
Application Report
SPRA510

Digital Signal Processing Solutions March 1999

Designing a Multiprocessor C54x Platform
for Voice-Over-Network Applications

Erich Vogel Wireline Communications
Technical Staff, San Jose FSO

Abstract
The transmission of voice over data networks has long been dismissed as unfeasible due to the
incompatibility of voice traffic and data traffic resulting in unacceptable voice quality. The market
for such systems, however, is witnessing surprising growth due to its potential advantages in
system cost and infrastructure and the rise in alternative networking options, such as ATM and
frame relay.

Market requirements for practical and cost-effective solutions are driving Voice-over-Network
(VoN) systems to process increasing numbers of voice channels on smaller platforms. This paper
discusses the hardware and software issues involved in designing such a system using the Texas
Instruments (TIä) TMS320C54x digital signal processor (DSP). Specifically, the discussion
centers on system and architectural issues of a multiprocessor-based approach to process
multiple voice streams. Topics include the voice and network interfaces to the DSP, common
software algorithms, system control, and hardware architectures.

Contents

Introduction ..2

Voice Interface ...3

System Control ..6

DSP Interface and Application Software ..7

Network Interface...12

Conclusion ...15

Figures
Figure 1. System Block Diagram ...3
Figure 2. Voice Interface..3
Figure 3. Transceiver Serial Port Interface ..5
Figure 4. System Control ...6
Figure 5. Voice Encoder Block Diagram (Ingress) ...9
Figure 6. Voice Decoder Block Diagram (Egress) ...9
Figure 7. Distributed Software Configuration ...11
Figure 8. ATM Interface Block Diagram...13
Figure 9. Host/HPI Interface ..14

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 2

Introduction
VoN products have recently witnessed unforeseen growth in the form of single-user
Internet-based telephony to larger scale concentrators and PBX equipment routing
telephone calls over private network trunks. This growth is attributed primarily to the
economic and practical advantages of combining voice and data services over a common
medium.

In voice-over-network systems, the DSP bears the responsibility of converting continuous
voice streams into forms suitable for reliably transmitting over a packet- or cell-based
network. The tasks of the DSP in this process include

r Packetization

r Voice processing and compression

r Network delay concealment

r Line echo cancellation

r Efficient bandwidth utilization

Creating a cost-effective solution, a major goal of most designs, often requires that
boards process as many channels as possible. The solution to this problem is twofold:

r Increasing the number of channels processed by each DSP

r Increasing the number of DSPs on the board

Each solution presents individual design challenges. The number of voice channels that
each DSP can manage is a function of its algorithms, the speed of the DSP, and its
available memory. Packing multiple DSPs on a board involves other issues, such as
board area constraints, communication bandwidth, routing, and power dissipation.

This paper introduces the system-level design considerations of such a voice-over-
network solution based on a multiple TMS320C54x platform. The C54x DSP is well
suited for such applications due to its software availability, low power dissipation, and
appropriate mix of peripherals and memory. Topics covered in this discussion include
hardware architectures, system control options, and application software requirements in
the design and integration of a voice-over-network system. However, this report is not
intended to provide a complete reference design, but rather to outline the framework on
which to base such a design.

The block diagram in Figure 1 provides a general system overview required of a voice-
over-network solution. The block diagram can be divided into the following areas: the
voice interface, the DSP array (including software), system control, and the packet
(network) interface. Each will be discussed individually with an emphasis centered on the
DSPs and their contribution.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 3

Figure 1. System Block Diagram

DSP
1

DSP
2

DSP
3

DSP
N

System
Controller

Voice
Interface

Network
Interface

Network

Voice Interface
The voice interface provides the mechanism to transmit and receive digital voice between
the telephone system and the DSP. The details of this process depend on the source for
the voice data. A simple single-channel case could consist of a digital telephone
connected via a serial link to the DSP. This discussion, however, will center on aggregate
voice streams such as those from a PBX, requiring service by multiple processors. The
most common mediums for transmitting such multi-channel digital voice traffic are T1
(US) and E1 (Europe) lines, employing a time-division access scheme. Figure 2 shows a
block diagram of the major components involved in such an interface including the line
interface, framer, channel distribution, and serial interface.

