

Implementing a Line-
Echo Canceller Using the
Block Update and NLMS
Algorithms on the
TMS320C54x DSP
APPLICATION REPORT: SPRA188

 Jelena Nikolic
 Associate Technical Staff, DSP Applications
 SC Group Technical Marketing
 April 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Contents
Abstract 1
1. Line Echo: Background ... 2
2. Echo Cancellation: Theory and Algorithms .. 3
3. Echo Cancellation: Implementations ... 6

3.1 Normalized LMS... 7
3.2 Normalized Block Update .. 9
3.3 Near-End Speech Detection .. 10
3.4 Geigel Speech Detection Algorithm... 11

3.4.1 Modified Geigel Speech Detection Algorithm.. 11
3.5 Additional Control Algorithms... 11

3.5.1 Cutoff Detection ... 11
3.5.2 Echo Supression .. 12
3.5.3 Summary of Parameters .. 12

4. Speed and Memory Requirements ... 13
5. Testing and Verification... 14
6. Summary.. 18
7. References .. 19
Appendix A. TMS320C54x LEC code listing .. 20

Line Echo Cancellation 1

Implementing a Line-Echo Canceller
Using the Block Update and NLMS

Algorithms on the TMS320C54x DSP

Abstract

This document describes the implementation of a line echo canceller
(LEC) on the TMS320C54x family of 16-bit fixed-point digital signal
processors. Two different implementations of the adaptive
transversal echo canceller filter are covered: block update and
normalized least-mean square (also called stochastic gradient). Full
assembler code is given for both examples.

2 SPRA188

1. Line Echo: Background

The cause of line echo in telephone networks is an analog device
called a 2-to-4-wire hybrid. The hybrid is a pair of transformers that
use inductive coupling to split a duplex signal into two simplex
signals. Such a device is required since only simplex pairs of wire
allow for signal processing over long distances, such as equalization
and amplification. Hybrids are physically located in the central office.

Owing to electrical leakage of current in the hybrid, a part of the
signal energy is reflected back to the source of the signal. This
reflection, in conjunction with path delays, causes the talker on
either side of the connection to hear an echo of his or her own voice,
see Figure 1.

Figure 1. The Source of Signal Echo

The audio effect of the leakage in the hybrid depends on the
distance between the talker and the hybrid of the other party, as well
as on the magnitude of the leakage current. If the path delay is
short, the talker typically is not able to distinguish line echo from side
tone, which is always present in telephones. However, if the delay
exceeds a few tens of milliseconds (which might be the case in long
distance or satellite communications), the echo is quite disturbing to
the talker. The other parameter that determines the impact of the
line echo is the hybrid loss; i.e. what portion of the transmitted signal
is reflected back. Typically, it is assumed that the loss is at least
6dB.

Early techniques of dealing with the line echo problem evolved
around echo suppression, i.e. the return path from party B to party A
was physically disconnected when it detected that party A was the
speaker and party B, the listener. These techniques performed
poorly in the case of double talk and resulted in chopped audio
signals.

The technique of dealing with the line echo described in this report is
based on a prediction filter which, given a reference signal, can
predict what the echo will be and then subtract it from the signal
which suffers from line echo.

Signal from A + hybrid echo of B

hybrid hybrid

 A BSignal from B + hybrid echo of A

Line Echo Cancellation 3

2. Echo Cancellation: Theory and Algorithms

A Line Echo Canceller (LEC) is placed in the network as shown in
Figure 2. It is important that the cancellation is performed as close to
the source of echo (in this case, hybrid B) as possible. Otherwise,
the transversal filter has to match the impulse response of a system
consisting of the hybrid and the delay path, which increases the
number of required filter taps.

Figure 2. Echo Canceller Operation

An echo canceller is typically a transversal filter with the far-end
speech signal, y(n), as the reference input and a near-end input,
s(n). This signal consists of two components: the echo of the
reference signal, r(n), and the near-end speech signal coming from
party B, x(n). The output of the filter is estimated echo, r_est(n). The
estimated echo is subtracted from the near-end signal, s(n). The
difference, called the error signal, e(n) = s(n)–r_est(n), is fed back
into the echo canceller and used to adapt the coefficients of the
transversal filter. The objective of the coefficient adaptation process
is to minimize the average of the Mean-Squared Error (MSE)
between the actual echo and the echo estimate. Mathematical
analysis shows that this will be achieved if the coefficients of the
transversal filter, a(k), are adapted according to the following
equation:

a i a i E e i y i kk k() () [() ()]+ = + −1 2β (Equation 1)

In practice, the expectation operator is substituted with a short-term
average over M samples, giving:

a i a i
M

e i m y i m kk k
m

M

() () () ()+ = + − − −
=

−

∑1 2
1

0

1

β (Equation 2)

With M=1, we obtain the so-called Least-Mean-Square (LMS)
algorithm, also known as stochastic gradient.

 y(n)

 hybrid

 LEC

 r_est(n)
 e(n) s(n)=r(n)+x(n)

A B

hybrid

4 SPRA188

An alternative approach is to update coefficients every M samples
rather than every sample. In this case, the coefficient update formula
would be:

a i M a i e i M m y i M m kk k
m

M

() () () ()+ + = + + − + − −
=

−

∑1 2
0

1

β

(Equation 3)

The parameter beta (step size or loop gain) determines the
convergence performance of the adaptive filter. It is chosen to be a
trade-off between rapid convergence and asymptotic cancellation
error. Large beta contributes to rapid convergence, whereas small
beta results in a smaller asymptotic error. However, if the loop gain
is too large, the coefficients may diverge.

The other factor that influences convergence, is the power of the
input signal. For low-power signals, the algorithm will converge
slowly. The solution to this problem is to adapt the step size in such
a manner that it reflects the changes of input power, i.e. normalizing
it by the average power of the input signal:

2 1β
β

()
()

i
P iy

= (Equation 4)

The second algorithm that is necessarily encountered in a line echo
canceller implementation is near-end speech detection. The above
derivations are valid only if the near-end input signal, s(n) is truly the
reference signal which was been passed through a network, thus
being subject to path delay and hybrid reflections. However, in
reality, the echo of y(n) is only a portion of the near-end input signal
s(n). The other component is the speech signal coming from the
other party in the conversation. This adaptation is only valid if the
near-end speech component is not present. Otherwise, the error
signal will have the following form:

error i echo i estimated echo i near end speech i() () _ () _ _ ()= − +
(Equation 5)

As such, it is not a valid input to the adaptation algorithm. Therefore,
the situation in which the input has a component other than the echo
of the reference signal has to be detected and the adaptation of the
coefficients frozen as long as this situation persists.

Line Echo Cancellation 5

The most frequently used detection algorithm is the Geigel
algorithm, according to which near-end speech is detected if the
following condition is true:

() () () ()()Niyiyiyis −−≥ ,...,1,max
2

1
(Equation 6)

Note that the algorithm assumes at least a 6dB loss through the
hybrid, which explains the factor 1/2.

