

TMS320 DSP
DESIGNER’S NOTEBOOK

Parity Generation on the
TMS320C54x
APPLICATION BRIEF: SPRA266

 David Nerge
 Digital Signal Processing Products
 Semiconductor Group

 Texas Instruments
 February 1996

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... 7
Design Problem.. 8
Solution... 8

Figures
Figure 1. The Seven-bit Example.. 8
Figure 2. Table Lookup ... 10
Figure 3. Four-bit parity tree example.. 10
Figure 4. Accumulator Contents ... 12

Examples
Example 1. A Pseudo Code fragment: ... 9
Example 2. An 8-Bit Example: (extendable to 32 bits) ... 11

Parity Generation on the TMS320C54x 7

Parity Generation on the TMS320C54x

Abstract

In many applications, simple parity checks are often introduced to
provide some minimal error detection capabilities when the
transmission channels are less than perfect. The 8-bit data bus in
personal computers is protected with the addition of a ninth parity
bit. Serial asynchronous data communications frequently embed an
extra parity bit in the data which is to be transmitted. Several of the
digital cellular phones utilize simple parity checks to protect data
transmission over a less than robust channel. Although it is far from
an optimal means of ensuring transmission errors are detected,
parity tends to be fairly simple to implement in either hardware or
software, and introduces minimal overhead in the transmitted
message.

This document discusses how the designer can use the
TMS320C54x DSPs to generate parity to ensure data transmission
has not been corrupted. It cintains several block diagrams illustrating
the process, and code listings needed to implement the process.

8 SPRA266

Design Problem

How can I use the TMS320C54x DSPs to generate parity to ensure
data transmission has not been corrupted?

Solution

The Need for Parity Generation

In many applications, simple parity checks are often introduced to
provide some minimal error detection capabilities when the
transmission channels are less than perfect. The 8-bit data bus in
personal computers is protected with the addition of a ninth parity
bit. Serial asynchronous data communications frequently embed an
extra parity bit in the data which is to be transmitted. Several of the
digital cellular phones utilize simple parity checks to protect data
transmission over a less than robust channel. Although it is far from
an optimal means of ensuring transmission errors are detected,
parity tends to be fairly simple to implement in either hardware or
software, and introduces minimal overhead in the transmitted
message.

What it is

Given a number of bits which are to be transmitted, parity is said to
be even if the total number of bits which are logical ‘one’ is an even
number. Otherwise, parity is odd. The value assigned to the even
parity bit is logical zero: a logical one if parity is odd. The generated
parity bit is frequently appended to the original data bits for
subsequent transmission.

The total number of bits which are “1” is three: Three is an odd
number, so the parity is odd.

Figure 1. The Seven-bit Example

Parity Generation on the TMS320C54x 9

Some Examples

Counting Ones

A simple method of determining the value of the parity bit is to count
the number of ones in all the bits which are to be transmitted. This
can be implemented in software by setting up a loop which tests
each bit, and if it’s a one, a counter is incremented. This is simple
and effective, but also slow. If more bits exist than can be stored in a
single word or byte, then after testing 8 or 16 bits/word (either by
shift and test or mask and test), an additional test must be included
to index to the next word. When the loop has been completed, the
counter is examined. If the least significant bit of the counter is zero,
then the total number of ones is even, and parity is even. Else, parity
is odd.

Example 1. A Pseudo Code fragment:
 initialize ones counter to zero
 initialize word counter
 loop1: get next word containing data bits
 loop2: shift or mask to test one of X bits in word

if bit is one, then increment counter
decrement loop counter
if loop counter is non zero, then repeat loop2

 if this is not the last word, then get next word and repeat
 loop1
 else, done: check least significant bit in counter to
 determine final parity value

Table Lookup

The value of the word containing the data bits may be used as an
index into a lookup table to determine the resulting parity.
Unfortunately, for longer words, the table tends to be a bit wide, and
a bit large. The input word may be subdivided into smaller words,
and recursively applied to a smaller lookup table. The tradeoff with
this approach is that of table size versus speed and parsing
overhead.

10 SPRA266

Figure 2. Table Lookup

Parity Tree

Hardware designers make use of a parity tree which consists of
cascaded stages of two input exclusive or gates as shown in Figure
3.

Figure 3. Four-bit parity tree example

Parity trees in hardware are fast, simple, and can be cascaded
easily to accommodate N-bit data lengths.

Parallel “Successive Approximations” in Software

In a manner similar to the parity tree described above, the
TMS320C54x family of DSPs may be used to generate parity in
software. Up to 32 bits of data can be handled relatively quickly and
efficiently. The feature of the TMS320C54x which enables this
technique is the ability of the 40-bit accumulators to be exclusive
OR’d against itself while a shift is applied. The process splits the
accumulator into two subsections, shifts to align the two subsections
for the exclusive or operation, and creates an intermediate result
which contains half the number of bits that were originally present.
Recursively applied, the process can reduce to log2N exclusive OR
operations, much like binary successive approximation techniques
used in analog to digital converters.

Parity Generation on the TMS320C54x 11

The code fragment below shows how this works. First, the input
word containing the data bits is loaded into the accumulator from
memory. A copy of accumulator A, shifted by N/2 bits is created,
exclusive OR’d with itself to produce an intermediate result which is
stored back into accumulator A. It is important to note that the
intermediate result (N/2 bits) is located somewhere in the middle of
the accumulator. The repetition of the process halves again the
number of “output” bits, etc. until only one bit is finally remaining.
The remaining bit may then be tested or stored away to indicate the
calculated parity value. If the number or input bits is not a power of
two, then the data word input to the accumulator must be masked
such that bits which should be excluded are not counted in the parity
calculation. Masking these bits to zero eliminates them from the
parity calculation.

Example 2. An 8-Bit Example: (extendable to 32 bits)
 ld Smem,0,A ;prep a sample value in low order of A

;begin kernel: quasi successive approximation
parity: xor A,4,A

 ;A4:7 XOR with A0:3: interim result [4 bits] in A4:7
 xor A,2,A ;A6:7 XOR with A4:5interim result [2 bits] in A6:7
 xor A,1,A ;A7 XOR with A6, parity remains in bit 7 of A:

;there’s garbage everywhere else
 ld A,8,A ;moves parity status into msb for conditional branch

;test end kernel: 8 bits in 3 cycles and 3 words

 bc par0,AGEQ ;A greater or equal to zero ==>parity=0
par1: b par1 ;A negative ==>even parity
par0: b par0 ;A greater or equal to zero ==>odd parity

12 SPRA266

Figure 4. Accumulator Contents

Summary

The TMS320C54x instruction set accommodates both rapid and
efficient generation of simple parity. The calculation of simple parity
on 16 bits of data can be accomplished in four instruction words and
four machine cycles. One or two cycles are required to get the data
into the accumulator. One or two cycles are required to mask off the
unused bit positions [length dependent]. The general solution for n
bits is:

Number of cycles = nprep + N

Number of words = nprep + N

Where N is the smallest integer such that 2N is greater than or equal
to n.

