Picture_0.jpeg)

Appendix C SNVU382A–April 2014–Revised June 2014

### LED Load Board

The LED board is intended to be used as the load for LED drivers and can use up to 6 strings and up to 20 LEDs in the string (number of LEDs in use are defined by jumpers). Cree Xlamp ML-B LEDs with maximum current 175 mA and maximum forward voltage 3.5 mA @ 80 mA (3.3 V typ.) are used on the board. For LP8860-Q1 4 strings are assembled.

**NOTE:** The LED board is not included with the EVM -- contact your local TI sales representative if board is needed.

![](_page_37_Picture_5.jpeg)

Figure C-1. LED Load Board - Top Side

![](_page_37_Picture_7.jpeg)

Figure C-2. LED Load Board - Bottom View

![](_page_38_Picture_0.jpeg)

![](_page_38_Figure_3.jpeg)

Figure C-3. LED Load Board - Schematic Diagram

![](_page_39_Picture_0.jpeg)

| Appendix ( | 2 |
|------------|---|
|------------|---|

| Designator                                                               | Description                                          | Manufacturer | Part Number           | Qty |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------|--------------|-----------------------|-----|--|--|--|
| R1, R2, R3, R4,<br>R5, R6                                                | Resistor 10.0 ohm, 1%, 0.1W,<br>0603 (not assembled) | Vishay-Dale  | CRCW060310R0FKEA      | 6   |  |  |  |
| J1, J22, J43,<br>J64, J85,J106,<br>J127                                  | Header, 100mi, 2x2                                   | Samtec       | TSW-102-07-G-D        | 7   |  |  |  |
| J2J21,<br>J23J42,<br>J44J63,<br>J65J84,<br>J86J105,<br>J107J126,<br>J129 | Header, 100mi, 3x1                                   | Samtec       | TSW-103-07-G-S        | 121 |  |  |  |
| J130                                                                     | Header, 100mi, 7x1                                   | Samtec       | TSW-107-07-G-S        | 1   |  |  |  |
| D1D120                                                                   | Cool White SMD LED XLamp<br>mL-B                     | Cree         | MLBAWT-A1-0000-000W51 | 120 |  |  |  |

![](_page_39_Figure_3.jpeg)

![](_page_39_Figure_4.jpeg)

Figure C-4. Forward Voltage for Cree Xlamp ML-B LEDs

![](_page_40_Picture_0.jpeg)

### **Quick Start Guide**

Appendix D contains step-by-step explanations about how to start using the LP8860-Q1 EVM. The assumption is that an optional LED load board with EVM is used.

Some examples refer to eep-files (example: default EEPROM 300kHz.eep). These files are provided as part of the LP8860-Q1EVM software which can be downloaded from the LP8860-Q1 tools folder on the Texas Instruments website.

#### D.1 EVM Board Default Jumper and Cable Positions

![](_page_41_Picture_0.jpeg)

EVM Board Default Jumper and Cable Positions

www.ti.com

Figure D-1 and Figure D-2 show the jumper and cable positions when the EVM is delivered.

**NOTE:** Keep jumper J1 at a 3.3-V setting to ensure safe operation regardless of RAIL value (MSP430 doesn't tolerate a 5-V input or output voltage).

![](_page_42_Picture_0.jpeg)

![](_page_42_Figure_3.jpeg)

Figure D-1. Jumper Positions

![](_page_43_Picture_0.jpeg)

### If charge pump is disabled, jumper J10 CPUMP should be shorted

![](_page_43_Picture_4.jpeg)

Figure D-2. CPUMP Jumper

![](_page_44_Picture_0.jpeg)

EVM Board Default Jumper and Cable Positions

![](_page_45_Picture_1.jpeg)

#### D.2 First Step: Light up LEDs

**NOTE:** Before powering up the EVM, software and driver should be installed.

When powering up the EVM for the first time follow these steps:

- 1. Connect USB cable to connector J4.
- Connect 5V supply to J6. Check jumper J8, it should be at "EXT" (EXT RAIL) position. For basic functionality testing/demo purposes you can also use USB cable connected to J4 to provide 5V. In this case J8 should be at "5V" position.
- 3. Connect V<sub>BATT</sub> (12V) supply to J2.
- 4. Run software:
  - Press Init USB the user should see line stating firmware version. This step is not mandatory if software is opened after USB was connected.