The algorithm becomes more robust if short-term estimates of y(n)
and s(n) are used instead of y(n) and s(n), respectively. The short-
term power estimates are obtained as follows:

~() ()~() | ()|y i y i y i+ = − +1 1 α α (Equation 7)

This equation represents a low-pass IIR filter.

6 SPRA188

3. Echo Cancellation: Implementations

As discussed in the previous section, there are a number of ways
that a line echo canceller can be implemented on a DSP, based on
performance requirements.

In voice telephone networks, we expect to be dealing with signals
with significant power level variations. Therefore, an adaptive step
size seems to be a requirement. The step size is adapted based on
the power of the input signal, as per Equation 7.

A less obvious decision is whether a block-update or an LMS
algorithm is more appropriate. It may seem that the block-update
algorithm would require less MIPS, since only a portion of the
coefficients is updated for every input sample. As will become clear
later, this is not necessarily true with the TMS320C54x family as the
target platform. The architecture of the ’C54x accelerates adaptive
filtering applications with its LMS instruction and a number of parallel
instructions.

On the other hand, it may seem that updating all coefficients for
every input sample would lead to a better convergence than
updating one block at a time. Empirical measurements have shown
(see Reference [1]) that under certain conditions, the block-update
mode will converge slightly faster.

For these reasons, it was decided to pursue both the block-update
and the LMS algorithm implementations. Testing in real network
environments will show which algorithm performs better under given
conditions.

Line Echo Cancellation 7

3.1 Normalized LMS

Based on the discussion in the section on algorithms, we conclude
that the following equations need to be realized in a normalized LMS
implementation:

estimated echo i a y i kk
k

N

_ () ()= −
=

−

∑
0

1

(Equation 8)

a i a i
P i

e i y i kk k
y

() ()
()

() ()+ = + −1
2 1β

(Equation 9)

where a(k) are the coefficients of the adaptive transversal filter, y(n)
are reference samples, e(n) is the error signal, β1 a fixed loop-gain
parameter. N is the number of taps in the transversal filter and Py(i)
is the power estimate of the reference signal given by following
equation:

P i average y iy () ((| ()|))= 2 (Equation 10)

For finite precision consideration, the factors in the last term in
Equation 9 are regrouped as follows:

a i a i
e i

average y i

y i k

average y i
k k() ()

()

(| ()|

()

(| ()|)
+ = + −

1
2 1β

) (Equation 11)

The first factor in the product term is referred to as n_error_mu
(normalized error multiplied by a fixed step size). The second factor
represents a normalized reference sample.

8 SPRA188

Using the LMS instruction, the convolution (Equation 8) and
coefficient adaptation (Equation 11) are implemented in the same
loop which represents the kernel code of any adaptive filter on a
’C54x as follows:

 STM #TAPS-2,BRC ; repeat #TAPS–1 times
 ; (first iteration is done in the RPTBD
 ; delay slot).
 SBX FRCT ; set fractional mode
 LD #0,B ; B = 0
 LD n_error_mu, T ; T = e(i–1) * beta1 / average(|y(i)|)
 ; filter_ptr points to a(0)
 ; n_ref_pt points to normalized reference buffer
 ; ref_ptr points to y(0) in the reference buffer
 RPTBD $nlms_end–1
 MPY *n_ref_ptr+0%,A ; delay slot 1: A = y(i–1)/
 ; average(|y(i)|)*T
 LMS *filter_ptr,*ref_ptr+0% ; delay slot 2: A = A + a(0)<<16

; B = B + a(0)*y(i)

 ST A,*filter_ptr+ ; store out coefficient: a(k–1) = A
|| MPY *n_ref_ptr+0%,A ; coef. increment: A = y(i–k–1)/

; average(|y(i)|) * T
 LMS *filter_ptr,*ref_ptr+0% ; new coefficient: A = A + a(k)<<16

; convolution: B = B + a(k)*y(i–k)

$nlms_end:
 ST A,*filter_ptr ; store out last coefficient: a(TAPS–1) = A
|| SUB *AR5,A ; near end signal - estimated echo:

; A = s(0) << 16– B
 STH A,error_out ; error_out = A

The loop is shown in bold print and takes two cycles per iteration
(assuming no more than one external access to zero-wait state
memory). Therefore, the total number of instructions per input
sample period is about 2*TAPS.

You must maintain a buffer of reference samples normalized by the
average power. The size of the buffer is TAPS words. This approach
is more MIPS-efficient than calculating the normalized reference on
the fly, inside the kernel loop.

In addition to this kernel loop, the operations required for the
algorithm are:

1) Calculate long-term-power average and its inverse (IIR and
division)

2) Normalize the latest reference sample

3) Calculate the error term, n_error_mu.

For implementation details on these routines, refer to the code listing
of module nlms.asm in Appendix A.

Line Echo Cancellation 9

3.2 Normalized Block Update

This implementation is adapted from the TMS320C5x example in
Reference[2] and is therefore described in less detail than the NLMS
example. The following equations need to be realized in this LEC
implementation:

estimated echo i a y i kk
k

N

_ () ()= −
=

−

∑
0

1

(Equation 12)

a i M a i
P i

e i M m y i M m kk k
y m

M

() ()
()

() ()+ + = + + − + − −
=

−

∑1 2 1

0

1β

(Equation 13)

For finite precision and implementation reasons, the summation in
Equation 13 will be factorized as follows:

a i M a i
average y i

e i M m

average y i
y i M m kk k

m

M

() ()
(| ()|

()
(| ()|)

()+ + = + + − + − −
=

−

∑1 2 1

0

1β
)

(Equation 14)

In each pass, TAPS/BLOCKSIZE coefficients are updated. For
efficiency, they will not be consecutive coefficients, but rather
coefficients that are spaced BLOCKSIZE taps apart: a(h),
a(h+BLOCKSIZE), a(2h+BLOCKSIZE), etc. The variable h is a
modulo BLOCKSIZE counter that is incremented once every input
sample period. By taking this approach, the reference sample buffer
will be addressed in a linearly increasing fashion, minimizing the
overhead of pointer management.

The kernel loop that implements the convolution is a standard FIR
implementation:

 STM #FILTER,filter_ptr ; points to a(0)
 LD #0,A
 STM #0FFFFh,AR0 ; index = –1
 RPT #(TAPS–2) ; repeat main loop TAPS-1 timer
 MAC *ref_ptr+0%,*filter_ptr+,A ; A = A + a(k)*y(i–k)
 MACR *ref_ptr+0%,*filter_ptr+,A ; last multiply-accumulate: add

; rounding offset.
 STH A,1,est_echo ; store the result out.

