
Disclaimer: This document was part of the First
European DSP Education and Research Conference.
It may have been written by someone whose native
language is not English. TI assumes no liability for the
quality of writing and/or the accuracy of the
information contained herein.

Implementing an MPEG2 Video Decoder
Based on the TMS320C80 MVP

Authors: F. Bonomini, F. De Marco-Zompit,
G.A. Mian, A. Odorico, D. Palumbo

ESIEE, Paris
September 1996
SPRA332

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract ... 7
Product Support on the World Wide Web .. 8
Introduction... 9
The Video Decoder ... 10
Bitstream Scanning and VLC Decoding. .. 13

"Table-Look-At" Algorithm... 15
"Distributed Tree-Balancing" Algorithm... 16

Decoder Architecture ... 19
Acknowledgments .. 23
References .. 23

Figures
Figure 1. Decoding Activities ... 10
Figure 2. Binary Tree Associated with the VLCs of Table 1 .. 14
Figure 3. Data Structure of the "Table-Look-At" Algorithm .. 16
Figure 4. Binary Tree Associated with the "Distributed Tree-Balancing" Algorithm......... 17
Figure 5. Decoder Organization : a) I Pictures and b) P and B Pictures (PH: Picture

Header; S: Slice). ... 17
Figure 6. VLC Decoding and IDCT+Reconstruction Statistics a) at 4 Mbitls and b) at 8

Mbit/s .. 21
Figure 7. Decoding Time for I, P, B Pictures vs. Bit-Rate.. 22

Tables
Table 1. VLCs for Some Pairs {run, level) .. 14
Table 2. Processing Times for VLC Decoding (cycles/VLC) .. 18
Table 3. IDCT and Reconstruction Processes: MVP-Cycles/Pixel for I, P, and B

Macroblocks ... 19

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 7

Implementing an MPEG2 Video
Decoder Based on the TMS320C80

MVP

Abstract

This application report presents the preliminary results obtained in
the realization of the MPEG2 video decoder on the Texas
Instruments (TIÌ) TM532OC80 MVP. We have addressed and
solved the problems of bitstream scanning, variable-length code
decoding, and inverse discrete cosine transform (DCT). The
results obtained, integrated with preliminary work and available
information about time requirements of image reconstruction for
predicted and interpolated pictures, allow us to choose the
architecture of the MPEG2 decoder. At present, it is possible to
predict that a complete decoder will operate in real-time on one 50
MHz MVP for CCIR 601 4:2:0 sequences coded at bit-rates up to
about 6 Mbit/s.

This document was part of the first European DSP Education and
Research Conference that took place September 26 and 27, 1996
in Paris. For information on how TI encourages students from
around the world to find innovative ways to use DSPs, see TI’s
World Wide Web site at www.ti.com.

SPRA332

8 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 9

Introduction

The goal of this project, carried out in the framework of the TI
University Elite Program, is to implement an MPEG2 video
decoder 1, 2 on the TMS32OC80 MVP via the TMS320C80 PC-
based Software Development Board (SDB).

The real time requirement is the critical point of the project and
needs a careful analysis of the decoding process in order to
assign the different activities to the available resources (e.g.,
master and parallel processors, on-chip memory, etc.).

In the sequel, after giving a short description of the decoder, we
present the solution chosen for scanning the bitstream, decoding
the variable length codes and for the inverse discrete cosine
transform. The timings associated with such activities and with the
reconstruction of the predicted and interpolated pictures3 will be
presented.

Such data allows us to present an architecture that, in the case of
CCIR 601 4:2:0 sequences, matches decoder activities with
available resources for bit-rates up to about 6 Mbit/s on a 50 MHz
MVP.

SPRA332

10 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

The Video Decoder

A schematic block diagram of the decoding process is given in
Figure 1. For the sake of simplicity, only the reconstruction
process associated with intracoded (I) and predicted (P) pictures
is represented (z–1 denotes the delay between the reference and
the predicted picture).

Figure 1. Decoding Activities

The process can be divided into the following main activities:

q Loading of the coded video bitstream from the external device
(in our case the PC hard disk) into the C80 external memory.
The coded video average bit-rate ranges from 2 to 16 Mbit/s
for CCIR 601 sequences (video coded at 6 Mbit/s is
subjectively perceived as fully equivalent to PAL).

q Scanning of the bitstream. The bitstream combines both fixed
length, which are to be searched and interpreted first, and
variable length codes (VLC).

q Demultiplexing into overhead information (such as motion
information: vc(n), quantizer stepsize: D(n), macroblock type)
and quantized DCT coefficients: QC(n).

q Decoding of the variable length codes (VLC-1). In particular the
VLCs associated to DCT coefficients are to be decoded into
pairs {zero run length, level} according to the macroblock type.

q Inverse quantization of the DCT coefficients (Q-1), saturation
and reorganization from the zigzag scanning order to the
natural (row-column) order.

q Inverse discrete cosine transform (IDCT) of the DCT
reconstructed coefficients and saturation.

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 11

q Picture reconstruction. In the case of P pictures, the error
prediction, e(n), is added on a macroblock basis to the
prediction, which is built up from the reference picture via the
motion vectors v(n). In the case of interpolated pictures (B
pictures) and because of the particular nature of the bi-
directional prediction, two reference pictures, past and future,
are used to form the prediction.

q Displaying of the decoded picture)(ˆ nx . The corresponding
rate is 15 Mbyte/s for the CCIR 601 4:2:0 sequences
considered in this work.

Notice that, except for the construction of the prediction, all the
activities are to be executed on the same macroblock in the
sequential order as they appear in the previous list. Consequently, it
is possible to pipeline the corresponding activities. Contrarily, once
the motion vectors are decoded, the macroblock predictions can be
constructed in parallel with the activities VLC-1, Q-1, IDCT,
associated with the corresponding macroblock.

The syntax of an MPEG2 video bitstream contains six layers, each
of which support a specific function:

q sequence

q group of pictures

q picture

q slice

q macroblock

q block

A header is associated with all the layers except the block layer.
The parameters contained in the header, excluding those of the
macroblock layer, have fixed length codes, and each header
begins with a byte aligned start code, from the sequence header
to the macroblock header. The presence of the start codes makes
the bitstream scanning easier; e.g., it is possible to skip all the
variable length coded data associated with the macroblocks of a
slice by looking at the start code of the next slice.

A cursory analysis of the expected computational complexities of
points 1 8 suggests giving the master processor (MP) only the
tasks of supervising the parallel processors (PPs) activities, of
dealing with I/O, and of reading and interpreting the bitstream from
the sequence layer to the start codes of the slice level. Their
knowledge indeed allows it to start the decoding activities on the
PPs.

SPRA332

12 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

As for the PP computation organization, it is possible to resort to a
horizontal parallelism (“true" parallelism), to a vertical parallelism
(i.e., to a pipeline), and to a mixed solution.4 In any case, the
different activities are to be distributed so that the corresponding
computation times are almost equal.

Another choice concerns the dimension of the buffer used to
exchange data between the PPs. If the buffer is too small, the
corresponding computation times may greatly vary according to
the local statistical properties of the bitstream data. Contrarily, the
greater the buffer, the more constant the computation times. In our
case we chose a priori (the choice has been confirmed by
subsequent work) a macroblock as the interprocessor exchange
unit since its dimension (6x64x2 = 768 byte for the IDCT input in
the case of 4:2:0 format) is well within the 2 Kbytes size of one of
the three DRAMs of each PP.

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 13

Bitstream Scanning and VLC Decoding.

The reading of the bitstream from the external device via a circular
buffer and the scanning of the bitstream to extract the coded
parameters from the sequence header to the slice header is
executed by the MP. The information about the position of slice
start codes is sent to a PP, which carries out the decoding at the
slice and MB level.

The corresponding program is written in C language and runs in
real-time on the MP for bit-rates up to about 60 Mbit/s. To this
purpose, it is interesting to note that such a figure has been
obtained by carefully tailoring the C code to the MP
characteristics. Actually, its first version, derived from the C
language version of the MPEG Software Simulation Group
decoder, ran in real-time up to only 1 Mbit/s.

In the macroblock layer many data are coded via VLCs. Some
VLCs represent single data, while others, such as DCT
coefficients codes, represent pairs {run, level}. Since their
decoding is most critical, we will specifically refer to them but the
conclusions also apply to the other VLCs.

In MPEG2 two 113 elements Huffman-like tables are used for the
DCT coefficients. Only the codes with high probability of
occurrence are coded with a VLC. The less probable events are
coded with an escape symbol followed by fixed length codes.
There is the possibility to use either or both of the tables: one for I
and one for P and B macroblocks, respectively, or one of the
tables for all macroblocks.

Moreover, the first coefficient (DC) of P and B macroblocks has to
be decoded via a third 113 elements Huffman-like table, and the
DC coefficients of I macroblocks has to be decoded via a different
method; i.e., with a predictor and another table.

An example, which shows some symbols of one table, is given in
Table 1.

SPRA332

14 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

Table 1. VLCs for Some Pairs {run, level)

VLC Run Level

10 End of block

11s 0 1

011s 1 1

0l00s 0 2

0l0ls 2 1

… … …

000l00s 7 1

000l0ls 6 1

000ll0s 1 2

000llls 5 1

… … …
Note: s Denotes the Sign of the DCT Coefficient.

A Huffman code is a binary variable length prefix code which is
optimal in the sense that, for a given source, no binary variable
length uniquely decodable code can give a strictly smaller average
length. It gives short codes to the most probable symbols and long
codes to the less probable ones.

The corresponding code can be depicted as a highly unbalanced
binary tree, and there is a one-to-one correspondence between
paths from the root node to the leaves and the codewords.

A codeword of length l bits corresponds to a path of l branches in
the tree beginning at the root node (depth 0) and finishing at a
terminal node of depth l in the tree. The codeword is the sequence
of binary labels of the branches read from the first branch to the
branch of depth l. A binary tree representation of the codes of
Table 1 is given in Figure 2 (the sign bit s is disregarded).

Figure 2. Binary Tree Associated with the VLCs of Table 1

Note: Sign bit s disregarded.

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 15

Assuming a known starting point, decoding a prefix code simply
involves, in principle, scanning bits until a valid codeword is found.
In practice, binary tree searching is not so simple and can be quite
time-consuming. It is important to organize the tree in such a way
that fast decoding is possible and a reduced amount of memory is
used.

In the sections “Table-Look-At” Algorithm and “Distributing Tree-
Balancing” Algorithm sections, we present the two techniques that
appear more suitable for the problem at hand and the reasons that
led us to adopt the second one.

Common to both techniques is the principle of partially balancing
the tree by introducing duplicated nodes. Searching in a fully
balanced binary tree is, indeed, trivial.

"Table-Look-At" Algorithm

The “table-look-at” algorithm solution derives from the "table-look-
at" algorithm presented in The Art of Computer Programming.5 Let
us choose a fixed length: h bits, which corresponds to a path of
depth h in the associated tree. We then augmented the tree by
associating to each node at depth less than h two identical sons
and repeating this procedure until the tree is balanced up to the
level h. In the augmented tree each nonterminal node at depth h
becomes the root of an unbalanced subtree, and to all such
subtrees the balancing procedure is applied again until all the
terminal nodes of the original tree are considered.

The balancing operation leads to the algorithm exemplified in
Figure 3 (sign bit S included) for h=4 with reference to the tree of
Figure 2. A field of h bits is read from the bitstream and is used as
the key, k, to read the content at position k of the first table
(TAB1). If the VLC length is not greater than h, the table content
gives its actual length m(k) and the corresponding (run, level)
symbol; otherwise it gives the pointer to TAB2 and the number
n(k) of additional bits to be read from the bitstream. The
corresponding field is used to address TAB2, which contains the
symbol and the actual VLC length. Figure 3 shows the decoding of
the VLC 0001011 associated with the symbol {6,-1}.

SPRA332

16 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

Figure 3. Data Structure of the "Table-Look-At" Algorithm

The performance of the method is strongly dependent from h; the
greater h the greater the probability the search finishes at the first
step. (If h were equal to the maximum VLC length, the search
would be completed in one step). At the same time, however, the
greater h, the greater the size of TAB 1 and the greater the waste
of memory associated with short and more probable VLCs.

These considerations lead to the choice h=8 (the percentage of
VLCs with lengths not greater than 8 bit, ranges from 70% to 90%
as the bit-rate goes from 2 to 16 Mbit/s). The corresponding PP
assembly program requires 16 cycles per-VLC for the activities 4)
and 5) of the section, The Video Decoder, but the size of all the
tables needed to decode the DCT coefficients VLCs is 4368 bytes.

"Distributed Tree-Balancing" Algorithm

The “distributed tree-balancing” algorithm method arises from the
simple observation that most codewords begin with a sequence of
zeros followed by a 1 and that, in the PP assembly, there is an
instruction which, in one cycle, gives the number of zeros, n, to
the left of the leading 1 of the content of a register. This makes it
easy to identify all leading patterns of type 1..., 01...,001... etc.;
i.e., all codewords that start with the same number of zeros or,
stated otherwise, to go in one step from the root of the tree to the
corresponding internal node (black nodes of Figure 4a).

Each such node becomes the root of the subtree composed by all
its descendants. The subtree is balanced, as in the previous
technique, by making the depth of all its paths equal to the subtree
maximum depth, h(n) (duplicating when necessary all the terminal
nodes which have depth less than h(n)).

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 17

In this way, the search of the marked internal nodes is carried out
by counting the number of leading zeros and using this quantity to
point to a table containing the terminal parts of the associated
codewords.

Figure 4b shows the data structures of the algorithm.

Figure 4. Binary Tree Associated with the "Distributed Tree-Balancing" Algorithm

The first table (TAB1) contains h(n) and the pointer to a second
table (TAB2), which contains the pair {run, level} and the VLC
length m(k). The decoding of the codeword 0001011 is sketched
in Figure 5.

Figure 5. Decoder Organization : a) I Pictures and b) P and B Pictures (PH:
Picture Header; S: Slice).

SPRA332

18 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

For the activities 4) and 5) of the section, The Video Decoder,this
method requires only 1664 bytes of DRAM and a constant
decoding time of 20 cycles per VLC; i.e., when compared with the
first method, memory is sacrificed for processing time.

It has to be taken into account, however, that in order to minimize
packet transfers it is preferable to load (in the DRAM) only once all
the tables needed to decode all variable length coded data and
other data structures, while leaving room for exchange buffers
with the PPs and the MP. This consideration led us to prefer the
second algorithm (it allows us to reserve 2 Kbytes of DRAM for
the bitstream section to be decoded coupled).

Table 2 presents the corresponding decoding times for different
VLCs. In the case of DCT coefficients, the per-VLC count is
comprehensive of inverse quantization, saturation, mismatch
control, and data reorganization from the zigzag order to the row-
column order.

Table 2. Processing Times for VLC Decoding (cycles/VLC)

DC
coeff

Non DC
coeff

Esc EOB Others

DCT

(I)

18 20 19 22 -

DCT

(P,B)

26 21 20 22 -

Other

VLCs

- - - - 14

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 19

Decoder Architecture

The PP organization requires the knowledge of both the
processing times associated with the different activities depicted in
Figure 1 and their dependence from the coded video average bit-
rate.

The VLC decoding is the task more influenced by the bit-rate. As a
matter of fact, the coder controls the output bit-rate through the
quantizer stepsize, D(n): the greater D(n), the higher the number of
zero DCT coefficients and, correspondingly, the more efficient the
run-length coding and the lower the resulting bit-rate. As a result,
the per-VLC average number of DCT coefficients decreases with
the bit-rate while the VLC decoding time, tvlc, increases. Its actual
value depends on the particular video sequence.

In the following we will base our predictions on experimental
results obtained by running a (conveniently modified) C language
version of the MPEG2 decoder on the sequences "Calendar" and
"Flower" coded at various bit-rates. These results, exemplified by
the histograms of Figure 6a and b, show that:

q At any bit-rate, tvlc increases, as expected, in going from B to P
and 1 macroblocks (e.g., at 4 Mbit/s the average value of tvlc is
26.2, 13.9, and 7.7 ms/macroblock for I, P, and B macroblocks
respectively, if the decoding is carried out on one PP).

q tvlc increases (almost proportionally for P macroblocks) with bit-
rate.

The actual values show that, to decode the VLCs in real-time
frame by frame (i.e., within 40 ms for the European 25 frame/s
rate), it is necessary to use two PPs for I pictures and one PP for
P and B pictures for rates up to about 6 Mbit/s.

The two other main tasks¦IDCT and reconstruction¦are less
rate dependent. A preliminary estimate of the corresponding
processing times expressed in MVP-cycles/pixel is given in Table
3.

Table 3. IDCT and Reconstruction Processes: MVP-Cycles/Pixel for I, P, and B
Macroblocks

I P B
I IDCT 5.8 5.2 5.2

Reconstruction 0 4.1 6.6

SPRA332

20 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

As for IDCT, the estimates are based on an assembly version of
the Chen’s algorithm6 and include auxiliary operations; e.g.,
saturation, half-word conversion, etc. Presently, we are optimizing
an assembly version of the potentially faster lee’s algorithm.7 The
reconstruction estimates are based on available information3

about an assembly procedure with "minimum" code length and
constant reconstruction time.

The data of Table 3 can be translated into time and, associated
with VLC decoding times, suggest the PP organization sketched in
Figure 5:

q I-pictures: VLC decoding is carried out in parallel by two PPs,
each one connected in pipeline with another PP, which does
IDCT.

q P and B-pictures: VLC decoding is carried out by one PP
connected in pipeline with three PPs operating in parallel,
which do IDCT and reconstruction.

The corresponding performance was estimated via simulation.
The statistics obtained at 4 and 8 Mbit/s are shown in Figure 6a
and b, respectively. Each figure gives the per-macroblock
processing times for I, P, and B pictures. In particular, each
subplot shows the histogram of the per-macroblock VLC decoding
times: the bar marked with "o" denotes its mean value.

The bar marked with "*" denotes the actual mean value of the
other activity; i.e., IDCT or IDCT+reconstruction times, while the
dashed bar gives the value one would obtain under the hypothesis
of a constant IDCT time. The two values differ, the former being
less than the latter, because in P and B pictures some blocks (or
MBs) can be zero and the corresponding IDCT can be skipped. In
addition, in each subplot, the percentage of time tvlc, is less than
the time required by the other activity, is shown.

The bar diagram at the bottom right of the figures gives the per-
frame processing time. It was computed taking into account the
proposed PP organization. The processing time was computed for
all MBs as the maximum of the times required by the two pipelined
activities (VLC decoding and IDCT or IDCT+reconstruction). The
continuous and dashed line bars give the average and worst-case
decoding times, while the black bar shows the average processing
time associated with VLC decoding only.

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 21

Figure 6. VLC Decoding and IDCT+Reconstruction Statistics a) at 4 Mbitls and
b) at 8 Mbit/s

SPRA332

22 Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP

The figures clearly show that VLC decoding becomes more
important in determining the processing time as the bit-rate
increases. This is particularly true for P pictures, that at 8 Mbit/s
(Figure 6a and b) become the only pictures whose decoding time
is greater than 40 ms, the value required for real-time operation on
a frame by frame basis.

Figure 7 summarizes the expected per-frame decoding times vs.
bit-rate for I, P, and B pictures. It allows one to predict the decoder
will properly operate at bit-rates up to about 6 Mbit/s. Actually, the
preliminary version of the MVP decoder has been tested on I
pictures and its performance was found to agree with
expectations.

Figure 7. Decoding Time for I, P, B Pictures vs. Bit-Rate

From Figure 6b it results that there is a (small) margin for I and B
pictures. This fact suggests there is room for some improvement
by exploiting the difference between the transmission and
visualization orders of the different pictures; a sequence to be
visualized as I1, B2, B3, P4, B5, B6, P7... is transmitted as I1, P4, B2,
B3, P7, B5, B6 This implies that, at the start, the constraints for real
time decoding become:

SPRA332

Implementing an MPEG2 Video Decoder Based on the TMS320C80 MVP 23

TI1<2Tq,TI1+TP4+TB2<3Tq,TI1+Tp4+TB2+TB3<4Tq,

where Tq=40 ms; i.e., the frame period, while in the steady state, it
must be:

T*+TB<2Tq,T*+2TB<3Tq,

where "*" denotes an I or P picture.

The corresponding simulations show an increase of the maximum
bit-rate, which, however, is not sufficient to go to 8 Mbit/s. At this
bit-rate, all the constraints are satisfied with some margin with the
exception of the PB couples, which do not satisfy the constraint
Tp+TB<2Tq with "probability" about 1/4.

In any case, this analysis makes us more confident that the
complete decoder will properly work up to 6 Mbit/s.

Acknowledgments

The authors would like to thank the "old" students of the Image
Processing Laboratory: Nicola Griggio and Fabio Valente (Alcatel-
Telettra, Milan-IT) and Massimo Martelli (Texas Instruments,
Milan-IT) for their valuable support and cooperation.

References

1 D.J. Le Gall. "The MPEG Video Compression Algorithm," Comm. ACM,
34,4,47-58, April 1991.

2 Draft, Recommendation H.262 – ISO/IEC 13818-2, "Generic Coding of
Moving Pictures and Associated Audio: Video," May
1994.

3 N. Griggio, F. Valente. Alcatel-Telettra (Milan-IT), Private
Communication.

4 M.J. Shute. "Fifth Generation Wafer Architecture", Prentice Hall, 1988.
5 D.E. Knuth, The Art of Computer Programming, vol.3, Addison-Wesley,

1973.
6 W. Chen, C. Smith, S. Fralick. "A Fast Computational Algorithm for the

Discrete Cosine Transform," IEEE Trans.
Communications, 25, 9, 1004-1009, Sep. 77.

7 B. Lee. "A New Algorithm to Compute the Discrete Cosine Transform,"
IEEE Trans. Acoustics, Speech, Signal Proc., 32, 6,
1243-1245, Dec.84.