|    |                      | us 🔝 I   | Boost 🛛 🍉 | Faults and | adaptive vol 🔳  |
|----|----------------------|----------|-----------|------------|-----------------|
|    |                      |          |           |            |                 |
|    |                      |          |           |            | Init USB        |
|    |                      | Firmware | TI LP8860 | EVM Oct 3  | 1 2013 08:37:18 |
| b. | Enable the LP8860-Q1 |          |           |            |                 |
|    |                      |          | 📥 Die (   | Control    | D.C.L           |

| 🌸 Pin Control 📷 Brigh   |
|-------------------------|
| Interface should be c   |
| VDDIO/EN pin            |
| Contraction LOW Disable |
| O HIGH Enable           |

c. Not mandatory – check register content, **Read registers**. This will read the register contents of the LP8860-Q1 and make sure GUI reflects the register state.

|     |                | _ |
|-----|----------------|---|
| 0   | peration Help  |   |
|     | VDD/ENABLE     | × |
|     | Read registers |   |
|     | Unlock EEPROM  |   |
|     | Lock EEPROM    |   |
| ł   | Read EEPROM    | H |
|     | Burn EEPROM    |   |
|     | Direct Control |   |
|     | Execute Macro  |   |
| CON | NFIGURATION    |   |

![](_page_46_Picture_0.jpeg)

d. Set LED brightness (%) using the **Display/Cluster 1** control. Default mode (default EEPROM) is set to Display mode.

|   | 🌸 Pin Control  혦 Brightness Controls 😹 Faults ar | nd status 🛛 😹 Boost |
|---|--------------------------------------------------|---------------------|
|   | Brightness                                       | Current             |
| _ | Display/Cluster 1<br>41.6%                       | Display/Cluster 1—  |
|   |                                                  |                     |
|   |                                                  | Churter 2           |

![](_page_47_Picture_0.jpeg)

#### **D.3 Changing EEPROM Parameters**

The procedure is similar for any EEPROM parameter change. Section D.3 describes general procedure. In following chapters some specific examples are given.

- 1. Make sure LED brightness is 0%. Also check that PLL is disabled in LED drivers tab.
- 2. Read EEPROM.
- 3. Unlock EEPROM.
- 4. Change parameter.
- 5. If user wants to save new setting in EEPROM Burn EEPROM. After EEPROM burning toggle VDDIO/EN.

![](_page_47_Picture_10.jpeg)

![](_page_48_Picture_0.jpeg)

#### D.4 Recovering Original EEPROM Parameters

To recover original EEPROM settings:

- 1. Make sure LED brightness is 0%. Also check that PLL is disabled in LED drivers tab.
- 2. Unlock EEPROM, if it is not done already.

| Texas Instruments - LP8860-Q1 evaluatio |       |                |           |     |  |  |
|-----------------------------------------|-------|----------------|-----------|-----|--|--|
| ile                                     | Оре   | ration Help    |           |     |  |  |
| R<br>H                                  | ✓     | VDD/ENABLE     |           | ×   |  |  |
| Η                                       |       | Read registers |           |     |  |  |
| H                                       |       | Unlock EEPRON  | И         |     |  |  |
| H<br>H                                  |       | Lock EEPROM    |           | - [ |  |  |
| H                                       |       | Read EEPROM    |           |     |  |  |
| н                                       |       | Burn EEPROM    |           | EI. |  |  |
| H<br>H                                  |       | Direct Control |           | -1  |  |  |
| н                                       |       | Execute Macro  |           |     |  |  |
| н                                       | CONFI | GURATION       | 0111 1100 |     |  |  |
| н                                       | STATU | 0000 1000      |           |     |  |  |
| н                                       | FAULT |                |           |     |  |  |

3. Load EEPROM setup file, "default EEPROM 300kHz.eep".

![](_page_48_Picture_9.jpeg)

![](_page_49_Picture_0.jpeg)

Recovering Original EEPROM Parameters

4. Burn EEPROM.

![](_page_49_Picture_3.jpeg)

5. Toggle VDDIO/EN to restart the LP8860-Q1.

| Т      | Texas Instruments - LP8860-Q1 evaluatio |                |           |     |  |  |  |  |  |
|--------|-----------------------------------------|----------------|-----------|-----|--|--|--|--|--|
| ile    | ile Operation Help                      |                |           |     |  |  |  |  |  |
| R<br>H | $\checkmark$                            | VDD/ENABLE     |           |     |  |  |  |  |  |
| н      |                                         | Read registers |           |     |  |  |  |  |  |
| н      |                                         | Unlock EEPRON  | 1         | ЪL  |  |  |  |  |  |
| H<br>H |                                         |                |           |     |  |  |  |  |  |
| H      |                                         |                |           |     |  |  |  |  |  |
| н      |                                         | Burn EEPROM    |           | НI  |  |  |  |  |  |
| H      |                                         | Direct Control |           |     |  |  |  |  |  |
| н      |                                         | Execute Macro  |           | ШĻ  |  |  |  |  |  |
| H      | CONFL                                   | GURATION       | 0111 1100 | - 1 |  |  |  |  |  |
| н      | STATU                                   |                |           |     |  |  |  |  |  |
| н      | FAULT                                   |                | 0000 0000 |     |  |  |  |  |  |