10 SPRA188

Coefficients are adapted in the following kernel loop:

 RPTBD $block_end–1
 STM #N_ERROR, n_error_ptr

 RPTZ A,#(BLOCKSIZE–2)
 MAC *ref_ptr+0%,*n_error_ptr+,A ; calculate coefficient

; increment:
 MACR *ref_ptr+0%,*n_error_ptr,A ; A = sum(error(i–m)*y(i–m–k))

; m = 0,...,BLOCKSIZE–1

 MPYA IABSY ; B = AH / average(|y(i)|)
 LD *+filter_ptr(16),16,A ; AH = ak(i)
 SFTA B,#(15+GAIN) ; B = B * beta1 (beta1 is a

; power of 2)
 ADD B,A ; A = A+B
 STH A, *filter_ptr ; ak(i+1) = AH
 STM #N_ERROR, n_error_ptr ; rewind the pointer to

; normalized error.
$block_end:
 RSBX FRCT

This routine consists of two nested loops. The inner loop calculates
the coefficient increment and takes BLOCKSIZE cycles, and the
outer loop consists of loading, updating and storing the coefficients.
These instructions take about 8 cycles per iteration, plus inner loop
overhead. The total number of instructions per input sample period
is approximately (10+BLOCKSIZE)*TAPS/BLOCKSIZE.

In addition to the kernel code, the following routines are required:

(1) Calculate the long term power average of the reference signal
and its inverse (IIR and division).

(2) Normalize error signals and maintain the error signal buffer. The
size of this buffer is BLOCKSIZE. Since the sizes of the reference
sample buffer and the normalized error buffer are different and
required in the same loop, one of the buffers has to be linear. The
overhead to maintain a linear buffer for normalized errors means
applying the DELAY operation BLOCKSIZE times, for every input
sample, and rewinding the pointer for every coefficient (STM
instruction on the outer adaptation loop).

3.3 Near-End Speech Detection

This portion of the algorithm acts as a control input to the coefficient
adaptation algorithm. It basically decides when the coefficient
update process should be frozen. The two algorithms that are
implemented are Geigel (for the NLMS version) and modified Geigel
(for the block-update version). In theory, there are no restrictions on
mixing and matching the adaptive filter algorithms with speech
detection algorithms.

Line Echo Cancellation 11

3.4 Geigel Speech Detection Algorithm

The following code implements Equation 6:

LD *ref_ptr+%,16,A ; y(0) -> AH
ABS A ; |y(0)| -> AH
SUB max_m,16,A, B ; |y(0)| – max_m -> BH
NOP ; delay slots for

; conditional execution
NOP
XC 1,BGT ; refers to B from 2 cycles ago
STH A,max_m ; if |y(0)| > max_m, update max_m

; ref_ptr points to y(0)

In addition to this routine, a check must be performed to determine
whether the previous maximum is equal to the sample that is
removed from the buffer the next time around. In this case, the
entire buffer needs to be searched through to find the new
maximum.

3.4.1 Modified Geigel Speech Detection Algorithm

This speech detection algorithm is a modified version of Equation 6,
where the absolute values of samples are substituted with their long-
term filtered version, obtained by applying the IIR filter described in
Equation 7. In order to minimize the memory requirement for such
an implementation, rather than keeping the filtered versions of TAPS
previous samples, the information is maintained within
(TAPS/BLOCKSIZE+1) partial maxima. The updating algorithm is
described in Reference [1], pp.431. The TMS320C54x version is a
straight translation from the TMS320C2x/C5x implementation.

3.5 Additional Control Algorithms

In addition to the two main algorithms typically seen in LEC
implementations, the performance of the echo canceller in real-world
conditions might be enhanced using some of the following
algorithms. An easy way to incorporate these routines into the rest
of the code is to maintain flags that could be set/reset by control
algorithms and checked by signal processing routines.

3.5.1 Cutoff Detection

When the far-end speaker is silent and the power of the reference
input falls below a set threshold, the coefficients should not be
updated. The parameter associated with this algorithm is the cutoff
level.

12 SPRA188

3.5.2 Echo Suppression

When the error at the output of the LEC (s(n) – est_echo(n)) falls
below a certain threshold, instead of outputting the small error, the
output will be set to zero. The threshold value could be fixed or
adaptive (in this implementation, it is fixed).

3.5.3 Summary of Parameters

Table 1 summarizes the parameters which govern the processing
requirements as well as the performance of an LEC. When setting
the values of a parameter, keep in mind that there is usually a trade-
off to be made between one aspect of performance or another,
based on the weight which the individual requirements carry.

Table 1. Parameters Governing LEC Performance

Parameter Usage Description Value

TAPS Length of the
adaptive filter

A larger number of taps allows the
LEC to compensate for larger tail-
circuit path delays, but increases
processing and memory
requirements.

48 to 128

BLOCKSIZE Block of samples
used to update each
filter coefficient

A large block means less frequent
update of each particular coefficient,
therefore less processing but also
diminished capability of tracking fast
changes.

16

GAIN Fixed step size:
beta1 = 2^GAIN

Large beta means faster
convergence and larger asymptotic
convergence error.

(-9) to (-11)

CUTOFF When the far-end
speaker is silent,
freeze tap update.

Prevents the normalized step size
from becoming excessively large
when the signal input power is low.

-48dB

THRESHOLD Controls echo
suppression

When the output of EC is sufficiently
low, set the output to 0

-24dB

HANG0 Hangover counter,
control near-end
speech declaration

Declares near-end speech a certain
amount of time after the last sample
for which the Geigel inequality was
satisfied, to filter short-term power
peaks.

75 ms

LTAU IIR filter pole Controls low-pass filtering of input
signal power, i.e., the length of long-
term average.

2^ (-7)

Line Echo Cancellation 13

4. Speed and Memory Requirements

Table 2 provides estimates of cycle counts and memory
requirements for the kernel code of the two different
implementations of the LEC. The numbers are given relative to the
number of taps (N) and the block size (M).

The NLMS version seems to require less instruction cycles and code
space. For example, if N=128 and M=16, the block update version
filter adaptation kernel requires 77 instruction words and 206
instruction cycles, whereas the NLMS version requires 60 instruction
words and 326 instruction cycles.

Table 2. LEC Cycle Counts & Memory Requirements

Module Description Code
Size

Cycles Data
Structure

Size

BLOCK UPDATE

init.asm processor init + RAM
clearing

70 2*(N+M) reference
buffer

N + M

detect_b.asm speech detection
(robust Geigel)

94 70
(+ 5*N/M)†

normalized
error buffer

M

fir.asm convolution 17 N+25 filter
coefficients

N

update.asm adaptation 60 2*M+N/M(M+
10)+15

partial
maxima

N/M

other 26

NLMS

init.asm processor init + RAM
clearing

70 3*N filter
coefficients

N

detect.asm speech detection
(Geigel)

38 31
(+3*N)†

reference
buffer

N

nlms.asm convolution and
adaptation

60 2*N+70 normalized
reference
buffer

N

other 22

 NOTE:
† In the cycle number column for detect_b.asm and
detect.asm, the number in parentheses is added
whenever the location of the previous maximum is the last
sample in the buffer, making it necessary for the maximum
to be recalculated by searching through the buffer.

14 SPRA188

5. Testing and Verification

The functionality of the LEC, with the emphasis on the transversal
filter adaptation, was tested and verified on TI’s TMS320C5x DSP
Starter Kit (DSKplus) development platform. Since this platform
does not have the capability to connect to a telephone network,
verifications were performed using Code Explorer’s File I/O
capabilities. Test data from two files, representing a reference
signal, y(n), and the corresponding echo signal, r(n), were streamed
onto the DSP via a debugger probe point. After DSP processing, the
results were streamed out to a PC file. Obviously, this approach was
not meant to satisfy real-time constraints.

The reference input signal represents 4000 samples (0.5 sec) of
band-limited white noise. The echo signal is the reference signal
passed through a digital filter with 32 samples flat delay, a total of 50
taps and 10dB loss. This filter simulates the response of a hybrid in
a telephone network.

The error outputs of the LEC were recorded for the same input
signals, but different values of design parameters: tap length N and
step size beta, for each of the two implemented algorithms. The
block update version of the adaptation algorithm seems to lead to a
faster convergence in all cases. This is in accordance with
simulation results reported in Reference [1] for the case of noise
input.

Reference Si gnal, y(n)

-10000

-5000

0

5000

10000

Echo Si gnal, r(n)

-3000

-2000

-1000

0

1000

2000

3000

Line Echo Cancellation 15

The recorded outputs show that the convergence rate increases with
increasing step size. This result agrees with Reference [1]. Note that
if the step-size becomes too large, the filter might become unstable.

Both implementations were tested with tap length N = 48, 128 and
256. It remained inconclusive how the tap length influences the LEC
convergence performance. In real telephone networks, this design
parameter will determine the maximum tail circuit length that the
LEC can tolerate.

block: N=48,M=16,beta=2^(-10)

-2000

-1000

0

1000

2000

lms: N=48,beta=2^(-10)

-2000

-1000

0

1000

2000

block: N=128,M=16,beta=2^(-10)

-2000

-1000

0

1000

2000

16 SPRA188

lms: N=128,beta=2^(-10)

-2000

-1000

0

1000

2000

block(512,-10)

-2000

-1500

-1000

-500
0

500

1000

1500

lms(512,-10)

-2000

-1000

0

1000

2000

block: N=128,M=16,beta=2^(-9)

-2000

-1000

0

1000

2000

Line Echo Cancellation 17

lms: N=128,beta=2^(-9)

-2000

-1000

0

1000

2000

block: N=128,M=16,beta=2^(-11)

-2000

-1000

0

1000

2000

lms: N=128,beta=2^(-11)

-3000

-2000

-1000

0

1000

2000

18 SPRA188

6. Summary

The implementation of two different adaptive filter algorithms on the
TMS320C54x family of processors has shown that this family of
processors is slightly better suited to the LMS approach owing to the
dedicated LMS instruction. This results in smaller code size and less
instruction cycles.

In terms of the performance of the two different algorithms, for white
noise input with no near-end speech, the block update version
seems to perform better. However, the ultimate judgement should
be made after testing in a real telephone network environment and
against industry standards which is outside the scope of this
application report.

Line Echo Cancellation 19

7. References

Reference [1]

Digital Voice Echo Canceller with the TMS32020, Digital Signal
Processing Applications with the TMS320 Family, Volume 1, Texas
Instruments, 1986, pp. 415-454, Literature number: SPRA012.

Reference [2]

Digital Voice Echo Canceller Implementation on the TMS320C5x,
Telecommunications Applications with the TMS320C5x DSPs,
Texas Instruments, 1994, p. 189-202, Literature number: SPRA033.

20 SPRA188

Appendix A. TMS320C54x LEC code listing
**
* Application: C54x LEC *
* File name: main.asm *
* Description: Variable declarations + memory allocation *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* Date: January 97 *
**

.title "C54x LEC: main.asm"

.mmregs

.include "echoequ.inc"

.global error_out, OUTPUT, FILTER, REFERENCE, INPUT_B, OUTPUT_B

.global THRES,S0,Y0, max_m, HANGT

.global HCNTR, ABSS0, ABSS0F, ABSE0, ABSOUT, AELSBS, ABSY0, ABSY

.global AYLSBS, IABSY, CUTOFF, ABSY0F, control_flags, input_sample
.if mode=NLMS

.global N_REFERENCE, n_error_mu
.elseif mode=BLOCK

.global N_ERROR, M0, H, est_echo, y0_ptr
.endif

error_out .usect "daram",1 ; canceller output (before supression)
OUTPUT .usect "daram",1 ; canceller output (after supression)
S0 .usect "daram",1 ; input near-end sample
Y0 .usect "daram",1 ; input reference sample
max_m .usect "daram",1 ; short-term reference maximum,

; used for near-end speech detection.

THRES .usect "daram",1 ; residual output suppression threshold
control_flags .usect "daram",1 ; echo canceller control bits
HANGT .usect "daram",1 ; hangover counter reset value
HCNTR .usect "daram",1 ; hangover counter
ABSS0 .usect "daram",1 ; abs(S0)
ABSS0F .usect "daram",1 ; short tau LPF 2*abs(S0)
ABSE0 .usect "daram",1 ; abs(output)
ABSOUT .usect "daram",1 ; long tau LPF abs(output) MSB's
AELSBS .usect "daram",1 ; long tau LPF abs(output) LSB's
ABSY0 .usect "daram",1 ; abs(Y0)
ABSY .usect "daram",1 ; long tau LPF abs(Y0) MSB's
AYLSBS .usect "daram",1 ; long tau LPF abs(Y0) LSB's
IABSY .usect "daram",1 ; 1/ABSY
CUTOFF .usect "daram",1 ; ABSY cutoff level for no update
ABSY0F .usect "daram",1 ; short tau LPF abs(Y0)

FILTER .usect "filter",TAPS ; FIR filter coefficient
REFERENCE .usect "ref",TAPS+BLOCKSIZE ; reference samples

.if mode=NLMS
n_error_mu .usect "daram",1 ; normalized error * step size
N_REFERENCE .usect "n_ref",TAPS ; normalized reference samples

.elseif mode=BLOCK
y0_ptr .usect "daram",1 ; pointer to y(0)
H .usect "daram",1 ; modulo 16 counter.
est_echo .usect "daram",1 ; output of the tranvversal filter
M0 .usect "daram",TAPS/BLOCKSIZE+1 ; partial reference maxima
N_ERROR .usect "n_error",BLOCKSIZE ; normalized reference samples

.endif

OUTPUT_B .usect "o_buffer", TAPS ; for DSKplus demo
INPUT_B .usect "i_buffer",TAPS ; for DSKplus demo

Line Echo Cancellation 21

**
* Application: C54x LEC *
* File name: init.asm *
* Description: Processor and variable initialization *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* Date: January 97 *
**

.title "C54x LEC: init.asm"

.mmregs

.include "echoequ.inc"

.global start, CUTOFF, IABSY, HANGT, ABSY0F,REFERENCE, FILTER,S0

.global max_m, THRES,A0, ABSY, control_flags, y_ptr, input_sample

.global INPUT_B, OUTPUT_B

.if mode=NLMS
.global N_REFERENCE

.elseif mode=BLOCK
.global N_ERROR, y0_ptr

.endif

.text
start:

STM #01a0h,PMST ; setup for DSKplus environment
STM #0FFAh,SP
SSBX OVM ; Enable overflow saturation mode.

;
; Setup ST0
;

SSBX SXM ; 1 -> SXM sign extension enabled
RSBX TC ; 0 -> TC TC flag cleared
RSBX C ; 0 -> C carry cleared
SSBX XF ; probably don't need this.

;
; Initialize data pointers and setup circular buffers.
;

STM #FILTER,filter_ptr
STM #REFERENCE,ref_ptr

.if mode=NLMS
STM #N_REFERENCE,n_ref_ptr

.elseif mode=BLOCK
MVMD ref_ptr,y0_ptr

.endif
STM #(TAPS+BLOCKSIZE),BK
STM #S0,s0_ptr

STM #INPUT_B,AR6
STM #OUTPUT_B,AR7

;
; Setup Software-Programmable Wait-State Generators
;

K_SWWSR_IO .set 2000h ; set the I/O space

K_BNKCMP .set 0000b << 12 ; bank size = 64K
K_PS_DS .set 0b << 11
K_BSCR_RESR .set 000000000b <<2 ; reserved space
K_BH .set 0b << 1 ; BH = 0 at reset
K_EXIO .set 0b << 0 ; EXIO = 0 at reset

K_BSCR .set K_BNKCMP|K_PS_DS|K_BSCR_RESR|K_BH|K_EXIO

STM #K_BSCR, BSCR ; 0 wait states for BANK switch
STM #K_SWWSR_IO, SWWSR ; 2 wait states for I/O operations

22 SPRA188

;
; Clear Internal RAM Blocks
;

STM #FILTER, AR1
RPTZ A, #TAPS
STL A, *AR1+

STM #REFERENCE, AR1
RPTZ A, #(TAPS+BLOCKSIZE)
STL A, *AR1+

.if mode=NLMS
STM #N_REFERENCE, AR1
RPTZ A, #TAPS
STL A, *AR1+

.elseif mode=BLOCK
STM #N_ERROR, AR1
RPTZ A, #BLOCKSIZE
STL A, *AR1+

.endif

LD #4,DP ; variables start at 0x200

LD #THRES0, A
STL A, THRES
LD #HANGT0, A
STL A, HANGT
LD #0400h, A
STL A, ABSY
LD #020h, A
STL A, IABSY
LD #CUTOF0, A
STL A, CUTOFF
LD #0400h, A
STL A, ABSY0F
LD #(1<<ECAN|1<<ESUP|1<<UNFREEZE),A

; 1 -> ECAN Enable cancellation
; 1 -> ESUP Enable resid. suppress.
; 1 -> UNFREEZE Enable coef. adaptation

STL A,control_flags

LD #no_nesp_level, A

STM #200h,IMR ; enable hpi (for DSK debugger)

BD input_sample
STL A, max_m
RSBX INTM

.end

Line Echo Cancellation 23

**
* Application: C54x LEC *
* File name: input.asm *
* Description: Get new samples: *
* reference input : y(0) *
* near-end input : s(0) *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* Date: January 97 *
**

.title "INPUT.ASM: 'C54x Echo Canceller - Sample input module"

.mmregs

.include "echoequ.inc"

.global input_sample, detect_near_speech, Y0, S0
.if mode=BLOCK

.global y0_ptr
.endif

.text

input_sample:
.if mode=BLOCK

MVDM y0_ptr,ref_ptr
MAR *ref_ptr+% ; increment pointer into ref. buffer
MVMD ref_ptr,y0_ptr ; remember location of y(0)

.endif

;
; For DSKplus demo, samples are injected through File IO.
; Set probe point at label input_sample
;

;PORTR #0100h,Y0 ; get reference sample
;PORTR #0200h,S0 ; get near-end sample

BD detect_near_speech
LD Y0,A
STL A,*ref_ptr ; store new sample into reference buffer.

24 SPRA188

* Application: C54x LEC *
* File name: input.asm *
* Description: Suppress the error signal if necessary and output sample *
* (1) Calculate long-term power estimate of u(n): *
* power(u(i+1)) = (1-alpha) power(u(i)) + alhpa*|u(i)| *
* alpha = 2^(-7) *
* (2) output a sample as follows: *
* if (canceller disabled) *
* output = s(0) *
* else *
* if (supressor disabled) *
* output = error_out *
* else *
* if (|error_out|/power(y) < threshold) *
* output = 0 *
* else *
* output = error_out *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* Date: January 97 *

.title "C54x LEC: output.asm"

.mmregs

.include "echoequ.inc"

.global OUTPUT, output_sample, input_sample, INPUT_B,OUTPUT_B

.global control_flags, error_out,S0

.global THRES, ABSOUT, IABSY, HCNTR, ABSE0

.text

output_sample:

echo_suppressor:

;
; Update long-time output power estimate (ABSOUT)
;

DLD ABSOUT,A ; double precision load.
SUB ABSOUT, LTAU, A ; ACC-ABSOUT*2**LTAU
ADD ABSE0, LTAU, A ; ACC +ABSE0*2**LTAU
DST A, ABSOUT ; double precision store.

;
; If (HCNTR)>0 then NEAR-END SPEECH
;

LD HCNTR, A
NOP
NOP
BC $no_suppress, AGT

;
; Test is the suppressor is enabled by user.
;

BITF control_flags, #1<<(15-(15-ESUP))
NOP
NOP
BC $no_suppress, NTC

;
; Suppression allowed; determine if required.
;

LD IABSY, T ; 1/|Y0|*|error_out| = |error_out/Y0|.
MPY ABSOUT, A

Line Echo Cancellation 25

SUB THRES, A
LD #0, B
NOP ; latency nop
XC 1, AGT ; if |error_out/Y0| > threshold, then

; OUTPUT = error_out
; else, A will contain 0 since
; LD error_out, A will not execute.

$no_suppress:
;
; if NEAR-END SPEECH or SUPPRESSOR DISABLED, copy error_out to
; OUTPUT and exit routine. (delayed)
;

LD error_out, B

canceller_on_off:

BITF control_flags, #1<<(15-(15-ECAN))

STL B, OUTPUT ; (previous routine's OUTPUT modify)
NOP ; latency nop inserted ny translator.
XC 1, NTC ; if canceller disabled (/ECAN), then
LD S0, B ; OUTPUT = S0 (s(n): near-end RX

signal)
STL B, OUTPUT

;
; Output sample.
;

;
; Manage i & o buffers for DSKplus demo
;

LD S0,A
STL A,*AR6+

LDM AR6,A
SUB #(INPUT_B+TAPS),A
LD OUTPUT,B
STL B,*AR7+

BC continue, ALEQ
STM #INPUT_B,AR6 ; in DSKplus demo: set probe point here
STM #OUTPUT_B,AR7 ; and connect it to graphical display.

continue:
B input_sample
;PORTW OUTPUT, #300h ; output to file in simulation

; ********

26 SPRA188

; File: VECTORS.ASM -> Vector Table for the 'C54x DSKplus 10.Jul.96
;
; ***
; The vectors in this table can be configured for processing external and
; internal software interrupts. The DSKplus debugger uses four interrupt
; vectors. These are RESET, TRAP2, INT2, and HPIINT.
; * DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER *
;
; All other vector locations are free to use. When programming always be sure
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.
;

.title "Vector Table"

.mmregs

.global input_sample

.sect "vectors"

reset B #80h ; 00; RESET *DO NOT MODIFY IF USING DEBUGGER*
nop

 nop
nmi RETE ; 04; non-maskable external interrupt
 nop
 nop
 nop
trap2 B #88h ; 08; trap2 *DO NOT MODIFY IF USING DEBUGGER*

 nop
 nop
 .space 52*16 ; 0C-3F: vectors for software interrupts 18-30

int0 RETE ; 40; external interrupt int0
 nop
 nop
 nop
int1 RETE ; 44; external interrupt int1
 nop
 nop
 nop
int2 RETE ; 48; external interrupt int2
 nop
 nop
 nop
tint RETE ; 4C; internal timer interrupt

 nop
 nop
 nop
brint RETE ; 50; BSP receive interrupt
 nop
 nop
 nop
bxint RETE ; 54; BSP transmit interrupt
 nop
 nop
 nop
trint RETE ; 58; TDM receive interrupt

 nop
 nop
 nop

txint RETE ; 5C; TDM transmit interrupt
 nop

 nop
int3 RETE ; 60; external interrupt int3
 nop
 nop
 nop
hpiint B #0e4h ; 64; HPIint *DO NOT MODIFY IF USING DEBUGGER*

 nop
 nop
 .space 24*16 ; 68-7F; reserved area

Line Echo Cancellation 27

* Application: C54x LEC *
* File name: detect.asm *
* Description: Determine if speech is present at the near-end. If yes, *
* set a flag (required by subsequent modules) *
* Speech detection is performed using the Geigel algorithm *
* if *
* |s(i)| >= 1/2 max(|y(i)|,|y(i-1)|, |y(i-TAPS)|) *
* then *
* start hangover counter *
* declare near end speech *
* else *
* if hangover counter > 0 *
* decrement hangover counter *
* declare near end speech *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* Date: January 97 *

.title " C54x LEC: detect.asm"

.mmregs

.include "echoequ.inc"

.global filter_and_adapt, detect_near_speech

.global HANGT, max_m, HCNTR, control_flags

.text

detect_near_speech:
;
; Update max_m by comparing it to |y(0)|
;

LD *ref_ptr+%,16,A ; y(0) -> AH
ABS A ; |y(0)| -> AH
SUB max_m,16,A, B ; |y(0)| - max_m -> BH

NOP
NOP
XC 1,BGT ; refers to B from 2 cycles ago.

 STH A,max_m ; if |y(0)| > max_m, update max_m
; ref_ptr points to y(0)

;
; If max_m = (y(i-(N-1)), need to recalculate max_m since the sample
; will be outside the sliding window next time around.
;

LD *ref_ptr-%,B ; ref_ptr points to y(0) again.
ABS B
SUB max_m, B
NOP
NOP
BC $continue,BNEQ

STM #(TAPS-2),BRC ; exclude y(i-(N-1))
LD #0,B
RPTB $end_update_max - 1
LD *ref_ptr-%,A ; y(i-k) -> A
ABS A ; |y(i-k)| -> A
MAX B ; max(A,B) -> B

$end_update_max:
STL B,max_m
MAR *ref_ptr-% ; ref+ptr points to y(0) again.

$continue:
;
;
; If nearend signal is greater than max_m then declare NEAREND SPEECH DETECTED:
; load hangover counter (HCNTR) and freeze tap updates.

28 SPRA188

;
LD *s0_ptr, A
ABS A
SUB max_m, A
BC $check_hang, ALEQ
LD HANGT, A ; load hangover counter
STL A, HCNTR
ANDM #~(1<<NONESP), control_flags ; declare near-end speech

$check_hang:
;
; Update hangover counter (HCNTR) if nonzero,
; otherwise undeclare near-end speech.
;

LD HCNTR, A
SUB #1,A
XC 1,AGEQ
STL A, HCNTR ; if HCNTR<>0, then HCNTR--
XC 2,ALT ; is counter was zero,
BD filter_and_adapt
ORM #(1<<NONESP), control_flags ; un-declare NE speech

Line Echo Cancellation 29

* Application: C54x LEC *
* File name: detect_blockasm *
* Description: Determine if speech is present at the near-end. If yes, *
* set a flag (required by subsequent modules) *
* Speech detection is performed using the modified *
* Geigel algorithm *
* (1)Calculate short-term power estimates: *
* ~y(i+1) = (1-alpha)~y(i) + alpha*|y(i)| *
* ~s(i+1) = (1-alpha)~y(i) + alpha*|y(i)| *
* alpha = 2^(-5) -> STAU = 11 *
* *
* (2) Speech detection algorithm: *
* if *
* ~s(i) >= 1/2 max(~y(i),~y(i-1), ~y(i-TAPS)) *
* then *
* start hangover counter *
* declare near end speech *
* else *
* if hangover counter > 0 *
* decrement hangover counter *
* declare near end speech *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* (translated from C5x) *
* Date: January 97 *

.title "C54x LEC: detect_b.asm"

.mmregs

.include "echoequ.inc"

.global detect_near_speech,estimate_echo

.global ABSS0, ABSY0, CUTOFF, H, ABSS0F, HANGT

.global ABSY0F, max_m, HCNTR, ABSY, M0

.global control_flags,Y0,S0

.text

detect_near_speech:

LD Y0,A
ABS A
STL A,ABSY0 ; absolute value of y(0)

LD S0,A
SFTA A,15
ABS A
STH A,ABSS0 ; absolute value

; ABSSO = |s(n)/2| to compensate
; for elimination of DC-removal filter

;
; Update short tau reference power estimate (ABSYOF)
; y_tilda(i+1) = (1-alpha)y_tilda(i) + alpha*|y(i)|
; alpha = 2^(-5) -> STAU = 11
;

LD ABSY0F, 16, A ; ABSY0F *2**16 -> ACC
SUB ABSY0F, STAU, A ; ACC-ABSY0F*2**STAU -> ACC
ADD ABSY0, STAU, A ; ACC+ABSY0*2**STAU -> ACC
STH A, ABSY0F ; HIGH ACC -> ABSY0F

;
; Update short tau near end power estimate (ABSS0F)
; s_tilda(i+1) = (1-alpha)s_tilda(i) + 2*alpha*|s(i)|
; alpha = 2^(-5) -> STAU = 11, NER = 1 (60dB NESP thresh.)
;

LD ABSS0F, 16, A ; ABSS0F*2**16 -> ACC
SUB ABSS0F, STAU, A ; ACC-ABSS0F*2**STAU -> ACC
ADD ABSS0, STAU+NER, A ; ACC+ABSS0*2**STAU+NER ->ACC
STH A, ABSS0F ; ACCH -> ABSS0F

30 SPRA188

;
; Update modulo 16 counter (H)
;

LD H, A ; H -> ACC
ADD #1, A ; ACC +1 -> ACC
AND #000Fh, A ; IF ACC = 16 THEN 0 -> ACC
STL A, H ; ACC -> H

;
; Update M's every 16 samples
;

BC $no_dmov_Ms, AGT ; update every 16 samples
;
; Continue here if H = 0 :
;

LD max_m, A ; get previous largest partial maximum;
LAR AR1,last_m ; setup AR1 & AR2 for max search loop
STM #(M0+TAPS/BLOCKSIZE), AR1 ; setup AR1 & AR2 for max search loop

;
; Check if *last_m = max_m
;

SUB *AR1-, A
BC $no_max_calc, ANEQ

;
; *last_m == max_m, need to recalculate largest M in set (since
; *last_m is pushed off list by "DMOV" type operation) and DMOV
; partial maxima.
;

STM #(TAPS/BLOCKSIZE),BRC
RPTBD $find_largest_M-1
LD #0,A ; delay slot
LD A,B ; delay slot
LD *AR1,A ; A = M[last_m-i]
MAX B ; B = max(A,B)
DELAY *AR1- ; "DMOV" partial maxima M(k)'s

$find_largest_M:
BD $check_hang ; (delayed)
STL B, max_m ; largest M(k) -> max_m

$no_max_calc:
LD ABSY0F, A ; (also executed for del. branch above)
SUB max_m, A
STM #(M0+TAPS/BLOCKSIZE-1), AR1
NOP ; latency nop
XC 2, AGT ; max_m = max{ max_m, ABSY0F }
LD ABSY0F, A ; (remember: ABSY0F ~= short-time

r.m.s.
STL A, max_m ; level of y(n))

RPT #(TAPS/BLOCKSIZE)
DELAY *AR1-
B $check_hang ; NO TEST FOR NEAR END SPEECH

;
; Update most recent partial maximum (M0) and max maximum (max_m)
;
; Continue here if 0 < H <= 15:
;
$no_dmov_Ms:

LD ABSY0F, A
SUB M0, A
BC $check_nesp, ALEQ
LD ABSY0F, A
STL A, M0 ; M0 = max{ M0 , ABSY0F }
SUB max_m, A
BC $check_nesp, ALEQ
LD M0, A
STL A, max_m ; max_m = max{ max_m , M0 }

$check_nesp:

Line Echo Cancellation 31

;
; If nearend signal power (ABSS0F = LP filtered |s(n)|, which is
; an estimate of the short-time r.m.s. level of s(n)) is greater than
; the greatest of the partial maxima (max_m) then declare NEAREND SPEECH
; DETECTED: load hangover counter (HCNTR) and freeze tap updates.
;

LD ABSS0F, A ; If ABSS0F > max_m, then declare NEAR-
SUB max_m, A ; END SPEECH.
BC $check_hang, ALEQ ; Else, skip to HCNTR update.
LD HANGT, A
STL A, HCNTR
ANDM #~(1<<NONESP), control_flags

$check_hang:
;
; Update hangover counter (HCNTR) if nonzero.
;

LD HCNTR, A ; skip HCNTR-- if already zero.
BC $check_cutoff, AEQ
SUB #1, A
STL A, HCNTR ; HCNTR--
B estimate_echo

$check_cutoff:
;
; If long-time "power" estimate of y(n) (ABSY: actually closer to r.m.s.
; level) is below cutoff level (CUTOFF), then skip tap update (by
; clearing NONESP bit in control_flags).
;

LD ABSY, A ; ABSY -> ACC
SUB CUTOFF, A ; ACC - CUTOFF -> ACC
ANDM #~(1<<NONESP), control_flags
BC estimate_echo, ALEQ
BD estimate_echo ; (delayed)
ORM #(1<<NONESP), control_flags

32 SPRA188

**
* Application: C54x LEC *
* File name: fir.asm *
* Description: *
* Estimate echo: est_echo=conv(y(n),a(n)) *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* (translated from C5x) *
* Date: January 97 *
**
 .title "C54x LEC: fir.asm"

.mmregs

.include "echoequ.inc"

.global estimate_echo,update_taps, FILTER

.global S0, est_echo, error_out, ABSE0

.text
estimate_echo:

;
; CONVOLVE REFERENCE SAMPLES WITH FIR COEFFICIENTS
; ref_ptr points to y(0)
;

STM #FILTER,filter_ptr ; points to A0
LD #0,A
STM #0FFFFh,AR0 ; index = -1
RPT #(TAPS-2)
MAC *ref_ptr+0%,*filter_ptr+,A
MACR *ref_ptr+0%,*filter_ptr+,A ; add rounding offset.
STH A,1,est_echo

; ref_ptr points to y(TAPS) now.
;
; COMPUTE THE OUTPUT (error_out)
;

LD S0, A ; NEAR END SAMPLE
SUB est_echo, A ; SUBTRACT ECHO ESTIMATE
STL A, error_out ; SAVE OUTPUT FOR UN(0)
ABS A
STL A, ABSE0 ; ABSOLUTE FOR POWER ESTIMATE

B update_taps

Line Echo Cancellation 33

**
* Application: C54x LEC *
* File name: update.asm *
* Description: Adapt coefficients using the normalized block-update *
* algorithm. *
* *
* Refer to C20 application report for details. *
* *
* Author: Jelena Nikolic, Associate Technical Staff *
* (translated from C5x) *
* Date: January 97 *
**
 .title "C54x LEC: update.asm"

.mmregs

.include "echoequ.inc"

.global control_flags, H, UN0, y0_ptr, error_out

.global update_taps, output_sample

.global N_ERROR, FILTER

.global ABSY0, AYLSBS, CUTOFF, IABSY, AELSBS, ABSOUT, ABSE0, ABSY

.text
calc_power:
;
; Update long-time reference power estimate (ABSY)
;

STM #LTAU,T
DLD ABSY,A
SUB ABSY, TS, A ; ACC - ABSY *2**LTAU
ADD ABSY0, TS, A ; ACC + ABSY0*2**LTAU
ADD CUTOFF, TS, A ; ACC + CUTOFF*2**LTAU
DST A, ABSY ; NEW ABSY

;
; Compute 1/ABSY
;

LD #1, 16, A
RPT #14
SUBC ABSY, A
STL A, IABSY

update_taps:
;
; Move UN0,UN1...UN14 to next higher memory location
;

STM #(N_ERROR+BLOCKSIZE-2), n_error_ptr ; ADUN14 -> ACC
RPT #(BLOCKSIZE-3) ; K= 14,13....1
DELAY *n_error_ptr- ; UN(K) -> UN(K+1)
DELAY *n_error_ptr ; UN(0) -> UN(1)

;
; Compute normalized output
;

LD error_out, T
MPY IABSY, A
SFTA A,15
SFTA A,1 ; Q.31 format
SAT A ; saturate to +/- 1.0

STH A, *n_error_ptr ; Save new UN0

BITF control_flags, #(1<<(15-(15-NONESP))|1<<(15-(15-UNFREEZE)))
BC output_sample, NTC ; if near-end speech, skip update.

LD y0_ptr,A
SUB H,A
STLM A,ref_ptr
STM #0FFFFh,AR0

 ; AR2 points to appropriate reference
; sample block.

34 SPRA188

STM #(TAPS/BLOCKSIZE-1),BRC
LD #FILTER, A
ADD H, A
SUB #16,A ; because we preincrement: *+AR4(16)
STLM A, filter_ptr ; TEMP3 = address of A(H-16)

SSBX FRCT

RPTBD $block_end-1
STM #N_ERROR, n_error_ptr
RPTZ A,#(BLOCKSIZE-2)
MAC *ref_ptr+0%,*n_error_ptr+,A ; Y (Q0) * UN (Q15)
MACR *ref_ptr+0%,*n_error_ptr,A ; last sumation: round.

MPYA IABSY ; A(32-16) * T -> B <=>
 ; INC(Q0)*IABSY(Q15)->B(Q16)

LD *+filter_ptr(16), 16, A ; a_k(i)(Q15 format) -> AH
SFTA B,#(15+GAIN) ; B(Q.16) << 15 = B(Q.31)

; B(Q.31) * 2^(GAIN)
ADD B,A ; B + A -> A
STH A, *filter_ptr ; A -> a_k(i+1), k -> k - 16
STM #N_ERROR, n_error_ptr

$block_end:

RSBX FRCT
B output_sample

Line Echo Cancellation 35

* Application: C54x LEC *
* File name: nlms.asm *
* Description: Filtering and filter coefficients adaptation using *
* normalized LMS algorithm: *
* (1) Calculate long-term power estimate of y(n): *
* power(y(i+1)) = (1-alpha) power(y(i)) + alhpa*|y(i)| *
* alpha = 2^(-7) *
* (2) Check if the long-term power estimate of y(i) is *
* below cutoff *
* (4) If allowed, adapt coefficients: *
* a_k(i+1) = a_k(i) + d_error_mu*(y(i-1-k)/L_y *
* where: *
* d_error_mu = 2beta*e(i-1)/L_y *
* L_y=long term average of absolute reference signal *
* 2beta = 2^(GAIN) *
* Author: Jelena Nikolic, Associate Technical Staff *
* Date: January 97 *

.title "C54x LEC: nlms.asm"

.mmregs

.include "echoequ.inc"

.global control_flags, IABSY, n_error_mu, error_out, S0

.global output_sample, filter_and_adapt

.global OUTPUT, ABSE0, Y0, FILTER, control_flags

.global ABSY0, CUTOFF, ABSY, AYLSBS, IABSY, AELSBS

.text

filter_and_adapt:
calc_power:

LD *ref_ptr,0,A
ABS A
STL A,ABSY0

;
; Update long-time reference power estimate (ABSY)
;

STM #LTAU,T ; for dymamic shift.

DLD ABSY,A ; double presicion load
SUB ABSY,TS ,A ; ACC - ABSY *2**LTAU
ADD ABSY0,TS,A ; ACC + ABSY0*2**LTAU
ADD CUTOFF,TS,A ; ACC + CUTOFF*2**LTAU
DST A,ABSY ; double precision store.

;
; Compute 1/ABSY
;

LD #1, 16, A
RPT #14
SUBC ABSY, A
STL A, IABSY

$check_cutoff:
;
; If long-time "power" estimate of y(n) (ABSY: actually closer to r.m.s.
; level) is below cutoff level (CUTOFF), then skip tap update (by
; clearing NONESP bit in control_flags).
;

LD ABSY, A ; ABSY -> ACC
SUB CUTOFF, A ; ACC - CUTOFF -> ACC

STM #FILTER,filter_ptr ; AR3 points to filter coefficients
STM #0FFFFh,AR0 ; index

XC 2,ALEQ
ANDM #~(1<<NONESP), control_flags ; skip update.

36 SPRA188

nlms_routine:
;
; If the filter coeff's shouldn't be updated, load T with zero,
; which will cause coefficients to remain the same where and the
; convolution will still be performed.
;

BITF control_flags, #(1<< (15-(15-NONESP))|1<< (15-(15-UNFREEZE)))

STM #(TAPS-2),BRC
SSBX FRCT

 XC 2, NTC ; if update frozen, skip update.
ST #0, n_error_mu

LD #0,B
LD n_error_mu, T ; norm_error * mu -> T

RPTBD $nlms_end-1
MPY *n_ref_ptr+0%,A
LMS *filter_ptr,*ref_ptr+0%

ST A,*filter_ptr+
 || MPY *n_ref_ptr+0%,A ; error (in T) * n_ref_sample -> A

LMS *filter_ptr,*ref_ptr+0% ; A + coef<<16 + round. -> A
; coef*ref+B -> B

$nlms_end:
ST A,*filter_ptr

 || SUB *AR5,A ; S0 << 16 - B (est.echo) -> A
STH A,error_out
ABS A
STH A,ABSE0 ; abs value for power estimate.

;
; Update the normalized reference sample buffer.
;

LD *ref_ptr+%,16,A ; y(0) -> A
MPYA IABSY ; y(Q0) * iabsy(Q15) -> Q16 (frct!)
SFTA B,15 ; it's Q31 now.
SAT B

; n_ref_ptr points to the newest sample
MAR *n_ref_ptr+%
STH B,*n_ref_ptr ; overwrite the oldest sample

; in the norm. reference buffer.

RSBX FRCT
;
; Compute normalized error * stepsize (for next time)
;

LD error_out,T ; error_out -> T
MPY IABSY, A ; T * IABSY -> A (in Q.15 format)
SFTA A,15
SFTA A,1 ; in Q.31 format
SAT A ; saturate norm. output @ +/- 1.0

BD output_sample

SFTA A,#GAIN ; norm_error * 2^GAIN (GAIN = 10)
STH A,n_error_mu

