IR Filter Design on the
TMS320C54x DSP

Mandy Tsai

Field Application Engineer Customer Application Center
Texas Instruments Taiwan Limited

SPRAO79
May 1996

J@ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version
of relevant information to verify, before placing orders, that the information being relied on is current.

Tl warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use
of Tl products in such applications requires the written approval of an appropriate Tl officer. Questions
concerning potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance,
or infringement of patents or services described herein. Nor does TI warrant or represent that any
license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which
such semiconductor products or services might be or are used.

Copyright 00 1996, Texas Instruments Incorporated

Contents
Title

ABSTRACT

IIRFILTER DESIGN .. e e
Efficient IR Filter Design.

'C54x CODE AND EXPERIMENT ... e
Filter Specifications. i
ExperimentResults.

SUMMARY
APPENDIX A — IIR FILTER PROGRAM IN 'C54x CODE

APPENDIX B — EFFICIENT IIR FILTER PROGRAM IN 'C54x CODE

List of lllustrations

Figure Title

1 Direct Form | of a Second-Order IR Filter.
2 IIR Filter Poles and Zeros Interchange.....................
3 Canonical Structure of Second-Order IR Filter.
4 Canonical Direct Form of a High-Order IR Filter.
5 Power to Integer Conversian.

ABSTRACT

Digital filter design plays an important role in the digital signal processor (DSP) field. The two methods of designing
a digital filter are infinite-impulse response (lIR) and finite-impulse response (FIR). If an IIR filter satisfies the same
specifications as a FIR filter, the lIR filter is usually faster and requires less memory. lIR filters are not easy to implemen
with a fixed-point DSP. The feedback path of the IIR filter causes a calculation overflow. Scaling the input data corrects
this overflow problem. The scaling results in a small output signal. To recover the output signal level, the last stage of
the hardware design uses an operational amplifier to boost the output signal level. This application report shows how
to eliminate the operational amplifier and input calculation by combining the cascaded second-order IIR filters.

IR FILTER DESIGN
A high-order IIR filter design simplifies to several second-order filters. The equation for a high-order filter is:

H(Z) = H(2 X Hy(2) X Hz(2 X Hy(@) x - X Hp(2) M
wheren is the order of the filter.
Dividing equation (1) by several second-order filters gives:

— -1 _ -1
1-ayz ™ - ayz
Wherer(z) is a second-order filter akdE=1, 2, 3, 4, ...

Hk(Z) =

Figure 1 shows the structure of the second-order IIR filter. The IIR filter provides separate delay buffers for the input
and output sequences. This filter structure is Direct Form |. The output from the filter is:

y(n) = ally(n -1+ a12y(n —2) + x(n) + bllx(n -1+ b12><(n - 2) @)

m(n)

x(n) y(n)

Figure 1. Direct Form | of a Second-Order IIR Filter

The second-order IIR filter is two cascaded sections: the zeros and the poles. Since IIR filters are linear systems, the two
sections are interchangeable. The sections generate the same output in either order (see Figure 2).

Since the output of the delays in Figure 2 are identical, one set of delays is eliminated from the filter structure. The

structure of Figure 3 is equivalent to that of Figure 2, while using fewer delay elements to define the system. This filter
structure is Direct Form | and is known as a canonical structure.

!

Z—l

d(n)

x(n) y(n)

Figure 2. IIR Filter Poles and Zeros Interchange

d(n)
y(n)

Figure 3. Canonical Structure of Second-Order IIR Filter

The concept of eliminating hardware (the delay buffers) from a design is easy to understand, but how does this translate
to the software? A digital lIR filter uses a fixed-point DSP, either ‘C5x or ‘C54x. Data overflow in the DSP is a problem
due to the limitations of its 32-bit architecture. The feedback path or poles of the IIR filter are the cause of the overflow.
The filter gain (from the pole section) increases and generates an output data overflow. This data value does not fit within
the 32 bits of the CPU.

To prevent the overflow problem, the input data value is scaled down before entering the filter system. In a filter
application the input data value is very small, resulting in an output without overflow. The scaling of the input causes
a small output value.

If the programmer follows the canonical structure of Figure 3 to design the code, two problems emerge: the programmer
wastes time adjusting the input values to avoid output overflow and the system requires additional hardware, an
operational amplifier, to recover the level on the output signal. A modified Direct Form | structure solves these problems.
Figure 4 shows the canonical structure of Direct Form I.

x(n) y(n)

Zeros Poles Zeros (b) Poles Zeros Poles

X(n) y(n)

an2

Figure 4. Canonical Direct Form of a High-Order IIR Filter

Efficient IIR Filter Design

The IIR filter using Direct Form | (see Figure 1) calculates the zeros in the forward path, then the poles in the feedback
path. The intermittent result m(n) is a small value due to the zeroes calculation. The pole calculation, d(n) of Figure 2
provides a value larger than m(n). The output data, y(n) assumes a proper level by passing the interim value through the
pole feedback path. This method for filter design eliminates overflow concerns.