Changing Brightness Control from PC/SPI Register Control to PWM Input Pin Control

#### D.5 Changing Brightness Control from I<sup>2</sup>C/SPI Register Control to PWM Input Pin Control

By default (default EEPROM setting of the LP8860-Q1 on the EVM) LED brightness is controlled through the I<sup>2</sup>C/SPI registers.

It is also possible to use an external PWM input signal to control LED brightness. On the EVM PWM signal is generated by MSP430 so that the user does not need to bring external signal for the first testing. To use PWM input pin for brightness control EEPROM setting needs to be modified using the following procedure:

- 1. Make sure LED brightness is 0%. Also check that PLL is disabled in LED drivers tab.
- 2. In LED drivers tab for Display brightness mode select PWM input pin duty cycle control.

![](_page_50_Picture_6.jpeg)

- 3. If the user wants to save new setting in EEPROM, **Burn EEPROM** is selected. After EEPROM burning toggle VDDIO/EN, the device resets.
- 4. In Pin control tab:

Texas

www.ti.com

STRUMENTS

- a. Enable PWM generator (on MSP430, generating PWM input for the LP8860-Q1).
- b. Set PWM input duty cycle **Duty**, %, press **Update** to activate PWM. Another option is to use sliding control. LEDs will turn light on.

| PWM generator         |         |           |                      |          |
|-----------------------|---------|-----------|----------------------|----------|
| Frequency (100-500Hz) | Duty, % |           |                      |          |
| 100                   | 45      | Update    | Enable PWM generator | <b>V</b> |
|                       |         | . <u></u> |                      |          |
|                       |         |           |                      |          |
|                       |         | _         |                      |          |

![](_page_51_Picture_0.jpeg)

Smooth Brightness Change with Slope Control

#### D.6 Smooth Brightness Change with Slope Control

Smooth brightness change is achieved by using slope feature. Slope mode can be linear or advanced, and slope time can be adjusted. In GUI slope is controlled on **Brightness Controls** tab:

| Brightness slope time |        |         |         |  |  |
|-----------------------|--------|---------|---------|--|--|
| 🔘 Oms                 | 🔘 2ms  | • 105ms | 🔿 315ms |  |  |
| ◯ 1ms                 | O 52ms | O 210ms | ○ 511ms |  |  |

Slope control is effective through brightness control registers; brightness change can be controlled by sliding control:

|          | 🌸 Pin Control  혦 Brightness Controls 😹 Faults ar | nd status 🛛 💓 Boost |
|----------|--------------------------------------------------|---------------------|
| <u> </u> | Brightness                                       | Current             |
|          | Display/Cluster 1<br>41.6%                       | Display/Cluster 1—  |
|          |                                                  |                     |
|          | - Churter 2                                      |                     |

However, manually using the sliding control in the GUI may introduce some unintended delay.

Another option is to use external PWM pin for brightness control. See Section D.5 for instructions how to set up this mode. In PWM brightness control mode brightness value is updated to new value defined by **Duty**, % simply by pressing **Update** button:

| PWM generator         |         |        |                      |          |
|-----------------------|---------|--------|----------------------|----------|
| Frequency (100-500Hz) | Duty, % |        |                      |          |
| 100                   | 45      | Update | Enable PWM generator | <b>V</b> |
| 1                     |         |        |                      |          |
| B .0000               |         | _      |                      |          |

![](_page_52_Picture_0.jpeg)

#### D.7 Changing Boost Switching Frequency to 2.2 MHz

By default the boost switching frequency is 300 kHz; see Boost tab in GUI:

| Boost Oscillator |                   |
|------------------|-------------------|
| Frequency        | Spread spectrum   |
| 303.45 kHz 👻     | 🔲 Ext sync enable |

The procedure for testing boost operation at 2.2 MHz :

- 1. Make sure LED brightness is 0%. Also check that PLL is disabled in **LED drivers** tab.
- 2. Unlock EEPROM , if it is not done already.

