
Application Report
SPRA381 – April 2002

1

Example of GEL Usage With File I/O for
Code Composer Studio v2.1

Harsh Sabikhi Code Composer Studio, Applications Engineering

ABSTRACT

This application report discusses some of the functionality of the General Extension
Language (GEL) that is supported by and included with Code Composer Studio™
integrated development environment (IDE) v2.1. Features that will be outlined are
automated testing with GEL, workspace customization, and common Code Composer
Studio tool usage such as File I/O. In addition, the new GEL application programming
interfaces (APIs) for File I/O will be greatly exposed and used in the automation process.
First, GEL will be briefly discussed and then two examples will be given to demonstrate
the usefulness of the language.

Requirements

• Microsoft® Windows® 98, Windows 2000, Windows NT®, or Windows XP®

• Code Composer Studio Version 2.1

Prerequisites

• Good knowledge of the C programming language

• Good Knowledge of the Code Composer Studio IDE

• Basic knowledge of GEL

Code Composer Studio is a trademark of Texas Instruments.
Microsoft, Windows, Windows NT, and Windows XP are registered trademarks of Microsoft Corporation.
Other trademarks are the property of their respective owners.

SPRA381

2 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Contents
Introduction .. 2
1 Initializing the Application ... 3

1.1 Opening a Project Using the Board Start-Up File .. 3
1.2 Opening a Project With a Custom Start-Up File .. 5

2 Testing One Vector... 7
2.1 Verifying Files Connected to Probe Points .. 7
2.2 Running the Application and Verifying the Results.. 8

3 Testing Multiple Vectors .. 9
3.1 Initializing Multiple Test Vector Case .. 9
3.2 Verifying the Probe Points and Running the Application ... 10

4 Callback Function... 11
Conclusion ... 12

Appendix A. Source Code.. 13
Appendix B. Input Data Files ... 16
Appendix C. Volume_test.gel... 17
Appendix D. start_volume.gel.. 18
Appendix E. Input.gel file... 19
Appendix F. Outdata.dat .. 20

List of Figures

Figure 1. Start-Up View Using Board GEL File .. 5
Figure 2. Start-Up View Using Custom GEL File ... 6
Figure 3. Probe Point Setup Workspace .. 7
Figure 4. Resultant Output Screen of Single Vector Case.. 8
Figure 5. Start-Up View for Multiple Test Vector Case.. 10
Figure 6. Final Output Screen of Multiple Test Vector Case... 11

Introduction

Please refer to the Example of GEL Usage With File I/O for Code Composer Studio v2.0
application report (literature number SPRA774) for an introduction to GEL and a background of
the procedure used for for Code Composer Studio v2.0.

There have been a number of new GEL APIs added to Code Composer Studio v2.1. However,
since this application note describes File I/O using GEL, only the relevant APIs will be
discussed.

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 3

1 Initializing the Application
In Code Composer Studio v2.0, there was no way of performing File I/O operations in an
automated manner without going through the graphical user interface (GUI) in the IDE. If the
user creates applications that require the testing of various test vectors, the old method can
become very tedious and time-consuming. The File I/O GEL functions for Code Composer
Studio v2.1 have corrected this by providing basic File I/O functionality through GEL (as well as
indirectly through the APIs), which can then be used in automation scripts. The new functions
include GEL_AddInputFile, GEL_AddOutputFile, GEL_RemoveInputFile, and
GEL_RemoveOutputFile. Each of these functions can either be specified by program address or
by source file name. There are two versions of these GEL functions that allow the user to bind
input/output file operations to either a user-specified source file name and line number, or a
program memory address. The following is an example of the GEL_AddInputFile and
GEL_AddOutputFile in their two forms. The parameters in [] are optional.