Figure 4 shows the high-order IIR filter as a number of cascaded second-order filters. Each second-order IIR uses Direct
Form I. The number of delay buffers is reduced by combining the pgles{a) of a second-order IIR filter with the
zeros (B4, byy) of the next IIR filter section. This reduction produces the canonical direct form.

The software for the cascaded sections uses the repeat block instruction. The overhead software comes from the
calculations for the first zero section {lb12) and the last pole portion{ga,2). The output data, y(n), is at a normal
level, thus this form eliminates the operational amplifier of the original IIR filter.

‘C54x CODE AND EXPERIMENT

Two software programs are in the appendixes of this report. The program in Appendix A represents the original lIR filter;
the one in Appendix B represents the efficient filter design. Both programs use the ‘C54x code.

Filter Specifications

A low-pass filter meets the following frequency standards: a cut-off frequency for the pass band of 200 Hz and a cut-off
frequency for the stop band of 500 Hz.

Figure 5 shows how the power level of the input signal converts to integers ranginrglB660 to 16000.

S5V—T1— 32767 T [
25V |— oot 16384 —
0o—— /\/ 0o ——
25V |+ c-------------- -16384 —T
-BV—— -32768 ——
Signal Power Integers

Figure 5. Power to Integer Conversion

Experiment Results

Table 1 compares the IIR filters and a high-order FIR filter. The modified IIR filter achieves the same system
functionality as the high-order FIR with a second-order design. The original IIR filter output signal reduces the input
signal by 100. This results in the addition of an operational amplifier to the hardware of the system. The modified IIR
eliminates the op amp. The modified IIR needs to scale the input signal, but not to the extent required in the original IIR
filter design.

Table 1. Comparison of IR and FIR Filters

Filter IIR Modified IR FIR Symmetric FIR
Algorithm Elliptic Elliptic Kaiser Kaiser
Order of Filter 4 4 32 32
) 9-Bit Left Shift . .
Input Scaling (1/512) 5-Bit Left Shift (1/32) None None
Output Level ~1000 ~ 1000 (small) —16000 ~ 16000 —-16000 ~ 16000 —16000 ~ 16000
(normal) (normal) (normal)
Program Size (words) 56 61 65 53
Data Size (words) 8 8 32 32
Cycles/Output 27 22 36 28

SUMMARY

An 1R filter design using a modified structure, canonical Direct Form |, improves upon the original lIR filter design
intwo ways: the scaling of the input signal eliminates overflow in the CPU and is no longer necessary, and the operational
amplifier is eliminated. The modified IIR filter requires scaling of the input signal to provide a proper output signal
without the additional hardware. This input scaling is not as great as in the original IIR filter.

APPENDIX A — IIR FILTER PROGRAM IN ‘C54X CODE

* * * * * * *

; Original IR Low pass filter design

; Language : C54x

; Filter type : Elliptic Filter

; Filter order : 4 order (cascade: 2nd order + 2nd order)
; cut freq. of pass band : 200 Hz

; cut freq. of stop band : 500 Hz

; Designer : Mandy Tsai

; Date : Feb,20,1996

; BO

; >+ > d(n) X——>+
; I I I

; | Al | Bl |

+<—x—d(h-1) —x—>+
; I I I
| A2 | B2 |
+<—-x—d(n-2) —x—>+

second order IR

*kkkkkkkk * *kkkkkkkk * *

.mmregs
.def begin, N
N set 2 : number of cascade 2nd order section
.bss d,3*2 ;delay buffer in 2nd order
.bss X1 ;input buffer
.bss Y1 ;output buffer
.data

table

*

* second-order section # 01

*

.word —-26778 A2
.word 29529 ;AL/2
.word 19381 ;B2
.word -23184 ;B1
.word 19381 :BO

* second-order section # 02

.word —-30497 A2
.word 31131 ;AL/2
.word 11363 ;B2
.word —-20735 ;B1

.word 11363

.sect "vectors”

B begin
begin .text

:BO

:define a reset vector

;the start of the program

STM #1111111110100000b,PMST ;initial PMST
STM #0010001100000000b,ST1 ;initial ST1

STM #0,SWWSR
SSBX OVM
SSBX FRCT

SSBX SXM
STM #X,AR1
STM #Y,AR2
STM #d,AR3
RPT A#5
STL AXAR3+
STM #2,AR0
INLOOP:
STM #d+5,AR3
STM #table,AR4
PORTR 100H, *AR1

