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Non-Word-Aligned Write to SRAM Errata 
This document provides supplemental information to help you better understand the “Non-word-aligned 
write to SRAM can cause incorrect value to be loaded” erratum including a detailed description of the 
erratum and its effects as well as C code examples that generate the assembly sequence that may cause the 
erratum.  

The “Non-word-aligned write to SRAM can cause incorrect value to be loaded” erratum only presents itself 
when a word is loaded from SRAM, before any other word is loaded, and after a non-word-aligned byte or 
halfword write is performed. The value at the address in SRAM will correctly reflect the write. However, if 
the same aligned word is loaded, before any other load from SRAM occurs, it will not reflect the 
non-word-aligned write. 

The erratum appears in an application as an incorrect value being assigned to a variable, even though the 
source address contains the correct value. However, upon loading a different address in SRAM followed by a 
load of the variable with the incorrect value, the variable will be correct. Due to this very specific and 
uncommon sequence, this condition can only be created in a few different scenarios. 

The assembly sequence shown below causes erroneous values only if these three instructions are executed in 
this order. However, the three instructions do not have to be consecutive, which means that other instructions 
can be placed in between the first and the second instructions or the second and the third instructions and the 
false value will still occur. Other instructions include but are not limited to branches in Flash, accesses to 
non-SRAM locations such as peripherals, and writes to other SRAM locations. 

 
// 
// Load a word-aligned value from an SRAM location into a  
// core register (such as R0) 
// 
LDR        R0, [SP, #+0];   
 
// 
// Store byte (or halfword) from the core register to  
// the SRAM location at a non-word-aligned offset 
// 
STRB     R0, [SP, #+1];  

OR 
STRB     R0, [SP, #+2];     

OR 
STRB     R0, [SP, #+3];        

OR 
STRH   R0, [SP, #+1]; 
  
 
// 
// Load the same word-aligned value of the same SRAM location  
// into a core register (such as R0) 
// 
LDR       R0, [SP, #+0]; 
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Following this sequence, the value loaded into R0, on the last load, will not reflect the STRB or STRH 
instruction. However, the SRAM location where the byte/halfword write took place will correctly reflect the 
change.  

Possible Contributors to the Problem 
The following are three C code cases to show how to potentially make a compiler generate the assembly 
which causes this erratum.  

Pointers (see page 2), structures (see page 3), and unions (see page 5) are common C code methods that can 
be found in user code that may cause this assembly sequence and, therefore, result in incorrect values for 
variables. If using interrupts (see page 6), it is possible to continue the assembly sequence in the interrupt 
handler which could also return incorrect data.  

C Code Cases 
The common element in the non-word-aligned write to SRAM erratum is byte/halfword packing. If 
byte/halfword packing is necessary in your application, you must take extra precautions in order to avoid this 
erratum. 

The following three C code examples show the different likely combinations which can potentially cause the 
non-word-aligned write to SRAM erratum. The cases documented below are not a comprehensive list. They 
are included as examples to help you recognize and identify areas in your own application code that might 
cause the problem to occur. Slight variations to these code cases can still generate this erratum. Following 
each of  the C code examples is an “Analysis” section which provides an examination of the code with the 
purpose of identifying the hazards. 

Case 1 – Pointers 
This case shows how to generate the non-word-aligned write to SRAM erratum through the use of pointers. 

Code Example 
 
  1 // 
  2 // Declare an unsigned long array pulFoo of length 1 
  3 // and an unsigned long ulTemp 
  4 // 
  5 unsigned long pulFoo[1]; 
  6 unsigned long ulTemp; 
  7   
  8 // 
  9 // Function main(); 
 10 // 
 11 void 
 12 main(void) 
 13 { 
 14     // 
 15     // Initialize pulFoo[0] to 0x55555555 
 16     // 
 17     pulFoo[0] = 0x55555555; 
 18   
 19     // 
 20     // Set ulTemp = to the value at pulFoo 
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 21     // 
 22     ulTemp = *pulFoo; 
 23   
 24     // 
 25     // Recast pulFoo to a char pointer at +1 offset 
 26     // and set its value to 0xFF 
 27     // 
 28     *(((char *)pulFoo) + 1) = 0xFF; 
 29   
 30     // 
 31     // Set ulTemp = to the value at pulFoo 
 32     // 
 33     ulTemp = *pulFoo; 
 34 } 