GEL_AddInputFile("srcFileName", lineNumber, "connectFileName", format, "startAddr"
[, "length"] [, page] [, wraparound] [, "condition"])

GEL_AddInputFile(programAddr, "connectFileName", format, "dataAddr" [,"length"]
[, page] [, wraparound] [, "condition"])

GEL_AddOutputFile("srcFileName", lineNumber, "connectFileName", format, "startAddr"
[, "length"] [, page] [, "condition"])

GEL_AddOutputFile(programAddr, "connectFileName", format, "dataAddr" [,"length"]
[, page] [, "condition"])

NOTE: This application note makes use of the volume1 project that comes with every Code
Composer Studio software package. For this particular application note, the volume.c file had to
be altered a little to cater for the particular features of this note. Before proceeding, please
replace the volume.c file in the volume1 folder with the one provided in Appendix A.

1.1 Opening a Project Using the Board Start-Up File

First, we will create a custom GEL file that will open the volume1 project, load the COFF file into
memory, and connect the Probe Points—all at start-up of Code Composer Studio. This file also
contains built-in GEL functions that support performing a ‘file copy’ from GEL. (This will be seen
and used later to avoid overwriting user test data results, by copying the generated output data
file to an another user-defined data file). The Probe Points are connected using the source line
versions of GEL_AddInputFile() and GEL_AddOutputFile(). The copy is performed by the calling
the built-in GEL_System() function that executes a DOS command from within the IDE. The
output of the DOS command is sent to an output window within the IDE, and only commands
that display a text message and require no user interface can be executed. GEL_TextOut() is
another built-in function that is used in the volume_test.gel file. This function simply prints a text
message to an output window similar to the printf function in the C programming language.

SPRA381

4 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Once you set up your target board through the import configuration dialog box, the GEL file will
be called directly from the board setup GEL file.

1. Launch Code Composer Studio

2. First, the developer has to create two data files, one for input and one for output. Call the
input file indata1.dat and the output file outdata.dat, which will initially be empty. The
contents of indata1.dat are in Appendix B. These files will be used in Section 2 and
Section 3.

3. Go to File → New → Source File. Create a GEL file called volume_test.gel by choosing
File → Save As. For convenience, save it under the same directory as the volume1
project, which is <install path>\tutorial\<target>\volume1. The source code is provided in
Appendix C. Now, exit Code Composer Studio.

4. Open up the CC_Setup menu of Code Composer Studio v2.1. In the import configuration
dialog box, choose your specific board and click import, and then close. If there are any
previous targets in the system configuration, remove them.

5. In the system configuration, right-click on your board, select properties, and select the
Startup GEL File(s) tab. Verify the board start-up GEL file is there and note its location for
further use. And now close the board dialog box.

6. Open up Windows Explorer and browse to the location of your board’s initial GEL file
from Step 4. Open the file using your favorite text editor. In the StartUp function
contained within the GEL file, load the volume_test.gel file by typing in GEL_LoadGel
(“<target>\\ tutorial\\<target>\\volume1 \\volume_test.gel”), save your changes to the
same location as the volume_test.gel file as in Step 3, and exit. This will prevent the user
from altering the board-specific GEL file.

7. In the file menu of the CC_Setup, choose exit and a dialog box will appear with the
question “Save changes to system configuration?”, click yes. Now, another dialog box
appears with the question “Start Code Composer Studio on exit?”, click yes. This will
launch Code Composer Studio with the GEL file called at start-up. Notice the features
and verify the functionality of the automation. The volume project is loaded as well as the
GEL file. Your screen should resemble the screen capture in Figure 1.

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 5

Figure 1. Start-Up View Using Board GEL File

1.2 Opening a Project With a Custom Start-Up File

If your board does not have a start-up file or you would like to create your own, then follow the
steps below. Please note if the developer decides not to perform the steps in Section 1.1, Step 2
of Section 1.1 (creating the data files) still has to be completed for this section.

1. Launch Code Composer Studio.

2. Go to File → New → Source File. Create a GEL file called start_volume.gel by choosing
File → Save As. For convenience, save it under the same directory as the volume1
project, which is <install path>\tutorial\<target>\volume1. The source code is provided in
Appendix D of this document.

3. Repeat Step 2 and create another GEL file called volume_test.gel. The source is
provided in Appendix C. Exit Code Composer Studio.

SPRA381

6 Example of GEL Usage With File I/O for Code Composer Studio v2.1

4. Open up the CC_Setup menu of Code Composer Studio v2.1 and close the import
configuration dialog box (unless your specific target is not already configured). If your
target is already in the system configuration, remove it. This will remove any previous
GEL files that were loaded with the board.

5. Drag and drop your board in the system configuration. Click on the processor
configuration and add a single processor. Next, click on the Startup GEL File(s) dialog
box and click on the browse button. Browse to where the start_volume.gel file is located
(refer to Step 2) and click ok and then finish.

6. In the file menu, choose exit and a dialog box will appear with the question “Save
changes to system configuration?”, click yes. Now, another dialog box appears with the
question “Start Code Composer Studio on exit?”, click yes. This will launch Code
Composer Studio with the GEL file called at start-up. Notice the features and verify the
functionality of the automation. The GEL files load the volume project as well as copy
indata1 into indata.

7. After Code Composer Studio starts, choose File → Load Program, and select the
volume.out file. Your screen should resemble the screen capture in Figure 2.

Figure 2. Start-Up View Using Custom GEL File

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 7

2 Testing One Vector

2.1 Verifying Files Connected to Probe Points

For the single test vector case that requires only one input and one output vector, no additional
code has to be added to the GEL files because the Probe Points are already connected when
Code Composer Studio is launched.

1. From Section 1.1 or 1.2, when Code Composer Studio is launched, the volume project is
opened. Expand the view and double-click on the volume.c file. Take a second to
examine the new source code and read the comments. Please note that in copying and
pasting the new code, the line numbers may differ from the ones in Figure 3.

2. To verify the connections, choose File → File I/O and notice that indata1.dat is connected
as an input file and outdata.dat is connected as an output file. In addition, if you click on
the Probe Point button, you will see a detailed version of the each connection.

Figure 3. Probe Point Setup Workspace

3. Now that we have successfully added the File I/O functionality to our project, let’s run the
application and verify the results.

SPRA381

8 Example of GEL Usage With File I/O for Code Composer Studio v2.1

2.2 Running the Application and Verifying the Results

Since this section tests only a single vector, only one output file is copied.

1. Let’s make use of GEL now to copy the output file to a user-defined data file. In the
volume.c file, toggle a Probe Point on line 74 (puts(“Connecting Output File to a user
defined Text File\n");). From the debug menu, choose Probe Points and highlight line 74.
In the probe type field, select Probe at location if expression is TRUE, and in the
expression field, and type in Test_File1() and click Replace. Recall this is a GEL function
that copies the output file to a user-defined file for testing purposes. Choose Debug →
Run to run the application and watch the output screens to see the execution status. Your
screen should resemble the screen capture in Figure 4.

Figure 4. Resultant Output Screen of Single Vector Case

2. Verify the results by checking all of the data files. That is, validate the contents of indata1,
outdata, and outdata1. The contents of indata1 should have been probed out to outdata,
and finally outdata was copied to outdata1. Since there was no transformation on the
input data, the input data file should be equivalent to the output data file.

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 9

3 Testing Multiple Vectors
In this section we will start a new workspace to accommodate for the multiple input test vectors.
To test multiple vectors using GEL, we cannot have n input and n output Probe Points each
connected to a specific GEL function. Rather we have to make use of one entry point and one
exit point, since GEL is a scripting language that is asynchronous. The GEL functions that are
connected to these Probe Points are dynamic—meaning they depend on a counter. The counter
keeps track of the number of test vectors and provides a convenient method of parsing data. At
the dataInput() function in our source code, we will connect a single input file that will contain a
different input file depending on the counter value. All of the data in these files will be transferred
to a single output data file that is connected via the Probe Point at the dataOutput() function.

3.1 Initializing Multiple Test Vector Case

1. Open up Windows Explorer and create three input data files called indata1, indata2, and
indata3 that contain the integer values in Appendix B. These data files will be used as
input test vectors. If the user has followed Section 2, then indata1 should already exist.
Also, we will make use of the output file outdata.dat from Section 2 but delete its
contents.

2. First, we will create an input GEL file that, depending on the counter value, will load
indata2 or indata3 to be processed. In Code Composer Studio, Select File → New
Source file and copy and paste the source code provided in Appendix E. Choose File →
Save As and call the file input.gel. Next, we will modify our board GEL file to preload the
input.gel and volume_test.gel on start-up of Code Composer Studio.

3. Open up Windows Explorer, browse to the location of your specific board file, and open it
using any text editor. We will add GEL syntax in the start-up function to load the two GEL
files relevant to this section. Copy and paste the following lines of code in the start-up
function.

GEL_LoadGel(“c:\\ti\\tutorial\\dsk6711\\volume1\\input.gel”);
GEL_LoadGel(“c:\\ti\\tutorial\\dsk6711\\volume1\\volume_test.gel”);

Please note, if you performed the steps in Section 2, then the volume_test.gel file should
already be in you board file. Save the changes and restart Code Composer Studio with your
board file setup (please refer to Section 1.1 for the procedure). Notice the features and
functionality of the automation. Your screen should resemble the screen capture in Figure 5.

SPRA381

10 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Figure 5. Start-Up View for Multiple Test Vector Case

3.2 Verifying the Probe Points and Running the Application

1. Please make the appropriate changes to the source as specified in the comments on
lines 73 and 74. In Code Composer Studio, open up the volume.c file, go to line 73, and
uncomment the puts(“Connecting a different input file to indata.dat\n”);. Next, go to line
74 and comment the puts(“Connecting an output file to a user defined data file\n”);. Now,
rebuild the project.

2. As previously mentioned in Section 2, in the volume_test.gel file under the start-up
function, the new GEL APIs are used to connect Probe Points to an input and output file.
Initially, indata1.dat is added to line 62 and outdata.dat is connected to line 70.

3. Choose Debug → Probe Point and select line 73. In the Probe type field, choose Probe
at Location if expression is TRUE; and in the expression field, type in Input_File(). Click
Replace and then ok. The Input_File() function, depending on the counter value, will first
remove the old Probe Point, connect a new one, and then restart the program from main.

4. Now, we are ready to run and test the program. Choose Debug → Run. Watch your
output screens to check the status of the test. Finally, once all of the data is in
outdata.dat, we can make use again of the GEL menu to copy the contents of outdata.dat
to some other data file. For illustration purposes, we copy the file to outdata1.dat. Choose

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 11

GEL → GEL_Automation → Test_File1. This GEL function was created using the
hotmenu keyword and is part of the volume_test.gel file.

5. Verify the results by checking the contents of the data files. The resultant output file
outdata.dat is given in Appendix F. After rearranging, the developer’s screen should
resemble the screen capture in Figure 6.

Figure 6. Final Output Screen of Multiple Test Vector Case

4 Callback Function
What makes GEL even more appealing is the fact that it supports a few callback functions.
These functions are executed when a particular situation occurs on the target. Currently, there
are four callback functions. The first is OnFileLoaded(), which if defined in a loaded GEL file is
called after a program is loaded into memory. It takes two integer parameters: one that indicates
a success or fail, and the other to indicate if only symbols were loaded. This function has a
counterpart OnPreFileLoaded() that requires no input parameters, and if defined in a loaded
GEL file, it is called before a program is loaded. Another useful function is OnReset(), which is
called when a target processor has been reset. It requires one input parameter to suggest if the
call to this function was successful. The last callback function that GEL supports is OnRestart(),
which is called when the program is restarted. This function also requires one input parameter to
denote if the call to this function was successful.

SPRA381

12 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Conclusion

A question that commonly arises is why we would want to take the time to create these GEL
functions? At first, creating these functions is time-consuming but it has long-term benefits. For
example, what would happen if we did not load the start_volume.gel file or load our GEL file
through the board start-up file? If these files were not loaded, then every time we start Code
Composer Studio, the project, along with the associated GEL file(s), would have to be loaded
manually. This will, in turn, not only become time-consuming but tedious. GEL is particularly
important in automating some common tasks and testing the results of a project. As we have
seen, given an input file(s), GEL can buffer out these n files into one output file. In addition, it
can copy the resultant output file(s) to any user-defined location for further testing. The
developer may want to compare the output with the expected output and generate a difference
table.

Throughout this report, many built-in GEL functions were used. Only those functions new for
Code Composer Studio v2.1 were explained in detail. For all other functions related to this
application note, please refer to the Example of GEL Usage With File I/O for Code Composer
Studio v2.0 application report (literature number SPRA774). For more information on other
functions, please refer to the online help or to the contents menu under help in Code Composer
Studio.

Although the application itself is quite general, the developer should definitely extend the
examples provided to fit their specific needs. Furthermore, for the multiple test vector case, only
three test vectors were used. This can be extended to hundreds of test vector cases by making
little changes to the GEL files.

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 13

Appendix A. Source Code

/*
* Copyright 2001 by Texas Instruments Incorporated.
* All rights reserved. Property of Texas Instruments Incorporated.
* Restricted rights to use, duplicate or disclose this code are
* granted through contract.
* U.S. Patent Nos. 5,283,900 5,392,448
*/

/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-i10)" */
/***/
/* */
/* V O L U M E . C */
/* */
/* Audio gain processing in a main loop */
/* */
/***/

#include <stdio.h>

#include "volume.h"

/* Global declarations */
int inp_buffer[BUFSIZE]; /* processing data buffers */
int out_buffer[BUFSIZE];

int gain = MINGAIN; /* volume control variable */
unsigned int processingLoad = BASELOAD; /* processing routine load value */

struct PARMS str =
{

2934,
9432,
213,
9432,
&str

};

/* Functions */
extern void load(unsigned int loadValue);

static int processing(int *input, int *output);
static void dataInput(void); //Split the old dataIO function into two functions
static void dataOutput(void);

/*
* ======== main ========
*/

void main()
{
int iterator = 0; //internal counter to loop around each data file
int *input = &inp_buffer[0];
int *output = &out_buffer[0];

puts("volume example started\n");

while(iterator<10)//Since for this specific example there are 10 data points in each file
{ //iterator counts from 0 to 9. The developer can modify this for any

SPRA381

14 Example of GEL Usage With File I/O for Code Composer Studio v2.1

//number of data points
/*
* Read input data using a probe-point connected to a host file.
* Write output data to a graph connected through a probe-point.
*/
dataInput(); //This function is used for input data

#ifdef FILEIO
puts("begin processing");
#endif

/* apply gain */
processing(input, output);
dataOutput(); //This function is used for output data
iterator++;

}
puts("Connecting a different input file to indata.dat\n");//Used in section 3 only. Please

//comment it out for section 2
puts("Connecting an Output File to a user defined data file\n");//Used in section 2 only

} //Please comment it out for section 3

/*
* ======== processing ========
*
* FUNCTION: apply signal processing transform to input signal.
*
* PARAMETERS: address of input and output buffers.
*
* RETURN VALUE: TRUE.
*/

static int processing(int *input, int *output)
{

int size = BUFSIZE;

while(size--){
*output++ = *input++ * gain;

}

/* additional processing load */
load(processingLoad);

return(TRUE);
}

/*
* ======== dataInput ========
*
* FUNCTION: read input signal and write processed output signal.
*
* PARAMETERS: none.
*
* RETURN VALUE: none.
*/

static void dataInput()
{

/* do data I/O */

return;
}

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 15

static void dataOutput()
{

/* do data I/O */
return;

}

SPRA381

16 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Appendix B. Input Data Files

//File 1
//Data for Indata1

1651 1 0 0 0 //Data file header with magic number 1651. For more information on file headers
9 //please refer to online help
1
5
8
9
7
1
2
5
4

//File 2
//Data for Indata2
1651 1 0 0 0
9
1
5
7
9
6
7
5
6
4

//File 3
//Data for Indata3
1651 1 0 0 0
4
1
6
6
1
6
5
8
5
9

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 17

Appendix C. Volume_test.gel

StartUp()
{

GEL_ProjectLoad("C:\\ti21\\tutorial\\dsk6711\\volume1\\volume.pjt");
GEL_AddInputFile("volume.c",62,"c:\\ti21\\tutorial\\dsk6711\\volume1\\indata1.dat",2,
"inp_buffer","1",1,1,);
GEL_AddOutputFile("volume.c",70,"c:\\ti21\\tutorial\\dsk6711\\volume1\\outdata.dat",2,
"out_buffer","1",1,0,);

}

//This has been added just as an alternative to loading the files on startup
menuitem "GEL_Automation"
hotmenu Add_Files()
{

GEL_AddInputFile("volume.c",62,"c:\\ti21\\tutorial\\dsk6711\\volume1\\indata1.dat",2,
"inp_buffer","1",1,1,);
GEL_AddOutputFile("volume.c",70,"c:\\ti21\\tutorial\\dsk6711\\volume1\\outdata.dat",2,
"out_buffer","1",1,0,);

}

hotmenu Test_File1()
{

GEL_TextOut("Copying file number 1 test\n");
GEL_System("copy c:\\ti21\\tutorial\\dsk6711\\volume1\\outdata.dat
c:\\ti21\\tutorial\\dsk6711\\volume1\\outdata1.dat");
GEL_TextOut("Finished Copying file #1\n");

}

SPRA381

18 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Appendix D. start_volume.gel

//This GEL File loads the volume1 project on start up as well as the volume_test.gel file
//This piece of code is used only for section 1.2 and is intended for those developers who
//wish to create their own custom startup file rather than using the board specific one

//Please note this code was written specifically for the C6711 dsk.
//The developer has to modify the target to work for their board

StartUp()
//anything defined in this function will be executed once the GEL file is loaded
{

GEL_ProjectLoad("C:\\ti21\\tutorial\\dsk6711\\volume1\\volume.pjt");//Load the volume.pjt
//project

GEL_ProjectRebuildAll(); //Rebuilds all of the files associated with the project

GEL_LoadGel("C:\\ti21\\tutorial\\dsk6711\\volume1\\volume_test.gel");
}

SPRA381

 Example of GEL Usage With File I/O for Code Composer Studio v2.1 19

Appendix E. Input.gel file

//When this GEL file is first loaded into program memory, the startup function is called and
//a 0 is assigned to a free memory location on the dsk6711
//Note: 0xFE00 is a free memory location only on the dsk6711 (and in this particular
//application), please modify the code for your specific target

StartUp()
{

((int)(0xFE00)) = 0; // set "counter" to 0 at startup
}

Input_File()
{

int counter=*((int*)(0xFE00)); //update "counter" with previous value

if(counter==0) //when this function is first called, the value of counter is
{ //zero, thus the if loop is invoked and indata2 is ready

GEL_RemoveInputFile("volume.c",62,"C:\\ti21\\tutorial\\dsk6711\\volume1\\indata1.dat");
GEL_AddInputFile("volume.c",62,"c:\\ti21\\tutorial\\dsk6711\\volume1\\indata2.dat",2,
"inp_buffer","1",1,1,);
GEL_Restart(); //this function restarts the target application
GEL_Go(main); //from main
GEL_Run(); //and run the program on the target

}

if(counter==1) //after executing the first if loop, the counter is incremented
{ //and indata3 is now ready

GEL_RemoveInputFile("volume.c",62,"C:\\ti21\\tutorial\\dsk6711\\volume1\\indata2.dat");
GEL_AddInputFile("volume.c",62,"c:\\ti21\\tutorial\\dsk6711\\volume1\\indata3.dat",2,
"inp_buffer","1",1,1,);
GEL_Restart(); //this function restarts the target application
GEL_Go(main); //from main
GEL_Run(); //and run the program on the target

}
//The user can define more similar if loops to accommodate for
//the number of files to test

counter++;
((int)(0xFE00)) = counter; //update memory location with counter value
return (1);

}

SPRA381

20 Example of GEL Usage With File I/O for Code Composer Studio v2.1

Appendix F. Outdata.dat

1651 1 0 0 0
0x00000004
0x00000001
0x00000005
0x00000008
0x00000009
0x00000007
0x00000001
0x00000002
0x00000005
0x00000004
0x00000009
0x00000001
0x00000005
0x00000007
0x00000009
0x00000006
0x00000007
0x00000005
0x00000006
0x00000004
0x00000009
0x00000001
0x00000006
0x00000006
0x00000001
0x00000006
0x00000005
0x00000008
0x00000005
0x00000009

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

