
A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3 1
10/18/2012

Non-Word-Aligned Write to SRAM Errata
This document provides supplemental information to help you better understand the “Non-word-aligned
write to SRAM can cause incorrect value to be loaded” erratum including a detailed description of the
erratum and its effects as well as C code examples that generate the assembly sequence that may cause the
erratum.

The “Non-word-aligned write to SRAM can cause incorrect value to be loaded” erratum only presents itself
when a word is loaded from SRAM, before any other word is loaded, and after a non-word-aligned byte or
halfword write is performed. The value at the address in SRAM will correctly reflect the write. However, if
the same aligned word is loaded, before any other load from SRAM occurs, it will not reflect the
non-word-aligned write.

The erratum appears in an application as an incorrect value being assigned to a variable, even though the
source address contains the correct value. However, upon loading a different address in SRAM followed by a
load of the variable with the incorrect value, the variable will be correct. Due to this very specific and
uncommon sequence, this condition can only be created in a few different scenarios.

The assembly sequence shown below causes erroneous values only if these three instructions are executed in
this order. However, the three instructions do not have to be consecutive, which means that other instructions
can be placed in between the first and the second instructions or the second and the third instructions and the
false value will still occur. Other instructions include but are not limited to branches in Flash, accesses to
non-SRAM locations such as peripherals, and writes to other SRAM locations.

//
// Load a word-aligned value from an SRAM location into a
// core register (such as R0)
//
LDR R0, [SP, #+0];

//
// Store byte (or halfword) from the core register to
// the SRAM location at a non-word-aligned offset
//
STRB R0, [SP, #+1];

OR
STRB R0, [SP, #+2];

OR
STRB R0, [SP, #+3];

OR
STRH R0, [SP, #+1];

//
// Load the same word-aligned value of the same SRAM location
// into a core register (such as R0)
//
LDR R0, [SP, #+0];

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3

 2
10/18/2012

Following this sequence, the value loaded into R0, on the last load, will not reflect the STRB or STRH
instruction. However, the SRAM location where the byte/halfword write took place will correctly reflect the
change.

Possible Contributors to the Problem
The following are three C code cases to show how to potentially make a compiler generate the assembly
which causes this erratum.

Pointers (see page 2), structures (see page 3), and unions (see page 5) are common C code methods that can
be found in user code that may cause this assembly sequence and, therefore, result in incorrect values for
variables. If using interrupts (see page 6), it is possible to continue the assembly sequence in the interrupt
handler which could also return incorrect data.

C Code Cases
The common element in the non-word-aligned write to SRAM erratum is byte/halfword packing. If
byte/halfword packing is necessary in your application, you must take extra precautions in order to avoid this
erratum.

The following three C code examples show the different likely combinations which can potentially cause the
non-word-aligned write to SRAM erratum. The cases documented below are not a comprehensive list. They
are included as examples to help you recognize and identify areas in your own application code that might
cause the problem to occur. Slight variations to these code cases can still generate this erratum. Following
each of the C code examples is an “Analysis” section which provides an examination of the code with the
purpose of identifying the hazards.

Case 1 – Pointers
This case shows how to generate the non-word-aligned write to SRAM erratum through the use of pointers.

Code Example

 1 //
 2 // Declare an unsigned long array pulFoo of length 1
 3 // and an unsigned long ulTemp
 4 //
 5 unsigned long pulFoo[1];
 6 unsigned long ulTemp;
 7
 8 //
 9 // Function main();
 10 //
 11 void
 12 main(void)
 13 {
 14 //
 15 // Initialize pulFoo[0] to 0x55555555
 16 //
 17 pulFoo[0] = 0x55555555;
 18
 19 //
 20 // Set ulTemp = to the value at pulFoo

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3 3
10/18/2012

 21 //
 22 ulTemp = *pulFoo;
 23
 24 //
 25 // Recast pulFoo to a char pointer at +1 offset
 26 // and set its value to 0xFF
 27 //
 28 *(((char *)pulFoo) + 1) = 0xFF;
 29
 30 //
 31 // Set ulTemp = to the value at pulFoo
 32 //
 33 ulTemp = *pulFoo;
 34 }

Analysis

Referring back to the set of assembly instructions on page 1, the first assembly instruction in the sequence is
the LDR (load) instruction. In this case, that instruction is generated by the compiler in line 22:

22 ulTemp = *pulFoo;

Following the sequence is the STRB or STRH instruction. In this case, it is the STRB instruction and occurs
in line 28:

28 *(((char *)pulFoo) + 1) = 0xFF;

The problem with this case is that this line recasts the unsigned long pointer pulFoo to a char pointer and
then increments the index. This means that the location being pointed to is no longer word-aligned. The value
at this location is then being assigned a value of 0xFF (write a byte, STRB). The final instruction in the
sequence takes place at line 33:

33 ulTemp = *pulFoo;

This generates an LDR instruction of the same address in line 22. This is the critical point in the problem. If a
load of any other memory location had occurred before this line, the correct value would be loaded into
ulTemp.

