
Disclaimer: This document was part of the First
European DSP Education and Research Conference.
It may have been written by someone whose native
language is not English. TI assumes no liability for the
quality of writing and/or the accuracy of the
information contained herein.

Faster Scan Conversion Using the
TMS320C80

Authors: M.B. Akhan, T. Bayik, E.G. Bahari

ESIEE, Paris
September 1996
SPRA330

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract ... 7
Product Support on the World Wide Web .. 8
Introduction... 9
Scan Conversion .. 11
Parallel Scan Conversion... 14
Using the TMS320C80 DSP.. 16
Summary ... 19
Acknowledgments .. 19
References .. 20

Figures
Figure 1. Rendering Pipeline ... 9
Figure 2. Polygon to be Rendered... 11
Figure 3. Final Rendered Polygon from Figure 2... 11
Figure 4. Hidden Surface Removal.. 12
Figure 5. Data Partitioning ... 14
Figure 6. ADSPs Running the Same Code.. 17
Figure 7. Each ADSP Running a Different Code ... 18

Faster Scan Conversion Using the TMS320C80 7

Faster Scan Conversion Using the
TMS320C80

Abstract

This application report describes the process of parallelizing the
scan conversion stage using the Texas Instruments (TI)
TMS320C80 digital signal processor (DSP). Current approaches
are discussed and a new approach is suggested to make the
graphics pipeline faster, especially at the scan conversion stage.
The suitability of the TMS320C80 for the suggested approach is
investigated and the design philosophy is explained.

This document was part of the first European DSP Education and
Research Conference that took place September 26 and 27, 1996
in Paris. For information on how TI encourages students from
around the world to find innovative ways to use DSPs, see TI’s
World Wide Web site at www.ti.com.

SPRA330

8 Faster Scan Conversion Using the TMS320C80

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA330

Faster Scan Conversion Using the TMS320C80 9

Introduction

Rendering 3D graphics is computationally very intensive,
especially for interactive applications. Personal Computers (PCs)
usually lack the power required for these calculations compared to
workstations. Figure 1 shows a typical rendering pipeline in which
3D polygons are converted to pixel information.

Figure 1. Rendering Pipeline

The objects drawn on a 2D device (such as a screen) are
represented as groups of mathematical primitives. Following
certain operations on these primitives, a 3D scene is formed.
There are two major operations:

q Transformation

q Rasterization

In the transformation operation, the system considers the current
viewpoint and mathematically transforms the primitives’ vertex
coordinates from object space into screen space. In the
rasterization operation, the system rasterizes the primitives by
examining which screen pixels they overlap and then coloring in
the appropriate contribution for each one.

SPRA330

10 Faster Scan Conversion Using the TMS320C80

Using multiple processors for both transformation and
rasterization is a powerful performance option. Current
implementations of the graphics pipeline in some architectures
use parallelism at certain stages of the rendering pipeline to
increase speed.1 2 3 Although the most time consuming part of
rendering pipeline is scan conversion there has been no serious
attempt to parallelize this stage to speed up the rendering
process.4

SPRA330

Faster Scan Conversion Using the TMS320C80 11

Scan Conversion

Converting the transformed 3D primitives into 2D pixel information
on the screen stage is called scan conversion.

Scan conversion of 3D objects is implemented by interpolating
between two projected end points. We usually have the primitives’
vertex coordinates as the information and we want to interpolate
between these vertex coordinates. Figure 2 shows a polygon to be
rendered. Figure 3 shows the final rendered and filled polygon.

Figure 2. Polygon to be Rendered

Figure 3. Final Rendered Polygon from Figure 2

SPRA330

12 Faster Scan Conversion Using the TMS320C80

After scan conversion, the hidden surface removal stage is
performed. The purpose of the hidden surface removal is to
remove any surfaces blocked by another object or surface by
taking depth information into the account.

Figure 4 shows that the cube obstructs some parts of the
rectangular plane where the hidden surface removal stage
eliminates the obstructed parts. There are several algorithms for
hidden surface removal but the most widely used one is the z-
buffer algorithm.5 6 7

Figure 4. Hidden Surface Removal

In the z-buffer algorithm, for each pixel on the display, we keep a
record of the depth of the primitive in the scene closest to the
viewer, plus a record of the intensity that should be displayed to
show the object. When a new polygon is to be processed, a z-
value and intensity value is calculated for each pixel that lies
within the boundary of the polygon.

If the z-value at a pixel indicates that the polygon is closer to the
viewer than the z-value in the z-buffer, the z-value and the
intensity values recorded in the buffers are replaced by the
polygon’s values. After processing all polygons, the resulting
intensity buffer can be displayed.

SPRA330

Faster Scan Conversion Using the TMS320C80 13

Z-buffer algorithm is easy to implement but the problem with this
algorithm is the amount of memory that it requires since we also
have to keep a record of depth information as well as intensity.

SPRA330

14 Faster Scan Conversion Using the TMS320C80

Parallel Scan Conversion

One methods proposed for parallel scan conversion is to divide
the image into smaller portions and distribute these small regions
to some parallel processing elements to be scan converted.3

Some problems encountered with this approach are the load
imbalance because of the nonexistence of apriori knowledge
about the regions and aliasing, especially at the borders of the
small regions rendered separately and reassembled.5 Operating
on small regions and assembling them to be rendered clearly
causes some problems at the borders of the sub-regions when
regions are merged. The programmer must decide how to split up
and recombine the workload among parallel processors. Figure 5
shows an image broken into 32 regions.

Figure 5. Data Partitioning

Because many of the regions happen to be empty, the processors
assigned to those regions go idle right away. The number of
regions should be decided in such ways that idle processors have
plenty of things they can be reassigned to do.