Figure 2. Voice Interface

Line
Interface

Framer

Channel
Distribution

and
Serial Port
Interface

DSP
1

Serial
Port

DSP
2

Serial
Port

DSP
N

Serial
Port

T1

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 4

Line Interface and Framer

The front-end element in interfacing to a T1/E1 line is the transceiver, which contains
several components, including a line interface, a framer, and often a buffer. The line
interface serves as the physical connection to the twisted pair for transmitting and
receiving analog signal waveforms and recovering clocking information used in
synchronization. Connecting the transceiver to the line also requires several additional
components, including transformers and line filters. Next, the framer and buffer detect the
frame, multiframe, and channel boundaries in the data stream, monitoring for error
conditions and alarms, and buffer blocks of data for connection to the processor.

Multiple channels of digital data are transmitted over T1 or E1 lines in a time-division
multiplexed (TDM) fashion. Each timeslot, or DS0, consists of signaling information and
eight bits of data. Timeslots are further grouped into elements called frames, or DS1s.
Both the T1 and E1 standards adopt different channel attributes, such as the timeslots
per frame and the base clock rate at which the bits are transmitted. A T1 stream employs
24 channels per frame and operates at a bit rate of 1.544 Mbps (1.536 of which is
available for data). E1 data is transmitted at 2.048 Mbps and contains 30 channels. In
both systems, channels contain eight bits of data transmitted at 64 kbps. Each channel
also contains associated signaling consisting of information about the state of the call,
whether it be on-hook, off-hook, or otherwise.

When transmitting voice over the channels, the voice is usually digitized and transmitted
as a companded PCM voice stream. Companding is a perceptual compression technique
in which linear data is converted to a non-linear logarithmic form. Two common standards
are u-law and a-law.

Channel Distribution and Serial Interface

Channel distribution refers to relaying each channel in the frame to the appropriate DSP
responsible for its processing. Framers generally provide this data as a TDM serial
stream that is transmitted to the serial port peripheral of the C54x. This interface may
require a small amount of glue logic to provide the appropriate clocking and interfacing
signals.

Interfacing the framer chip to the DSP is facilitated by using the Multi-Channel Buffered
Serial Port (McBSP) peripheral available on the TMS320C5410 DSP. This peripheral
allows the DSP to extract a given channel (or channels) from a TDM frame by
programming the peripheral with the appropriate timeslot and framing information. This
allows all channels to be broadcast to all DSPs and offers the advantage of not requiring
any channel distribution logic or selective routing.

The McBSP also allows this bus broadcast approach to be used in the DSP serial
transmit direction. During transmit, the McBSP only transmits data during its responsible
channels; otherwise, it remains in a high impedance state. This solves the bus collision
problem of multiple DSPs writing to the bus at the same time, assuming each DSP is
programmed appropriately with non-overlapping channels. An alternative solution to
channel distribution is to use more complex logic to distribute the channels among the
DSPs using dedicated serial lines. This is a more complex and less flexible alternative.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 5

Using the aforementioned approach, the host processor manages the channel allocation
task by informing each individual DSP of its responsible timeslots at initialization time.
Channels can also be allocated dynamically by appropriately informing each DSP of its
assigned channels during operation. This could be employed to circumvent problems
such as a nonfunctioning DSP or to reallocate channels among DSPs for optimal
resource management.

The framer provides signaling data for each channel as a separate data stream. To
manage this signaling data, several methods can be suggested. Since the DSPs
generally have no direct need to process signaling data, the signaling lines from/to the
framer can be directly routed to the host serial port, alleviating a burden from the DSP.
Another solution is to route signaling to the DSPs in the same manner as the data. Since
each C54x has two McBSPs, the other serial port can be allocated for signaling data. The
details depend on the method used by the framer chip.