| Т      | Texas Instruments - LP8860-Q1 evaluatio |     |                |           |     |  |
|--------|-----------------------------------------|-----|----------------|-----------|-----|--|
| ile    | ile Operation Help                      |     |                |           |     |  |
| R<br>H | •                                       | ]   | VDD/ENABLE     |           |     |  |
| н      |                                         |     | Read registers |           |     |  |
| н      |                                         |     | Unlock EEPRON  | 1         | EI. |  |
| H<br>H |                                         |     | Lock EEPROM    |           |     |  |
| Н      |                                         |     | Read EEPROM    |           |     |  |
| н      |                                         |     | Burn EEPROM    |           |     |  |
| H<br>H |                                         |     | Direct Control |           | - 1 |  |
| н      |                                         |     | Execute Macro  |           |     |  |
| н      | CON                                     | IFI | GURATION       | 0111 1100 |     |  |
| н      | STATUS 0000 1000                        |     |                |           |     |  |
| н      | FAU                                     | LT  |                | 0000 0000 |     |  |

3. Load EEPROM setup file for 2.2 MHz, "default EEPROM 2200kHz.eep". This file contains optimized parameter set for 2.2 MHz operation.

| File | Operation Help                   |           |
|------|----------------------------------|-----------|
|      | Save registers<br>Load registers | ue<br>0 1 |
| _    | Save EEPROM                      | 10 1      |
|      | Load EEPROM                      | 00        |
|      | Exit                             | 000       |
| 07H  | CL3 BRT MSB                      | 00000     |

![](_page_53_Picture_0.jpeg)

Changing Boost Switching Frequency to 2.2 MHz

4. Burn EEPROM if necessary.

![](_page_53_Picture_3.jpeg)

5. LEDs can be turned on from Brightness controls tab:

|    | 🌸 Pin Control  🖮 Brightness Controls 😹 Faults ar | nd status 🛛 🗺 Boost |
|----|--------------------------------------------------|---------------------|
| ×. | Brightness                                       | Current             |
| _  | Display/Cluster 1<br>41.6%                       | Display/Cluster 1   |
| _  |                                                  |                     |
|    |                                                  |                     |

![](_page_54_Picture_0.jpeg)

#### D.8 Cluster Mode, 4 LED Strings with Independent Brightness Control

Following the demo setup for cluster mode allows evaluation of the EVM and LED boards with boost providing supply to all four LED strings by disabling boost adaptive mode. Because of this, the LED current is also limited to avoid overheating.

In normal operation an LED string in cluster mode must be connected to a separate supply instead of the LP8860-Q1 boost, if string(s) in display mode use(s) boost for powering.

The procedure for testing cluster mode:

- 1. Make sure LED brightness is 0%. Also check that PLL is disabled in **LED drivers** tab, if you have changed PLL settings from original settings.
- 2. Unlock EEPROM, if it is not done already.

| Texas Instruments - LP8860-Q1 evaluatio |                  |                |           |     |  |
|-----------------------------------------|------------------|----------------|-----------|-----|--|
| ile Operation Help                      |                  |                |           |     |  |
| R<br>H                                  | $\checkmark$     | VDD/ENABLE     |           |     |  |
| н                                       | _                | Read registers |           |     |  |
| н                                       |                  | Unlock EEPRON  | Л         | EI. |  |
| H<br>H                                  |                  | Lock EEPROM    |           |     |  |
| н                                       |                  | Read EEPROM    |           |     |  |
| н                                       |                  | Burn EEPROM    |           | EI. |  |
| H<br>H                                  |                  | Direct Control |           | ΗL  |  |
| н                                       |                  | Execute Macro  |           |     |  |
| н                                       | CONFI            | GURATION       | 0111 1100 |     |  |
| н                                       | STATUS 0000 1000 |                | 0000 1000 |     |  |
| Н                                       | FAULT 0000 0000  |                |           |     |  |

3. Load EEPROM set-up file for cluster mode, "Cluster mode EEPROM.eep". This file contains a ready setup for demo cluster mode operation:

| File | Operation Help                   |                |
|------|----------------------------------|----------------|
|      | Save registers<br>Load registers | <u>ие</u><br>0 |
| _    | Save EEPROM                      | 1              |
| L    | Load EEPROM                      | 0              |
|      | Exit                             | 0              |

![](_page_55_Picture_0.jpeg)

#### Cluster Mode, 4 LED Strings with Independent Brightness Control

www.ti.com

4. Brightness of each LED string can be controlled individually through Cluster 1-4 :

| Pin Control Sightness Controls Sealts a Brightness |
|----------------------------------------------------|
| Display/Cluster 1                                  |
| 33.6%                                              |
| Cluster 2                                          |
| 54.2%                                              |
| Cluster 3                                          |
| 28.6%                                              |
| Cluster 4                                          |
| 66%                                                |

#### D.9 Using EVM without MCU (MSP430), Standalone Mode

**NOTE:** The assumption is that LP8860-Q1 EEPROM has the default content. If modifications have been done, follow the steps described in Section D.4 to restore original EEPROM settings before proceeding.