LD *AR1,7,A
STM #N-1,BRC
RPT ELOOP-1
LOOP:
* Feedback path
MAC *AR4+,*AR3-,A
MAC *AR4,*AR3,A
MAC *AR4+*AR3-A
STH A*AR3+0
* Forward path
MPY *AR4+*AR3-A
MAC *AR4+,*AR3,A
DELAY *AR3-
MAC *AR4+,*AR3,A
DELAY *AR3-
ELOOP:
STH A*AR2
PORTW *AR2, 200h
B INLOOP

:zero wait state
;OVM=1
;FRCT=1 : output of multiply will left
shift 1 bit automatically
; SXM=1

;AR3:d(n),d(n-1),d(n-2)
;initial d(n),d(n-1),d(n—2)=0

;initial constant offset of ARn addressing

;AR3:d(n),d(n-1),d(n-2)
;AR4:coeff of IIR filter A2,A1,B2,B1,B0
;Read data from the port and save
;in data array.
:the connection between file and 1/0
;port is defined in siminit.cmd
;scaling the input

;calculating N sections of 2nd order IIR

;input+d(n—2)*A2
;input+d(n—-2)*A2+d(n-1)*A1

;d(n) = input+d(n—2)*A2+d(n—-1)*Al

;d(n-2)*B2
:d(n—2)*B2+d(n-1)*B1
;d(n—2)=d(n-1)
;d(n—-2)*B2+d(n—1)*B1+d(n)*BO
;d(n—-1)=d(n)

;output=d(n-2)*B2+d(n-1)*B1+d(n)*BO
;write the result to a file
;calculating next output

APPENDIX B — EFFICIENT IIR FILTER PROGRAM IN ‘C54X CODE

* * * * * * *

; New IIR Low pass filter design

; Language : C54x

; Filter type : Elliptic Filter

; Filter order : 4 order (cascade: 1 order + 2nd order + 1 order)
; canonical direct from |

; cut freq. of pass band : 200 Hz

; cut freq. of stop band : 500 Hz

; Designer : Mandy Tsai

: Date : Feb,20,1996

.mmregs
.def begin, N
N set 2 ; length of 1IR filter
Q_FACT .set 32768
.bss d,3*2
.bss X1
bss VY1
.data
*Q31 format
table

*
)

;* SECOND-ORDER SECTION # 01

ok
)

.word 19381 B2
.word -23184 ;B1
.word 19381 ;BO
.word —-26778 ‘A2
.word 29529 (AL/2

*
)

;* SECOND-ORDER SECTION # 02

ok
)

.word 11363 ;B2
.word —-20735 ;B1
.word 11363 ;BO
.word —-30497 ‘A2
.word 31131 (AL/2
.sect "vectors” :define a reset vector
B begin
begin .text ;the start of the program

STM #1111111110100000b,PMST :initial PMST
STM #0010001100000000b,ST1 ;initial ST1
STM #0,SWWSR ;zero wait state

INLOOP:

LOOP:

ELOOP:

SSBX OVM
SSBX FRCT

1 bit automatically
SSBX SXM
STM #d,AR3
RPTZ A#7

STL A*AR3+
STM #2,AR0

STM #d+7,AR3
STM #table, AR4
MPY *AR4+*AR3- A
MAC *AR4+*AR3,A
DELAY *AR3-

MAC *AR4+*AR3,A
DELAY *AR3
PORTR 100H,*AR3
LD *AR3,B

STH B,11,*AR3-
STM #N-2,BRC
RPTB ELOOP-1

MAC *AR4+*AR3-A
MAC *AR4,*AR3,A
MAC *AR4+*AR3-A
STH A*AR3+0

MPY *AR4+*AR3- A
MAC *AR4+*AR3,A
DELAY *AR3-

MAC *AR4+*AR3,A
DELAY *AR3-

MAC *AR4+*AR3-A
MAC *AR4,*AR3,A
MAC *AR4+*AR3,A
DELAY *ARS3

STH A*AR3

PORTW *ARS3, 200h

B INLOOP

;FRCT=1 : output of multiply will left shift

:AR3:d(n),d(n-1),d(n-2)

;initial d(n),d(n-1),d(n—2)=0

;AR1:d(n),d(n-1),d(n—-2)

:AR2:coeff of IIR filter —a2,—al,b2,b1,b0
;A=d(n—-2)*b2
;A=A+d(n-1)*b1

;A=A+d(n)*b0

;left shift by 5 to scale the input

A = A+d(n—2)*(—a2)
A = A+d(n-1)*(-al)

;save d(n)
;A=d(n—-2)*b2

‘A=A+d(n-1)*b1

:A=A+d(n)*b0

:write the result to a file, two word
instruction

10