Physically connecting the C54x serial port to the framer requires little overhead in terms
of external connections. Three lines are required by both the transmit and receive
operations:

r Bit-rate clock signal

r Frame sync

r Serial data line

The clock and frame sync must be synchronized with the T1/E1 line clock and can
generally be extracted from the transceiver chip. Assuming adequate current drive, both
the transmit and receive lines can be distributed amongst all chips in the bus. For further
details on interfacing to the C54x serial ports, see the TMS320C54x Reference Set.

A diagram of the transceiver/DSP serial interface is shown below in Figure 3.

Figure 3. Transceiver Serial Port Interface

DSP
1

 S
P

 S
P

DSP
2

 S
P

 S
P

DSP
N

 S
P

 S
P

G
lu

e logic
(if n

eed
ed

)

T1
Transciever

Data (Rx/Tx)

Sigaling (Rx/Tx)

Clock/Frame Sync

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 6

System Control
DSP-based systems generally function so that a host processor (such as a
microcontroller) provides control over the subordinate or slave DSPs. With respect to
DSP control, the host’s responsibilities can be divided into two tasks:

r First, the host manages system initialization, in which it downloads code, distributes
parameters, and allocates resources to each processor.

r Second, during normal operation, the host maintains the proper functioning of the
system by regularly monitoring the performance of each DSP.

During system initialization, the host processor boots up first, then prepares to initialize
the DSPs. To control the DSPs for either initialization or steady-state system monitoring,
the host requires a mechanism to communicate with each DSP individually. A peripheral
on the DSP called the Host Port Interface (HPI) facilitates this communication link. The
HPI allows the host processor access to a block of internal memory for read and write
accesses. For details on the operation of the Host Port Interface, see the TMS320C54x
Reference Set.

Another requirement of the host is that it control the reset operation of each DSP. This
allows the host to initiate the boot process of each DSP and gives the host a mechanism
to restart a non-functioning DSP. An overview of the required host/DSP interconnections
is shown in Figure 4.

Figure 4. System Control

Host
Processor

DSP
1

DSP
2

DSP
N

Reset Lines

Address/Data

HPI Control
(CS,)

Several possible methods can be used to efficiently boot and initialize multiple DSPs,
each with advantages and disadvantages. One method uses the host to transfer code via
the HPI to each DSP individually. This allows the host complete control of the code
distributed to each DSP, thus increasing the design flexibility. The code would reside on
an EPROM to which only the host would require access.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 7

Another solution provides either an EPROM to each DSP or a central EPROM to which
each DSP has access. The host would thus initiate and control the boot process of each
DSP from the appropriate EPROM.

To boot a DSP via the HPI, the host must first download code via the HPI. This is done
while the DSP is in the reset state. On some 54x processors, the host only has access
via the HPI to a 2K block of memory in the DSP. Since almost all VoN applications are
larger than 2K, a boot manager is first downloaded. Once the DSP is removed from the
reset state, it runs from the factory-installed boot ROM, which subsequently branches to
the HPI accessible memory (0x1000). The host must then transfer the application code to
the boot manager via the HPI. This HPI accessibility limitation will not exist in future
versions of the peripheral.

During both initialization and steady state operation, a mechanism must be provided to
allow message transfer between the host and DSPs. The HPI also serves this need well.
An important requirement for message transfer is deciding on efficient and well suited
protocols, handshaking, and message formats. Since the HPI is used both to transmit
data packets and message traffic, overhead information in the packet allows the DSP and
packet processor to differentiate packets intended for data transfer and those intended
for messaging. Details of such protocols are often proprietary, but many are based on
common data transfer protocols such as HDLC.

A handshaking mechanism must also be provided to indicate packet transfers and
acknowledgements. The C54x has several interrupt mechanism for this purpose. An HPI
interrupt initiated by the host to the DSP indicates that a new packet has been written to
the HPI memory block. Once the DSP has read or processed the packet, an
acknowledgement must be sent indicating that another packet may be transmitted. The
DSP must also have a mechanism to request a data or message packet transfer to the
host. An interrupt or a host polling mechanism can be used as such a service request.