SPRA330

Faster Scan Conversion Using the TMS320C80 15

The approach that we use is entirely different in that each
processing element operates on a polygon rather than contiguous
subimages. Since 3D databases are already made up of
polygons, this strategy does not have the additional overhead of
dividing up the image. When several parallel processors operate
independently on a large number of polygons, which form the
scene, it is expected to result in a substantial increase in
rendering speed.

SPRA330

16 Faster Scan Conversion Using the TMS320C80

Using the TMS320C80 DSP

We use the TI TMS320C80 DSP to parallelize the scan
conversion stage. The TMS320C80 has a RISC master processor
(MP) with a floating point unit. Four parallel advanced digital signal
processors (ADSPs) that are 32 bit integer units support 2 billion
operations per second. Interprocessor communication between
the processors is implemented by a combination of RAMs that are
interconnected via the crossbar to the processors. The transfer
controller handles block data movement.

We do not aim to compete with dedicated graphics accelerators.
Our goal is to create a platform capable of multiple image
processing and graphics functions, video conferencing,
compression, and communication. The processing power of the
TMS320C80 enables us to combine several applications into a
single platform.

For example, the platform could be used in telemedicine in such a
way that the picture of the bone of a patient could be sent to
another expert through video conferencing. Then the expert can
get another bone structure from his 3D database and compare
both bones. A number of other applications, such as medical
imaging, advance photocopiers and multimedia applications, will
require a single board with the functionality of graphics, imaging
and image processing, audio, communication, and compression.
Acquisition, graphics and image processing, audio,
communications, and compression algorithms can be
implemented on the TMS320C80, which allows us to use a single
board for a number of areas of applications.

The TMS320C80 ADSPs are used mainly in two ways:

q Partition the data among parallel processors so that each
ADSP runs the same code and hence does the same job. In
this case, the MP sends commands to each parallel processor
in a parallel data flow fashion. Figure 6 shows how the MP
partitions the data and sends a small portion of it to the
ADSPs.

For example, MP performs database traversal and sends
polygons to the ADSPs. Each ADSP then performs coordinate
transformation, clipping, culling, projection transformation,
scan conversion, hidden surface removal, and shading on a
single polygon it takes from the MP.

SPRA330

Faster Scan Conversion Using the TMS320C80 17

Figure 6. ADSPs Running the Same Code

q Partition the tasks to be performed so that each ADSP runs a
different code. In this case, the MP sends commands to one of
the processors and the output of the data is passed to another
processor to be processed. While the second ADSP is
performing its job, the first ADSP can start performing the next
bit of data. Figure 7 shows how the MP partitions the data and
sends a small portion of it to the ADSPs. Each ADSP performs
a different stage of the graphics pipeline.

For example, while the first ADSP is performing coordinate
transformation, the second one performs clipping and
projection transformation, the third one performs the scan
conversion, and the fourth one performs the rest of the
pipeline.

SPRA330

18 Faster Scan Conversion Using the TMS320C80

Figure 7. Each ADSP Running a Different Code

It should be clear that the latter case is not suitable for
parallelizing the graphics rendering because it is nothing but
pipelining; hence, we use the first scheme. Although hybrid
combinations of both approaches are possible, we believe the first
method is the best solution to increase the speed of the scan
conversion stage of the graphics pipeline. This scheme avoids
memory and crossbar contentions caused when ADSPs try to
read/write to the same data locations. Our initial experiments also
support this belief. Each of the ADSPs are assigned a polygon to
be scan converted from the polygon list and each polygon is
rendered by a single ADSP until rendering is complete.

We must avoid the load imbalance that can be caused by the
uneven distribution of the polygons over the ADSPs, which is vital
to obtain the maximum throughput. If the sizes of the polygons are
quite different from each other, the MP should take care of it and
chop the polygons down to smaller polygons or trapezoids.

SPRA330

Faster Scan Conversion Using the TMS320C80 19

Summary

This application report explained the need to parallelize the scan
conversion stage. It was suggested that that the ADSP should
work on a single polygon rather than on a small contiguous region
of data. The MP converts polygons into smaller polygons if
necessary. ADSPs are used in parallel to increase the speed of
the scan conversion stage of the graphics pipeline. The MP
distributes tasks and organizes the data flow.

Our initial work, which is capable of rendering wireframe objects,
shows that 3D rendering significantly benefits from parallelization.
The final aim of this work is to build a general-purpose 3D-
application program interface (API).

Various strategies to provide equal load balance on parallel
processors for rendering will be tested in the immediate future. We
expect to improve the rendering performance even further with a
purpose built multitasking executive.

Acknowledgments

The authors would like to thank Dr. Barry Jefferies, Head of
Division, Electronic and Electrical Engineering, University of
Herfordshire for his support of this work.

SPRA330

20 Faster Scan Conversion Using the TMS320C80

References

1 S. Monlar et. al., "A Sorting Classification of Parallel Rendering", IEEE
Computer Graphics and Applications", pp.23-32, July
1994.

2 T. Hobbs et al., "A Parallel Image Processing and Display System
(PIPADS) Hardware Architecture and Control Software",
Proceeding of the Twenty Sixth Hawaii International
Conference on System Sciences, 1993, pp.106-115

3 F. C. Crow, "Parallelism in Rendering Algorithms", Proceedings of
Graphics Interface ’88, pp.87-96

4 T. Lee and C.S. Raghavendra, Parallel Processing for Graphics
Rendering on Distributed Memory Multicomputers,
School of Electrical Engineering and Computer Science
Washington State University Pullman, WA

5 Foley J., A. van Dam, Computer Graphics Principles and Practice,
Addison Wesley, 1990.

6 Rogers, D.F., Procedural Elements for Computer Graphics, McGraw
Hill, 1988.

7 Watt, A., 3D Computer Graphics, Addison Wesley, 1994.