By default (original EEPROM setting of the LP8860-Q1 on the EVM), LED brightness is controlled through I<sup>2</sup>C/SPI registers.

For operation without MCU, the most straightforward way to control brightness is to use an external PWM input signal.

To use PWM input pin for brightness control, the EEPROM setting needs to be modified using the following procedure:

- 1. Make sure LED brightness is 0%. Also check that PLL is disabled in LED drivers tab.
- 2. Unlock EEPROM.
- 3. In LED drivers tab for Display brightness mode select PWM input pin duty cycle control.

| LED aki     | ng                  |                              |         |
|-------------|---------------------|------------------------------|---------|
| configur    | ation 4 separati    | e LED strings with 90° phase | e shift |
| Display b   | rightness mode-     |                              | ∃ ⊫Dith |
| PWN         | 1 input pin duty c  | ycle control                 | die     |
|             | 1 input duty x Brig | ghtness register             |         |
| 🛛 🔘 🔘 Brigh | tness register      |                              |         |
| 🛛 🔿 Direc   | t PWM control fr    | om PWM input pin             |         |
| PWM inp     | put                 | PWM counter                  | Slop    |
| Hysteres    | is                  | PWM frequency divider        |         |

4. To save new setting in EEPROM - Burn EEPROM.

| Texas Instruments - LP8860-Q1 evaluatio |              |                |           |                        |   |
|-----------------------------------------|--------------|----------------|-----------|------------------------|---|
| ile                                     | Оре          | ration Help    |           |                        |   |
| R                                       | $\checkmark$ | VDD/ENABLE     |           | L                      | 4 |
| H                                       |              | Read registers |           | Ê                      | [ |
| н                                       |              | Unlock EEPRON  | 4         | E.                     |   |
| H<br>H                                  |              | Lock EEPROM    |           | H                      |   |
| н                                       |              | Read EEPROM    |           |                        |   |
| H<br>H                                  | [            | Burn EEPROM    |           | $\left  \cdot \right $ |   |
| H I                                     |              | Direct Control |           |                        |   |
| н                                       |              | Everute Macro  |           |                        | L |
| н                                       |              | Execute Macro  |           |                        | Γ |
| н                                       | CONF         | GURATION       | 0111 1100 |                        |   |
| н                                       | STATU        | S              | 0000 1000 |                        |   |
| н                                       | FAULT        |                | 0000 0000 |                        |   |

Check that EVM is powered as follows:

- Connect 5-V power supply to J6. Check jumper J8, it should be at "EXT" (EXT RAIL) position.
- Connect V<sub>BATT</sub> (12 V) to J2.

To disconnect MCU from the LP8860-Q1 remove all jumpers from J11. External control can then be connected to the left side of the connector J11 (see Figure D-3):

![](_page_57_Picture_0.jpeg)

Using EVM without MCU (MSP430), Standalone Mode

IF IF EN PWM NSS SCLK MISO

Figure D-3. Interface Jumpers

- **FAULT:** The LP8860-Q1 output indicates if fault has been detected. Note: when I<sup>2</sup>C/SPI interface is not used, reason for fault condition cannot be checked from the LP8860-Q1 register.
- SYNC, VSYNC: connect to ground (not used in this example).
- MISO: leave floating (SPI interface output, not used in this example).
- **SDA, SCL:** connect to ground (I<sup>2</sup>C is not used).
- **NSS:** input for clearing faults.
- PWM: connect external PWM signal (100 500 Hz) for brightness control.
- **EN:** enable for the LP8860-Q1.
- IF: connect to ground by connecting J20 to "Manual" and J18 to "I2C" position.

Signal level for FAULT, NSS, and PWM should be the same as EN (which defines the IO level of the LP8860-Q1). The EN level can be from 1.8 V up to the VDD of the LP8860-Q1.

![](_page_58_Picture_0.jpeg)

### **Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Changes from Original (April 2014) to A Revision |                                                         | Page |
|--------------------------------------------------|---------------------------------------------------------|------|
| •                                                | Changed "terminal" to "pin"; preview to production data | 5    |
| •                                                | Deleted values                                          | 7    |
| •                                                | Changed Applications list                               | 7    |
| •                                                | Changed wording in first para, Chapter 6                | 16   |

#### IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products <a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation modules, and samples (<a href="http://www.ti.com/sc/docs/stdterms.htm">http://www.ti.com/sc/docs/stdterms.htm</a>), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated