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Accessing TMS320C54x Memory-
Mapped Registers in C– C54XREGS.H

Abstract 

This document describes how to access the ’C54x memory-mapped
registers in C. Several code examples are given.
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Design Problem 

How do I access the ’C54x memory-mapped registers in C?

Solution 

Accessing most of the ’C54x registers from C is easily accomplished
using pointers since most of the registers are memory mapped. The
most common reason for accessing memory-mapped registers is to
control the ’C54x peripherals. Refer to theTMS320C54x User’s
Guide for a list of the memory-mapped registers and their
associated addresses. As an example, the ’C54x serial port 0
control register, SPC0, memory mapped at address 0x0022, could
be declared in C as follows:

volatile unsigned int *SPC0_REG =
(volatile unsigned int *) 0x0022;

Note the volatile modifier since this register changes independent of
program control. The register can be written to and read from as
follows:

*SPC0_REG = 0xc8 ; /* Load SPC0 with 0xc8 */
currentXRDYValue = *SPC0_REG & 0x800

; /* Check XRDY bit of SPC0 */

However, this does not lead to very readable code. By using bit-field
data structures to describe the bit fields of the register, more
readable code can be developed. For example, consider the data
structure shown in Figure 1, SPC_REG, for the serial port control
registers, SPC0 and SPC1.

Example 1.  Code Listing

typedef union
{

unsigned int intval;
struct
{

unsigned int free :1 ; /*Free run*/
unsigned int soft :1 ; /*Soft*/
unsigned int rsrfull :1

; /*Rec Shift Reg Full*/
unsigned int xsrempty :1

; /*Xmt Shift Reg Emty*/
unsigned int xrdy :1 ; /*Transmit Ready*/
unsigned int rrdy :1 ; /*Receive Ready*/
unsigned int in1 :1 ; /*Input 1*/
unsigned int in0 :1 ; /*Input 0*/
unsigned int rrst :1 ; /*Receive Reset*/
unsigned int xrst :1 ; /*Transmit Reset*/
unsigned int txm :1 ; /*Transmit Mode*/
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unsigned int mcm :1 ; /*Clock Mode*/
unsigned int fsm :1 ; /*Frame Synch Mode*/
unsigned int fo :1 ; /*Format*/
unsigned int dlb :1 ; /*Dig Loopback Mode*/
unsigned int r_0 :1 ; /*Reserved*/

} bitval;
} SPC_REG;

The bit XRDY can now be read as follows:

volatile SPC_REG *spc0Ptr =
(volatile SPC_REG *) 0x0022;

currentXRDYValue = spc0Ptr->bitval.xrdy;

The TMS320 BBS contains the self-extracting file, C54XREGS.EXE.
This file contains a C header file, C54XREGS.H, that can be
included (i.e., #included) in your C programs to assist in accessing
’C54x peripheral registers as well as all of the ’C54x memory-
mapped registers, where appropriate bit-field data structures are
also defined. The remainder of this document will describe its usage.

To use C54XREGS.H simply include the file in your C program.
Each memory-mapped register has two entities associated with it:
(1) a macro that defines its address and (2) a type definition that
describes the bit fields and the memory-mapped register. The
macros for the address have two components for each register: one
for the actual address and one to typecast the address as a pointer
to a data structure that defines the memory-mapped register. The
following code segment describes the address macros for the serial
port 0 control register:

#define SPC0_BASE 0x0022
#define SPC0_ADDR ((volatile SPC_REG *)

((char *) SPC0_BASE))

Two different methods have been used to type define the registers.
For registers with bit fields, such as the serial-port-control registers,
SPC0 and SPC1, and interrupt-mask register, IMR, data structures
have been created that comprise a union of a 16-bit integer
component, named intval , and a bit-field component, named
bitval . The bit-field data structure for the serial port control
register given above is such an example. Registers that have no bit
field definition such as the serial port 0 receive register, DRR0, are
defined as either signed or unsigned integers or characters.

To access registers defined as bit-field data structures, use the
following syntax:

/*Set FSM, XRST, and RRST bits of the SPC0 register*/
SPC0_ADDR->intval = 0xc8;

To increase the readability of such assignments, macros for setting
the bits have also been defined. The following example illustrates
the use of these macros to accomplish the same thing:
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/*Set FSM, XRST, and RRST bits of the SPC0 register*/
SPC0_ADDR->intval = FSM | XRST | RRST;

The previous example sets the serial port for Frame Sync Mode and
resets the transmit and receive sides of serial port 0. Additional
macros have been defined such that the user only need type SPC0
instead of SPC0_ADDR->intval. Therefore the last example could
be expressed as follows:

SPC0 = FSM | XRST | RRST;

Alternatively, the bit-fields could have been used as follows to
accomplish the same task:

SPC0_ADDR->bitval.fsm = 1;
SPC0_ADDR->bitval.xrst = 1;
SPC0_ADDR->bitval.rrst = 1;

To access registers that are not defined as bit-field data structures,
use the following syntax:

*DXR0 = outputValue;

The previous example writes outputValue to the serial port 0
transmit register.

To declare a pointer to the serial port 0 control register, use the
following syntax:

volatile SPC_REG *spcr0 = SPC_ADDR;

The register is accessed as follows:

spcr->intval = FSM | XRST | RRST;
fsmbit = spcr->bitval.fsm;