Case 2 – Structures
This case shows how to generate the non-word-aligned write to SRAM erratum through the use of structures.

Code Example

 1 //
 2 // Declare a structure named tFoo with two fields (usStatus and usValue)
 3 // of length unsigned short
 4 //
 5 typedef struct
 6 {
 7 unsigned short usStatus;
 8 unsigned short usValue;

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3 4
10/18/2012

 9 }
10 tFoo;
11
12 //
13 // Function main();
14 //
15 void
16 main(void)
17 {
18 //
19 // Initialize two tFoo structures
20 // and initialize sFooA to { 1, 0x00 }
21 // Then initialize an unsigned short usTemp to sFooA.usStatus
22 //
23 tFoo sFooA = { 1, 0x00 };
24 otFoo sFo B;
25 unsigned short usTemp = sFooA.usStatus;
26
27 //
28 // Set usTemp equal to sFooA.usStatus
29 //
30 usTemp = sFooA.usStatus;
31
32 //
33 // Set sFooA.usValue to 0xFF
34 //
35 sFooA.usValue = 0xFF;
36
37 //
38 // Set sFooB equal to sFooA
39 //
40 sFooB = sFooA;
41
42 //
43 // Set usTemp equal to sFooB.usValue
44 //
45 usTemp = sFooB.usValue;
46 }

Analysis

Referring back to the set of assembly instructions on page 1, the first assembly instruction in the sequence is
the LDR (load) instruction. In this case, that instruction is generated by the compiler in line 25:

25 unsigned short usTemp = sFooA.usStatus;

This line assigns the variable usTemp to the value at sFooA.usStatus. The variable sFooA.usStatus is
word-aligned, which, therefore, matches the first line of the assembly sequence. Following the LDR
instruction is the STRB or STRH instruction. In this case, it is an STRB instruction and occurs in line 35:

35 sFooA.usValue = 0xFF;

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3 5
10/18/2012

The problem with this case is that this line assigns sFooA.usValue to 0xFF (write a byte, STRB) which is
at a non-word-aligned address location. The final instruction (load the same aligned address, LDR) in the
sequence takes place at line 40:

40 sFooB = sFooA;

This generates an LDR instruction of the same address in line 25, which again, is the critical point in the
problem. Line 45 extracts the incorrect value (sFooB.usValue) from sFooB and assigns it to usTemp. If a
load of any other memory location had occurred before this line, the right value would be loaded into
sFooB.usValue and, therefore, usTemp would be correct.

Case 3 – Unions
This case shows how to generate the non-word-aligned write to SRAM erratum through the use of unions.

Code Example

 1 //
 2 // Declare a union named uFoo with two fields (ulStatus and pcValue)
 3 // of length unsigned long and char respectively.
 4 // The pcValue array is of length 2
 5 //
 6 union Foo
 7 {
 8 unsigned long ulStatus;
 9 char pcValue[2];
10 };
11
12 //
13 // Function main();
14 //
15 void
16 main(void)
17 {
18 //
19 // Initialize a Foo union named uFoo
20 // and a unsigned variable named ulTemp
21 //
22 union Foo uFoo;
23 unsigned long ulTemp;
24
25 //
26 // Set uFoo.ulStatus to 0x00, uFoo.pcValue[0] to 0xAA
27 // and uFoo.pcValue[1] to 0xAA
28 //
29 uFoo.ulStatus = 0x00;
30 uFoo.pcValue[0] = 0xAA;
31 uFoo.pcValue[1] = 0xAA;
32
33 //
34 // Set ulTemp equal to uFoo.pcValue[0]
35 //
36 ulTemp = uFoo.pcValue[0];

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3 6
10/18/2012

37
38 //
39 // Set uFoo.pcValue[1] = 0xFF
40 //
41 uFoo.pcValue[1] = 0xFF;
42
43 //
44 // Set ulTemp equal to uFoo.ulStatus
45 //
46 ulTemp = uFoo.ulStatus;
47 }

Analysis

Referring back to the set of assembly instructions on page 1, the first assembly instruction in the sequence is
the LDR (load) instruction. In this case, that instruction is generated by the compiler in line 36:

36 ulTemp = uFoo.pcValue[0];

This line assigns the variable ulTemp to the value at uFoo.pcValue[0]. The variable uFoo.pcValue[0]
is word-aligned, which, therefore, matches the first line of the assembly sequence. Following the LDR
instruction is the STRB or STRH instruction. In this case it is an STRB instruction and occurs in line 41:

41 uFoo.pcValue[1] = 0xFF;

The problem with this case is this line assigns uFoo.pcValue[1] to 0xFF (write a byte, STRB) which is at
a non-word-aligned address location. The final instruction (load the same aligned address, LDR) in the
sequence takes place at line 46:

46 ulTemp = uFoo.ulStatus;

This generates an LDR instruction of the same address in line 36, which is critical to the problem. If a load of
any other memory location had occurred before this line, the correct value would be loaded into ulTemp.

Compilers
The type of compiler and optimization settings used in your application will also play a role in whether you
are affected by the non-word-aligned write to SRAM erratum.

Some testing has been performed on a few different compilers including the following:
• CCS compiler version: TI v4.9.6
• IAR compiler version: 6.40.1.53790
• KEIL compiler version: v4.1.0.894

Each compiler behaves a little differently with respect to this erratum. The behavior for each compiler is not
guaranteed due to the large number of compiler and tool version combinations.

For the KEIL compiler, the C code examples above must be written to force the compiler to not perform any
optimizations in order for the erratum to be encountered. This is done by declaring a variable “volatile” (that
is, “volatile int foo” as opposed to “int foo”). If this is done, KEIL will leave that variable un-optimized and
as a result will generate the problematic sequence with the right code.

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Rev. 1.3 7
10/18/2012

CCS and IAR will generate the problematic assembly sequence, without the use of volatiles, when coding
with the provided C code examples.

Special Cases
The following non-factors inserted into the assembly code do not prevent the non-word-aligned write to
SRAM erratum from occurring:

• Branches (when running from Flash memory versus SRAM)

• Accesses to non-SRAM locations such as peripherals

• Writes to other SRAM locations

For example, your code can include the following and the non-word-aligned write to SRAM erratum will still
occur:

• Load aligned word
• can have non-factors here

• Write non-word-aligned byte at +1 offset
• can have non-factors here

• Load aligned word

Interrupts
An interrupt could trigger at any time and could disrupt or continue the sequence at any point. Therefore, if
you are using interrupts in your application and implementing any C code similar to the above three cases,
you must take extra caution. One indication that you may be affected is if you are checking/modifying an
non-word-aligned byte or halfword variable in your interrupt handler and notice that this value is periodically
incorrect. If this happens, you can do either of the following:
• Perform a dummy load of a volatile 32-bit-aligned word from a different SRAM address at the beginning

of your interrupt routine

OR

• Change the variable type to unsigned long and confirm that this has solved the issue

Debuggers
Debuggers can mask the effect of the non-word-aligned write to SRAM erratum if single-stepping through
the problematic assembly sequence. To debug this erratum, set a break point after the code in question and
run to the break point to ensure that the debugger does not counteract the effects.

Conclusion
Due to the fact that mixed-size access is typically not used and that the non-word-aligned write to SRAM
erratum is sensitive to a specific sequence of instructions, encountering the effects of this erratum are
uncommon. To exhibit this erratum, you must write some specific code cases, which are not common C

A D D I T I O N A L E R R A T A I N F O R M A T I O N

Copyright © 2012 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas
Instruments. ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may
be claimed as the property of others.

Texas Instruments
108 Wild Basin Rd., Suite 350
Austin, TX 78746
http://www.ti.com/stellaris

Rev. 1.3 8
10/18/2012

code. If the presented C code cases (and any similar variation of them) and corresponding assembly code
sequences are avoided, then your device will not be affected.

References
The following related documents and software are available on the Stellaris web site at www.ti.com/stellaris:
• Stellaris® Microcontroller Data Sheet
• Stellaris® Microcontroller Errata

http://www.luminarymicro.com/

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Possible Contributors to the Problem
	C Code Cases
	Case 1 – Pointers
	Code Example
	Analysis

	Case 2 – Structures
	Code Example
	Analysis

	Case 3 – Unions
	Code Example
	Analysis

	Compilers

	Special Cases
	Interrupts
	Debuggers

	Conclusion
	References