Analysis 

Referring back to the set of assembly instructions on page 1, the first assembly instruction in the sequence is 
the LDR (load) instruction. In this case, that instruction is generated by the compiler in line 22: 
 
22     ulTemp = *pulFoo; 
 

Following the sequence is the STRB or STRH instruction. In this case, it is the STRB instruction and occurs 
in line 28: 
 
28     *(((char *)pulFoo) + 1) = 0xFF; 
 

The problem with this case is that this line recasts the unsigned long pointer pulFoo to a char pointer and 
then increments the index. This means that the location being pointed to is no longer word-aligned. The value 
at this location is then being assigned a value of 0xFF (write a byte, STRB). The final instruction in the 
sequence takes place at line 33: 
 
33     ulTemp = *pulFoo; 
 

This generates an LDR instruction of the same address in line 22. This is the critical point in the problem. If a 
load of any other memory location had occurred before this line, the correct value would be loaded into 
ulTemp. 

Case 2 – Structures 
This case shows how to generate the non-word-aligned write to SRAM erratum through the use of structures. 

Code Example 
 
 1 // 
 2 // Declare a structure named tFoo with two fields (usStatus and usValue) 
 3 // of length unsigned short 
 4 // 
 5 typedef struct 
 6 { 
 7     unsigned short usStatus; 
 8     unsigned short usValue; 
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 9 } 
10 tFoo; 
11   
12 // 
13 // Function main(); 
14 // 
15 void 
16 main(void) 
17 { 
18     // 
19     // Initialize two tFoo structures 
20     // and initialize sFooA to { 1, 0x00 } 
21     // Then initialize an unsigned short usTemp to sFooA.usStatus 
22     // 
23     tFoo sFooA = { 1, 0x00 }; 
24     otFoo sFo B; 
25     unsigned short usTemp = sFooA.usStatus; 
26   
27     // 
28     // Set usTemp equal to sFooA.usStatus 
29     // 
30     usTemp = sFooA.usStatus; 
31   
32     // 
33     // Set sFooA.usValue to 0xFF 
34     // 
35     sFooA.usValue = 0xFF; 
36   
37     // 
38     // Set sFooB equal to sFooA 
39     // 
40     sFooB = sFooA; 
41   
42     // 
43     // Set usTemp equal to sFooB.usValue 
44     // 
45     usTemp = sFooB.usValue; 
46 } 

Analysis 

Referring back to the set of assembly instructions on page 1, the first assembly instruction in the sequence is 
the LDR (load) instruction. In this case, that instruction is generated by the compiler in line 25: 
 
25     unsigned short usTemp = sFooA.usStatus; 
 

This line assigns the variable usTemp to the value at sFooA.usStatus. The variable sFooA.usStatus is 
word-aligned, which, therefore, matches the first line of the assembly sequence. Following the LDR 
instruction is the STRB or STRH instruction. In this case, it is an STRB instruction and occurs in line 35: 
 
35     sFooA.usValue = 0xFF; 
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The problem with this case is that this line assigns sFooA.usValue to 0xFF (write a byte, STRB) which is 
at a non-word-aligned address location. The final instruction (load the same aligned address, LDR) in the 
sequence takes place at line 40: 
 
40     sFooB = sFooA; 
 

This generates an LDR instruction of the same address in line 25, which again, is the critical point in the 
problem. Line 45 extracts the incorrect value (sFooB.usValue) from sFooB and assigns it to usTemp. If a 
load of any other memory location had occurred before this line, the right value would be loaded into 
sFooB.usValue and, therefore, usTemp would be correct. 

Case 3 – Unions 
This case shows how to generate the non-word-aligned write to SRAM erratum through the use of unions. 

Code Example 
 
 1 // 
 2 // Declare a union named uFoo with two fields (ulStatus and pcValue) 
 3 // of length unsigned long and char respectively. 
 4 // The pcValue array is of length 2 
 5 // 
 6 union Foo 
 7 { 
 8     unsigned long ulStatus; 
 9     char pcValue[2]; 
10 }; 
11   
12 // 
13 // Function main(); 
14 // 
15 void 
16 main(void) 
17 { 
18     // 
19     // Initialize a Foo union named uFoo 
20     // and a unsigned variable named ulTemp 
21     // 
22     union Foo uFoo; 
23     unsigned long ulTemp; 
24   
25     // 
26     // Set uFoo.ulStatus to 0x00, uFoo.pcValue[0] to 0xAA 
27     // and uFoo.pcValue[1] to 0xAA 
28     // 
29     uFoo.ulStatus = 0x00; 
30     uFoo.pcValue[0] = 0xAA; 
31     uFoo.pcValue[1] = 0xAA; 
32   
33     // 
34     // Set ulTemp equal to uFoo.pcValue[0] 
35     // 
36     ulTemp = uFoo.pcValue[0]; 
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37   
38     // 
39     // Set uFoo.pcValue[1] = 0xFF 
40     // 
41     uFoo.pcValue[1] = 0xFF; 
42     
43     // 
44     // Set ulTemp equal to uFoo.ulStatus 
45     // 
46     ulTemp = uFoo.ulStatus; 
47 } 

Analysis 

Referring back to the set of assembly instructions on page 1, the first assembly instruction in the sequence is 
the LDR (load) instruction. In this case, that instruction is generated by the compiler in line 36: 
 
36     ulTemp = uFoo.pcValue[0]; 
 

This line assigns the variable ulTemp to the value at uFoo.pcValue[0]. The variable uFoo.pcValue[0] 
is word-aligned, which, therefore, matches the first line of the assembly sequence. Following the LDR 
instruction is the STRB or STRH instruction. In this case it is an STRB instruction and occurs in line 41: 
 
41     uFoo.pcValue[1] = 0xFF; 
 

The problem with this case is this line assigns uFoo.pcValue[1] to 0xFF (write a byte, STRB) which is at 
a non-word-aligned address location. The final instruction (load the same aligned address, LDR) in the 
sequence takes place at line 46: 
 
46     ulTemp = uFoo.ulStatus; 
 

This generates an LDR instruction of the same address in line 36, which is critical to the problem. If a load of 
any other memory location had occurred before this line, the correct value would be loaded into ulTemp. 

Compilers 
The type of compiler and optimization settings used in your application will also play a role in whether you 
are affected by the non-word-aligned write to SRAM erratum. 

Some testing has been performed on a few different compilers including the following: 
• CCS compiler version: TI v4.9.6 
• IAR compiler version: 6.40.1.53790 
• KEIL compiler version: v4.1.0.894 

Each compiler behaves a little differently with respect to this erratum. The behavior for each compiler is not 
guaranteed due to the large number of compiler and tool version combinations. 

For the KEIL compiler, the C code examples above must be written to force the compiler to not perform any 
optimizations in order for the erratum to be encountered. This is done by declaring a variable “volatile” (that 
is, “volatile int foo” as opposed to “int foo”). If this is done, KEIL will leave that variable un-optimized and 
as a result will generate the problematic sequence with the right code. 
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CCS and IAR will generate the problematic assembly sequence, without the use of volatiles, when coding 
with the provided C code examples. 

Special Cases 
The following non-factors inserted into the assembly code do not prevent the non-word-aligned write to 
SRAM erratum from occurring: 

• Branches (when running from Flash memory versus SRAM) 

• Accesses to non-SRAM locations such as peripherals  

• Writes to other SRAM locations 

For example, your code can include the following and the non-word-aligned write to SRAM erratum will still 
occur: 

• Load aligned word 
• can have non-factors here 

• Write non-word-aligned byte at +1 offset 
• can have non-factors here 

• Load aligned word 

Interrupts 
An interrupt could trigger at any time and could disrupt or continue the sequence at any point. Therefore, if 
you are using interrupts in your application and implementing any C code similar to the above three cases, 
you must take extra caution. One indication that you may be affected is if you are checking/modifying an 
non-word-aligned byte or halfword variable in your interrupt handler and notice that this value is periodically 
incorrect. If this happens, you can do either of the following: 
• Perform a dummy load of a volatile 32-bit-aligned word from a different SRAM address at the beginning 

of your interrupt routine 
 
OR 
 

• Change the variable type to unsigned long and confirm that this has solved the issue 

Debuggers 
Debuggers can mask the effect of the non-word-aligned write to SRAM erratum if single-stepping through 
the problematic assembly sequence. To debug this erratum, set a break point after the code in question and 
run to the break point to ensure that the debugger does not counteract the effects. 

Conclusion 
Due to the fact that mixed-size access is typically not used and that the non-word-aligned write to SRAM 
erratum is sensitive to a specific sequence of instructions, encountering the effects of this erratum are 
uncommon. To exhibit this erratum, you must write some specific code cases, which are not common C  
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code. If the presented C code cases (and any similar variation of them) and corresponding assembly code 
sequences are avoided, then your device will not be affected. 
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