Once each DSP has been successfully started, the role of the host switches to that of
monitoring the proper operation of each DSP. This is easily accomplished by requiring
each DSP to regularly provide updates of system performance to the host. A system
problem can be indicated by the DSP either ceasing to transmit status messages or
transmitting a message indicating poor performance. At this point, the host can either
reset the DSP and restart it, or leave it down and reallocate resources to other DSPs.

DSP Interface and Application Software
The primary role of the DSP in a voice-over-network system is to bidirectionally convert
voice data between a continuous data stream and a packetized data stream. Associated
functions of this process are

r Data compression

r Echo cancellation

r Network packet delay concealment

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 8

The most optimal solution to this system also requires that each DSP in a multiple-DSP
environment also process multiple streams of voice. The number of streams is
determined primarily by the speed of the signal processing algorithms and associated
overhead, and by the speed of the processor. For example, given that the compression
algorithm, echo cancellation, and overhead processing only require 20 MIPS of
processing bandwidth, a 100-MHz C5410 DSP could process four channels of voice with
20 MIPS left for overhead, error margin, and future expansion.

Operating System

A crucial element of a system processing multiple data streams is the proper coordination
and management of resources to service the data. This task management is best suited
for a Real Time Operating System (RTOS), such as Spectron/TI DSP BIOS. The
Spectron/TI DSP BIOS provides a firmware kernel for task management, analysis, and
trace functions with very little memory overhead (< 1K words).

The first step in adapting a software application to use the DSP BIOS is to structure the
application into various modules or threads. For example, the echo canceller and vocoder
should be allocated to different threads. In fact, the vocoder can be further split into
coding and decoding functions. Depending on the processing time required by a block,
further partitioning might be necessary for the task scheduler to optimally manage the
tasks. BIOS manages the execution of these threads by prioritized, pre-emptive
scheduling. This requires that the programmer assign each thread an appropriate priority
such that if a task is executing and a task of higher priority is scheduled for execution, the
lower priority task may be interrupted or preempted.

The application interfaces to the BIOS kernel functions via the DSP BIOS API, which
provides a standard environment for development and integration. The following is a list
of additional features offered by the DSP BIOS environment

r Periodic Functions—BIOS also allows tasks to be scheduled based on the system
clock. This allows functions such as watchdog tasks to be executed periodically.

r I/O Stream Manager—DSP BIOS provides two means for data transfer, data pipes
and host transfers. Data pipes manage I/O for data transfers by providing buffering,
notification, and software data structures. Transfers can occur between threads or as
a mechanism for transferring data on/off chip via a peripheral. The host transfer is a
form of a pipe in which one end of the pipe is managed by the host. This can be used
to send and receive data streams from the host computer. It also aids in simulations
of external (peripheral) data transfers during development by sending data via the
host.

r Instrumentation Manager—The instrumentation provided by DSP BIOS allows real-
time monitoring of system functions with minimal intrusion on the application. The
available instrumentation includes logging, statistics accumulation, and event
monitoring. Logging allows capturing information about events and provides a means
for programs to send messages to the host. The statistics accumulator captures
information (count, max, total) for variables. The event monitor allows the
programmer to trace the execution of threads during system run-time. This provides
an easy means to find real-time bugs, such as priority problems, and MIPS issues.

r Configuration Tool—The Configuration tool provides a visual editor for creating
system objects such as signals, I/O streams, event logs, etc. It also allows the
programmer to set up system properties.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 9

The operating system was also designed to use minimum system resources such as
processing time and memory. For instance, the kernel only uses less than 1K words of
program space, the API is modularized to only link in libraries required by the
applications, and all instrumentation data is formatted on the host rather than the DSP.

Signal Processing Algorithms

The major goals of the DSP application software in a voice-over-network system are
threefold:

r To compress the data travelling across the network to minimize bandwidth and
maximize channels

r To enhance voice quality

r To transform the data from a continuous stream to packets and vice versa

Other possible tasks may include those associated with handling data in addition to voice
traffic, such as modem and fax transmissions. For data transmissions, the DSP must
switch off the voice coding and echo cancellation since these are perceptual voice
algorithms and would corrupt the data. A key element in this process is the detection of
fax traffic by the DSP. Fax traffic is delineated from a voice stream by specific tones and
protocols injected in the voice stream. Consequently, the DSP must constantly probe for
these signals.

A block diagram of the elements involved in the voice processing is shown in Figure 5
and Figure 6.

Figure 5. Voice Encoder Block Diagram (Ingress)

Companded
to Linear

Conversion
VAD

Echo
Canceller

Silence
Processor

Speech
Coder

Packetizer

Figure 6. Voice Decoder Block Diagram (Egress)

Jitter
Buffer

Decoder

Comfort
Noise

Generator

Compander

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 10

Voice Coding

Voice coding, known as vocoding, provides a means to increase the call or channel
density on a system by compressing the voice data. Many vocoders and vocoder
implementations exist. Choosing the appropriate one depends on trade-offs between
compression, processing requirements, and resultant voice quality. Table 1 lists common
vocoders used for voice-over-network systems and their characteristics.

Table 1. Vocoder Formats

Vocoder Standard Bit Rates
(kbps)

Notes

G.726 ADPCM 40, 32, 24, 16 MIPS efficient, but voice quality degrades
rapidly for lower bit rates

G.728 LD-CELP 40, 16, 12.8, 9.6 Better voice quality at lower bit rates and higher
compress, but less MIPS efficient

G.729 CS-ACELP Best compression, but least efficient

Another bandwidth optimization technique commonly used is voice activity detection
(VAD). This technique determines whether the channel is currently transmitting voice or
silence based on the energy of the input signal. Since speech, or voice activity, only
comprises approximately 40% of the average voice call, the remaining 60% wastes
bandwidth since no useful information is transferred. Consequently, when speech
inactivity, or silence, is detected, the algorithm only sends an indication that the current
frame is silent instead of the actual coded waveform representation. The receiver
subsequently inserts an approximation of the background noise called comfort noise
during these periods.

Echo Cancellation

Echoes in a voice network are caused by signal reflections, usually from several sources
but primarily from boundaries where hybrid circuits exist. These hybrid circuits convert
from four-wire dual half-duplex systems to two-wire full duplex, thus minimizing wire
costs. The resultant reflections take the form of audible copies of the speaker’s voice
delayed by a perceivable time. Echoes always exist in voice networks—it is only the
echoes delayed by a large amount of time that become annoying. In fact, most people
find the total absence of echo somewhat annoying and associate a small amount of echo
with an active telephone line.

Echo cancellation is the process by which these delayed echoes are removed. The most
common technique used is adaptive filtering, in which a processor determines the
characteristics of a waveform or voice on one line, then uses this information to configure
or adapt a filter to cancel the same voice in the opposite direction (the echo). The metric
used to compare these algorithms is the amount of echo cancelled and the length of the
filter, which impacts the maximum echo delay that the algorithm can cancel.

Jitter Buffers

Network congestion can cause variations in delay between packets or cells as
information is transmitted over a network. This delay variance is known as jitter. Since
voice is very delay sensitive, even small amounts of jitter interrupt a voice conversation.
For this reason, voice traffic has historically never been accepted as suitable for
transmission across highly congested connectionless data networks.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 11

A common solution to this variability is to create a buffer that is first primed by a certain
amount of data depending on the amount of variation expected. The voice rate dictates
the timely removal of the data from the buffer, but the data input rate follows the variable
rate of the network. The key is that the data stored in the buffer absorbs the variability of
the input. However, the tradeoff is the delay incurred by buffering a certain amount of
voice data. The variables, such as the jitter buffer size, must be determined by statistical
monitoring of the network channel. Monitoring of the buffer overrun and underrun can be
used to dynamically reconfigure these parameters based on current network delays.

Task Allocation

The discussion has assumed thus far that each DSP in the system performs the same
operations and are essentially interchangeable in their roles. This solution has both
advantages and disadvantages. The primary advantage is system design and control.
Since each DSP performs identical roles, each can be loaded with the same software
and can be interconnected with the same configuration. The system controller does not
need to differentiate between different tasks and different DSPs. One major
disadvantage, however, is software size. Since each DSP must perform all system tasks
including voice coding, voice decoding, and echo cancellation, the software for each must
reside in memory. This may not be an optimal solution if the software does not fit in
internal memory, resulting in extra board space for external RAM and time consuming off-
chip accesses.

In such a distributed system, different DSPs would be responsible for different tasks in
the data path. For example, tasks could be divided between dedicated echo canceller
DSPs and voice coding/decoding DSPs. A purely dedicated approach would be to
allocate processors for echo cancellation, voice coding, and voice decoding. This type of
configuration offers the advantage of allowing software to be reused for each channel
within a processor. However, since the processing of a stream of data involves several
DSPs, data must be transferred between them. Consequently, this process requires a
longer delay due to the additional overhead required of interprocessor communication.
Figure 7 shows a possible configuration for such a distributed approach.

Figure 7. Distributed Software Configuration

DSP
Echo

cancelle

DSP
Coder &
Decoder

Network

DSP
Coder &
Decoder

To efficiently optimize a distributed system, the processing blocks may be divided
unevenly, as shown in Figure 7. Since an echo canceller algorithm generally requires
less MIPS or real-time processing than a vocoder, an echo canceller DSP can process
more channels in a given time than a vocoder. As a result, the distribution of the tasks
may vary depending on algorithm implementation speeds.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 12

Network Interface
The network interface block performs the tasks of sending packetized voice/data from the
DSP to the network physical layer and receiving data from the network and delivering it to
the DSP. The details of this process depend on the type of network interface used. Two
of the most common networks used for such systems are

r ATM

r Frame Relay

ATM

Much work has been done on the marriage of voice traffic and ATM. Several forums have
been created, most notably VTOA (Voice and Telephony Over ATM), to address
implementation and interoperability requirements for such systems. The structure of ATM
is well suited for the transmission of voice traffic due to its small data packets, known as
cells. In fact, ATM was designed to transmit voice data. Small and uniformly sized cells
provide the advantage of smaller, more predictable delays, which is essential to the
transmission of voice traffic. Cell-based traffic also meshes well with the bursty nature of
voice. However, the advantages that small cells provide to voice traffic result in
disadvantages to data traffic, since smaller cells subsequently result in a higher overhead
to data ratio.

The layers of the OSI network model applicable to this discussion on ATM are the
Adaptation layer and the Physical layer. The ATM Adaptation Layers (AAL) provide for
the efficient transmission of packets of various types. AAL Type 2 is specifically intended
for use in packet voice and video applications and is designed to efficiently support low-
rate, short, and variable length packets in delay sensitive applications. The AAL layer is
also subdivided into two parts:

r Common Part Sublayer (CPS)

r Service Specific Convergence Sublayer (SSCS)

The SSCS layer specifies packet formats and procedures to encode various types of
information streams for efficient transport. In other words, this layer is cognizant of the
type of information being communicated. In fact, in a voice/data system, it can be viewed
as being a part of the signal-processing block. The CPS Layer is closer to the physical
layer and thus has the responsibility of transmitting the packet versus the packet
information.

The implementation of the ATM interface includes the following tasks:

r Packetization and depacketization of voice data into properly formatted AAL data
units (PDUs) by the DSP

r Multiplexing of these PDUs to an Segmentation and Reassembly processor

r Physical layer ATM cell interface

These tasks are also shown in Figure 8.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 13

Figure 8. ATM Interface Block Diagram

DSP
N

H
ost P

ort

DSP
1

H
ost P

ort

DSP
2

H
ost P

ort

MUX
+

logic

Segmentation
and

Reassembly

Physical
Layer

Network
Interface

HPI Bus

Network

Frame Relay

Frame relay is another popular network switching technology used to transmit voice and
data. Frame relay is based on the X.25 protocol with several modifications resulting in
higher performance and greater efficiency. For example, frame relay does not employ
time-consuming data-correction techniques, as does X.25, leaving this to higher layers.

