
��� ��
������� �
� 	�
 ���

�� �������� ����
��������

Application
Report

1997 Digital Signal Processing Solutions

Printed in U.S.A., March 1997 SPRA151

The TMS320C54x DSP HPI and PC
Parallel Port Interface

Oh Hong Lye
Customer Applications Center

TI Singapore

SPRA151
March 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright  1997, Texas Instruments Incorporated

iii The TMS320C54x DSP HPI and PC Parallel Port Interface

Contents
Abstract 1.

1 Introduction 2.

2 The PC Parallel Port 3.

3 Hardware Design 5.

4 Software Design 9.
4.1 The Bootloading Phase 9.
4.2 The Kernel Phase 9.

5 Summary 11.

References 12.

Appendix A Kernel Assembler Code A-1.

List of Figures

1 HPI Design 6.

2 HPI Timing Diagram 7.

3 State Diagram for HCNTL1 HCNTL0 8.

List of Tables
1 PC Parallel Port Pins 3.
2 PC Parallel Port R/W Register 4.
3 Parallel Port Pins to HPI 5.

SPRA151iv

1 The TMS320C54x DSP HPI and PC Parallel Port Interface

The TMS320C54x DSP HPI and PC Parallel Port Interface

ABSTRACT
The TMS320C5x and TMS320C54x family of DSPs contains a host port interface
(HPI) functional block. This block interfaces to the microcontroller unit (MCU)
without external logic hardware. The interface relieves the DSP of the handshake
process necessary for communication with the MCU and provides the user with the
additional MIPS for actual computations. With minimal interface logic, the HPI
interfaces to the host (PC parallel port) in a bi-directional mode. This application
report describes the hardware considerations for the interface design. A state
machine resolves the problem of insufficient signals on the parallel port side. The
report describes the software bootloading sequence and kernel software for parallel
communications.

Introduction

SPRA1512

1 Introduction
The host port interface (HPI) unit is a peripheral to the TI TMS320 fixed point
DSP family, specifically the TMS320C57, TMS320C542, TMS320C545,
and TMS320C548. The unit allows the DSP to interface with an MCU
containing a single or dual data strobe, a separate or multiplex address bus,
or a separate or multiplex data bus. The HPI communicates with the host
independently of the DSP. The HPI features allow the host to interrupt the
DSP, or vice versa when required. The interfaces contain minimal external
logic, so a system with a host and a DSP is designed without increasing the
hardware on the board. The HPI interfaces to the PC parallel ports directly,
with simple and minimal hardware.

The PC Parallel Port

3 The TMS320C54x DSP HPI and PC Parallel Port Interface

2 The PC Parallel Port
The HPI interfaces to the PC parallel port (bi-directional mode) in a
straightforward manner. The data pins are used for data transfer and the
control pins are used as input/output (I/O) for handshaking and read/write
(R/W) protocols. Table 1 provides a description of the parallel port pins and
the port R/W registers.

Table 1. PC Parallel Port Pins

I/O DB25 PIN CENTRONICS PIN SIGNAL NAME REGISTER BIT

O 1 1 –STROBE C0–

O 2 2 DATA0 D0

O 3 3 DATA1 D1

O 4 4 DATA2 D2

O 5 5 DATA3 D3

O 6 6 DATA4 D4

O 7 7 DATA5 D5

O 8 8 DATA6 D6

O 9 9 DATA7 D7

I 10 10 –ACK S6+IRQ

I 11 11 +BUSY S7–

I 12 12 +PAPEREND S5+

I 13 13 +SELECTIN S4+

O 14 14 –AUTOFD C1–

I 15 32 –ERROR S3+

O 16 31 –INIT C2+

O 17 36 –SELECT C3–

N/A 18-25 19-30 GND

N/A 33 GND

N/A 16, 17 GND

NOTE: The I/O column is defined from the PC viewpoint.

The PC Parallel Port

SPRA1514

Table 2 shows the PC parallel port R/W register.

Table 2. PC Parallel Port R/W Register

PORT R/W I/O ADDRESS BITS FUNCTION

Data out W Base + 0 D0 – D7 Eight TTL outputs

Status in R Base + 1 S3 –S7 Five TTL inputs

Control out W Base + 2 C0 –C3 Four TTL open collector outputs

Control out W Base + 2 C4 Internal, IRQ enable

Control out W Base + 2 C5 Internal, Tristate data (PS/2)

Data feedback R Base + 0 Matches data out

Control feedback R Base + 2 C0 –C3 Matches control out

Control feedback R Base + 2 C4 Internal, IRQ enable readback

Hardware Design

5 The TMS320C54x DSP HPI and PC Parallel Port Interface

3 Hardware Design
The HPI connects to the host (PC parallel port in the bi-directional mode)
through the data bus of the HPI. The control and status pins are used as bit
I/O. These I/O bits provide the handshaking and control for communications
with the HPI. The pin names, such as ACK or BUSY, are not significant. Table
3 shows the use of the parallel port pins for communication with the HPI.

Table 3. Parallel Port Pins to HPI

PARALLEL PORT HPI FUNCTION

D0 – D7 HD0 – HD7 Data bus

ACK HINT Host interrupt

BUSY/PAPEREND† No connection

SELECT HRDY Host ready pin

AUTOFD† HCNTL0 Access mode control

ERROR HBIL HBIL status feedback

INIT HRW R/W control strobe

SELECTIN† HCNTL1 Access mode control

† The parallel port generates a signal on these pins to the HPI through
external hardware. HCS is set to ground. HAS and HDS are connected
to Vdd.

The HPI pins and their functions are described as follows:

• The HPI data bus uses HD0 - HD7.

• The host interrupt, HINT, is controlled by a HINT bit in the HPIC register.
HINT goes low when the DSP writes a 1 to this bit. The bit is read as a
1 by the DSP and host. If the host writes a 1 to this bit, HINT goes high
and the DSP and host read this bit as a 0. When the DSP requires the
attention of the host, the DSP signals the host using this bit.

• HRDY is a DSP output indicating the DSP is ready for data transfer.

• HCNTL0 and HCNTL1 are the control signals. These signals indicate
which transfer to complete. The transfer types are data, address, etc.

• HBIL low indicates the current byte is the first byte; HBIL high indicates
the second byte.

• HRW high indicates the host is doing a read; HRW low indicates a write.

Figure 1 shows the HPI design. The host accesses data by an R/W control
pin, HRW, and a data strobe, HDS1. HDS2 is tied to Vdd. The strobe, HDS1,
inputs the data at the rising edge of the signal.

Hardware Design

SPRA1516

The PC parallel port is the host with a separate data and address bus. HAS
is tied to Vdd. The falling edge of HDS1 strobes the control signals, HBIL,
HCNTL0, HCNTL1, and HRW into the HPI.

To permanently enable the HPI, HCS is tied to ground.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

VCC

C

R

DSP
TMS320C54x

HBILRS

QJ

K

CLK

PRE

CLR

ÁÁ
ÁÁ

Q
PRE

CLR
K

CLK

J

Á
ÁÁ
Á

ÁÁÁÁ
ÁÁÁ

Á

HCS

HCNTL0

HCNTL1

HDS1

GND
HRW

HRDY

HINT

HD0–HD7

HDS2

HAS

ERROR

Port

Parallel

AUTOFD

SELECTIN

STRB

GND

INIT

SELECT

ACK

D0–D7

VCC

Vdd

VCC

Á
Á

INT2

Figure 1. HPI Design

Due to an insufficient number of outputs on the parallel port, SELECTIN and
AUTOFD combine with external hardware to create four signals: HCNTL0,
HCNTL1, RS (reset), and HBIL. These four signals are input to the
TMS320C54x DSP.

The DSP is reset by generating clock edges from AUTOFD.

Hardware Design

7 The TMS320C54x DSP HPI and PC Parallel Port Interface

Data is strobed into the HPI data/address register on the rising edge of
HDS1. The HBIL input indicates whether the byte received is the first (low)
or second (high) byte. HBIL transitions during the rising edge of HDS1, at
a point later in time than HDS1. This delay is the propagation delay of the
flip-flop (see Figure 2). The flip-flop ensures that the correct value of HBIL
is sampled for every byte transferred.

To ensure HBIL is initialized high at power up, a resistor and capacitor are
connected to the flip-flop. The resistor and capacitor are not necessary if
HBIL is fed back to the host for software initialization. The software monitors
the HBIL input to ensure the validity of a data/address transfer.

The timing diagram of Figure 2 shows the control signals and data strobed
in and out of the HPI. HAD, HD Read and HD Write are the read and write
data signals.[1] The signals show the data transferred across the HPI data
bus (HD0–HD7).

WRIT
HD

READ
HD

HBIL

HDS1

HAD

(c) Data Read/Write

HBIL, HRW)
(b) Control Signals (HCNTLs,

Indicate First Byte
(a) HBIL Low to

2nd Byte1st Byte

ÁÁ
ÁÁ

ÁÁ
ÁÁ

Á
Á

Á
Á

ÁÁ
ÁÁ
ÁÁ

Á
Á

Á
Á

ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

Note: HAD stands for HCNTL0, HCNTL1, HBIL and HRW.

Figure 2. HPI Timing Diagram

At time (a), the control signals, HCNTL1, HCNTL0, HRW, and HBIL are set
to the required logic level. This level indicates the type of access necessary,
whether read or write, and the appropriate registers.

Hardware Design

SPRA1518

At time (b), the falling edge of HDS1 causes the control signals to latch into
the HPI and set the HPI to the required mode.

At time (c), the rising edge of HDS1 indicates data is being written to the HPI
or read from the HPI.

The two control signals, HCNTL1 and HCNTL0 combine to form the state
diagram of Figure 3.

ÁÁ
ÁÁ

Á

Á

Á

Á

Á
Á

ÁÁ

ÁÁ

ÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

01
Auto Post/Pre-increment

Data Read/Write with

11
no HPIC Modification
Data Read/Write with

11
Reset Toggle

10
Read/Write

HPIC

00
Read/Write

HPIC

Figure 3. State Diagram for HCNTL1 HCNTL0

In Figure 3, state 11 corresponds to either of the possible instances, reset
(RS) toggle or data read/write. Special care is necessary when entering
state 11 so the user can determine which of the two functions the system is
executing.

A reset is performed upon system initialization or reinitialization.
Reinitialization occurs when the system encounters a fatal error. The reset
function is not necessary during normal operation.

The reset toggle state occurs when HCNTL0 transitions from 0 to 1 and
HCNTL1 is 1. This state occurs when HCNTL1 is the input to the J-K flip-flop
and the input HCNTL0 is the inverted clock of the flip-flop.

If the system access to these states is changed so state 11 is always entered
through state 01, the reset toggle state is never entered. This feature is
easily implemented on the host side. The program access to the various
states is a fixed sequence such as, 00 to 01 to 11 to 10 to 00 and so forth.
This program sequence makes the system go through state 01 when
transitioning from state 00 to 10.

Software Design

9 The TMS320C54x DSP HPI and PC Parallel Port Interface

4 Software Design
The software design for the HPI-to-PC parallel port interface is divided into
two parts: the bootloading phase and the kernel phase.

4.1 The Bootloading Phase
To select the HPI bootload function, the HINT output is connected to the
INT2. The boot routine first pulls the HINT low and then checks to see if the
INT2 interrupt is active. If INT2 is active, the program branches to the HPI
boot routine sequence. This program branch is a jump to location 1000H.

Since the HPI boot routine branches to location 1000H, the user code
(communication kernel) must be loaded into the HPI RAM during the DSP
reset. During the DSP reset, the HPI is operating in the host-only mode
(HOM). The HOM allows the host to access the HPI RAM even if the DSP
clock input is stopped.

After the kernel loads, the DSP is taken out of reset and the kernel (loaded
code) executes.

4.2 The Kernel Phase
The kernel is a collection of data transfer routines. The basic set of routines
that comprise the kernel are:
• Communication protocol
• Data transfer from program memory to PC
• Data transfer from data memory to PC
• Data transfer from PC to program memory
• Data transfer from PC to data memory
• Program execution

Not all the routines from the basic set are necessary for an application. For
example, a user may require more than one routine for data transfer
between the host and program memory while not requiring a routine for the
transfer of data from program memory to the host. One essential routine is
the communication protocol. This routine is necessary so the host and the
DSP are able to exchange information such as the kernel command to
execute, starting address, amount of data to be transferred, etc.

The TMS320C54x DSK debugger kernel uses four pointers. These pointers
contain the locations of the command word, start address, data length, and
data buffer. The kernel polls the DSPINT bit in the HPIC register of the
TMS320C54x (see Appendix A). This polling checks to see if the host
software is trying to establish a communication link. If the DSPINT bit is set,
the kernel software fetches a command word. The command word from the
host is decoded and the DSP performs the required operations.

Software Design

SPRA15110

Before the host interrupts the DSP by setting the DSPINT, the PC loads the
required information, such as command word, start address, and data, by
means of the HPI. After the load is completed, the PC sets the DSPINT bit
in the HPIC. The set bit causes the DSP to fetch the command word and
execute the defined operations.

See Appendix A for the kernel source code.

Summary

11 The TMS320C54x DSP HPI and PC Parallel Port Interface

5 Summary
This application report describes the hardware interface design between the
host (PC parallel port in the bi-directional mode) and the HPI using the TI
TMS320C54x DSP. The report gives a brief description of the software
bootload sequence and the debugger kernel. Appendix A provides the
source kernel code.

References

SPRA15112

References
1. TMS320C54x, TMS320LC54x, TMS320VC54x Fixed-Point Digital

Signal Processors, Texas Instruments, 1996, Literature Number
SPRS039.

2. TMS320C5x DSP Starter kit User’s Guide, Texas Instruments, 1994,
Literature Number SPRU101.

Kernel Assembler Code

A-1 The TMS320C54x DSP HPI and PC Parallel Port Interface

Appendix A Kernel Assembler Code

;File: Host.asm –> basic monitor kernel for TMS320C542
; Host Port Interface
ESC .set 01bh
 .width 100
 .length 55
 .title ”TMS320C542 Comms Kernel loaded via Host
 Port Interface”
 .mmregs
VERSION .set 0001h ; 01 version
 .def tmp, buffptr, scratch, command, startadd,
 length, dump
 .def main, start, hack, lddm, ldld, ldlp, ldpm, exec
 .def special, trapx
 .bss buffptr,1 ; add=60h ;not used
 .bss tmp,1 ; add=61h ;not used
 .bss scratch,1 ; add=62h ;not used
 .bss usp,1 ; add=63h
 .bss blank, 3 ; add=64h to 66h not used
 .bss STACK,12 ; add=67h to 72h
 .bss TMPSTK,12 ; add=73h to 7eh
 .bss PC, 1 ; add=7fh
command .usect ”COMMS”, 512,1 ; add=1200h
startadd .set command+1
length .set command+2
dump .set command+3
;–––
; HOST ACKNOWLEDGE: Ensure that Host has acknowledged end of task
;–––
HOSTACK .macro
hack ldm hpic, a ; load accumulator with
 ; HPI control word
 and #08h, a ; mask out all bits except
 ; hint
 bc hack, aneq ; wait for hint to go
 ; high/bit
 ; goes low
 ret
 .endm
;–––
; DPM: DUMP PROG MEM TO PC
;–––
DPM .macro
 ld startadd,0, a ; store starting address in
 ; ACCA
 mvdm length, ar7 ; store length in ar7
 stm #dump, ar5 ; store dump address ar5
 nop ; latency
 nop

Kernel Assembler Code

SPRA151A-2

 loop? reada *ar5+ ; copy a word from prog to HPI
 ; buffer
 add #1,0,a ; startadd++
 banz loop?,*ar7– ; repeat for whole blk of data
 stm #0ah, hpic ; interrupt host(shared) to
 ; indicate end of task
 call hack ; ensure host has acknowledged
 ret
 .endm
;–––
; DDM: DUMP DATA MEM TO PC
;–––
DDM .macro
 mvdm startadd, ar6 ; store starting address in
 ; ar6
 mvdm length, ar7 ; store length in ar7
 stm #dump, ar5 ; store dump address ar5
 nop ; latency
 nop
loop? ld *ar6+,0,a ; ACCA=content of loc pointed
 ; by ar6
 stl a, 0, *ar5+ ; store ACCA in HPI buffer
 banz loop?,*ar7– ; tx whole block
 stm #0ah, hpic ; interrupt host(shared) to
 ; indicate end of task
 call hack ; ensure host has acknowledged
 ret
 .endm
;–––
; DLD: DOWNLOAD DATA FROM PC TO DSP
;–––
DLD .macro
 mvdm startadd, ar6 ; store starting address in
ar6
 mvdm length, ar7 ; store length in ar7
 stm #dump, ar5 ; store dump address ar5
 nop ; latency
 nop
loop? ld *ar5+, 0, a ; received wrd is in ACCA
 stl a,*ar6+ ; store to loc pointed to by
 ; ar6
 banz loop?,*ar7– ; dwnld whole blk
 stm #0ah, hpic ; interrupt host(shared) to
 ; indicate end of task
 call hack ; ensure host has acknowledged
 ret
 .endm
;–––
; DLP: DOWNLOAD PROG FROM PC TO DSP
;–––
DLP .macro
 ld startadd,0,a ; store starting address in
 ; ACCA

Kernel Assembler Code

A-3 The TMS320C54x DSP HPI and PC Parallel Port Interface

 mvdm length, ar7 ; store length in ar7
 stm #dump, ar5 ; store dump address ar5
 nop ; latency
 nop
loop? writa *ar5+ ; copy wrd from data at ar5 to
 ; the prog add
 add #1,0,a ; acca++
 banz loop?,*ar7– ; transfer whole blk
 stm #0ah, hpic ; interrupt host(shared) to
 ; indicate end of task
 call hack ; ensure host has acknowledged
 ret
 .endm
;–––
; DMPREG: dump register: context save to system stack in
; scratchpad RAM
;–––
DMPREG .macro
trapx ssbx intm ; disable all interrupts
 pshm bl ; old value of bl in user stack
 ldm sp,b ; save user sp to BL
 stm #STACK+12,sp ; restore system stack
 pshm st0
 pshm st1
 pshm tim
 pshm ar5
 pshm ar6
 pshm ar7
 pshm ag
 pshm ah
 pshm al
 stlm b,sp ; restore user sp to SP
 nop
 nop
 popm bl ; retrieve old value of bl
 ld #0, dp ; set dp to page 0
 popm al
 stl A, PC
 ldm ifr, a ; clearing DSPINT
 or #0204h,0,a ; & int 2
 stlm a,ifr ;
 ld #command, dp ; setting dp to command area
 stm #0ah, hpic ; interrupt host(shared) to
 ; indicate end of task
 call hack ; ensure host has acknowledged
 .endm
;–––
; EXECUTE: execute a program from given address
;–––
execute .macro
 popm al ; return address to be overwritten
 ld startadd,0,a ; store starting address in ACCA
 nop ; latency problem

Kernel Assembler Code

SPRA151A-4

 pshm al ; addr for restart of user prog
 ; is in user stack
 ld #0, dp ; setting dp to 0 to access vars

 ldm sp,a ; save user stack pointer to AC-
CAL
 stl a,usp ; store user sp to usp
 stm #STACK+3,sp ; ld SP with top of system stack
 stm #0ffffh, ifr
 popm al
 popm ah
 popm ag
 popm ar7
 popm ar6
 popm ar5
 popm tim
 popm st1
 popm st0
 mvdm usp,sp ; restore user sp to SP
 nop
 rete
 .endm
;–––
; BEGIN OF MAIN PROGRAM
;–––
 .text
; the following is the int vector table which will be placed in
; 1000h by setting the IPTR of the PMST register
 b start ; 00;reset
 .space 2*16
 .space 4*16 ; 02;nmi
 .space 56*16 ; 04;software int
int0 rete ; 40;int0
 .space 3*16
int1 rete ; 44;int1
 .space 3*16
int2 rete ; 48;int2
 .space 3*16
tint rete ; 4c;timer int
 .space 3*16
 .space 16*16 ; 50;BSP & HPI RX and TX ready
 ; int
int3 rete ; 60;int3
 .space 3*16
HPINT b trap ; 64;HPI int
 .space 2*16 ; 67;END
start ssbx intm ; disable all interrupts
 ld #0,dp
 stm #0ffffh, ifr ; clear interrupt flag register
 stm #0200h, imr ; enable only DSPint
 st #0000h, 72h ; initialise ST0=0
 st #2A00h, 71h ; initialise ST1=#2a00
 rsbx sxm ; default is reset sign

Kernel Assembler Code

A-5 The TMS320C54x DSP HPI and PC Parallel Port Interface

 stm #TMPSTK+12,sp ; initialise SP to temp
 ; stack of 79h
 ld #1020h,0,a ; to set IPTR of PMST to
 ; point to 1000h
 stlm a,pmst
 stm #0,swwsr ; no wait states
 call hack ; check for host
 ; acknowledgement to begin
 stm #0ah, hpic ; interrupt host(shared)
 ; indicate ready to start
 ld #command,dp ; setting dp to command
 ; area
redo ssbx intm ; disable all interrupts
 rsbx xf
 ldm ifr, a ; load accumulator with
 ; interrupt
 ; flag register
 and #0200h, a ; mask out all bits except
 ; DSPINT
 cc main, aneq ; wait for DSPINT to go
 ; high implies that an
 ; interrupt occurred
 ssbx xf
 b redo ; loop back
main ldm ifr, a ; clearing DSPINT
 or #0204h,0,a ; & int 2
 stlm a,ifr
 mvdm command, ar5 ; store command word in
 ; ar5
 nop ; latency problem
 nop
 nop
;execute commands
 lddm banz ldpm,*ar5– ; dump data mem ;0
 DDM
 ldpm banz ldld,*ar5– ; dump prog mem ;1
 DPM
 ldld banz ldlp,*ar5– ; load data to DSP ;2
 DLD
 ldlp banz exec,*ar5– ; load prog to DSP ;3
 DLP
 exec banz special,*ar5– ; execute to single step
 ; or breakpt ;4
 EXECUTE
 HOSTACK
 trap DMPREG
 b redo ; wait for commands
 special ret ; branch back if invalid
 ; code
 len .set $–1000h ; length of monitor kernal
 ; THE END OF KERNAL