For voice communications, the two main differences between frame relay and ATM-
based transmissions are data formatting and service quality. ATM communication is
based on small, fixed length packets known as cells for data transmission, whereas
frame relay utilizes variable length packets. Since small packets provide several
advantages when transmitting voice, frame relay systems generally fragment voice
packets into small cell-like packets. Small packets statistically yield better network service
by reducing network jitter and delay. Also, the perceptual consequences of dropping
small packets are smaller than larger packets.

Another issue encountered in transmitting voice over frame relay systems is the variable
nature of data packets sharing the network. Since data transmissions generally utilize
larger packet lengths for efficiency, the delays incurred by voice packets can vary widely.
This impacts the required real-time operation of voice traffic. Consequently, the ATM
protocol was created to solve network issues related to the incompatibility of frame relay
and various traffic types such as voice and video.

HPI Bus

The next task in specifying a multiprocessor VoN system is to create a mechanism by
which the DSPs can share access to a common logic device, such as a microprocessor
or ASIC. A bus provides this shared communication link by granting all systems
connected to it access based on either a bus master or a set of mutually understood
access rules.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 14

Each DSP connects to the bus and ultimately to the controller device via the Host Port
Interface (HPI). Essentially, the host buffers and multiplexes the data streams to and from
each DSP and provides the interface to the network controller. It may also format the
data packets or affix additional header information for routing or error control.

Several issues must be addressed when creating the bus, including device configuration
issues, addressing or arbitration, service requests, and circuit loading issues. Figure 9
shows an overview of a general-purpose implementation of such a bus using the HPI.

Figure 9. Host/HPI Interface

DSP
N

DSP
1

Host
Port

DSP
2

Host
Controller

Select lines

HPI
data/addr

HPI control

Host
Port

Host
Port

For a voice-over-packet system, the most appropriate configuration assigns the DSPs as
the bus slaves and the controller device as the bus master. Since all systems are
connected to a common physical line, each must transmit at appropriate times to avoid
bus contentions. Efficiently distributing the bus accesses among the DSPs is the role of
the bus master.

First, the host must employ either a mechanism for device addressing or the means by
which the host controller selects and communicates with each individual device on the
bus. The fastest solution connects the controller with each DSP via an individual select
line. The HPI Chip Select line (HCS) serves this purpose. This allows specific DSPs to be
accessed by the controller by simply enabling the HCS line for the appropriate DSP. For
host data writes, this method allows the controller to target individual DSPs or to
broadcast to multiple DSPs. Such an approach requires that the host have access to
each DSP select line. For small numbers of DSPs, either connecting the select lines to
GPIO pins or to a memory mapped register works well.

If the number of DSPs becomes large, the number of select lines may render this
approach unfeasible, in which case address decode logic may be required. This method
offers the advantage of low software overhead required for the DSP to manage the bus.
A disadvantage, however small, is the additional overhead of physically supplying and
routing the chip selects to each DSP.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 15

Another solution for device addressing is to leave the address decodes to the DSP. For
the host to select a DSP for communication, it must first send an address over the bus to
select the appropriate DSP. Each DSP subsequently decodes the address and
determines if the upcoming data is intended for it, then proceeds as appropriate. The
disadvantage of this method is its software complexity. Each DSP must service these bus
interrupts to decode the address on the bus for every access, thus wasting MIPS.

This method offers the advantages of versatility and physical simplicity in that none of the
DSPs need to have individual connections—all connections can be distributed. Adding
additional DSPs to the bus in this solution becomes trivial since no hardware
configuration is required. If quick and versatile expandability is a requirement, this may be
the best solution.

The next issue arises when the DSP requests delivery of a packet to the host. Given that
each DSP is expected to regularly transmit packets with equal frequency as would be
expected of a busy, evenly distributed VoN system, an appropriate solution is for the host
to process the DSPs in a round robin polling fashion. Each DSP would indicate a service
request by setting a flag accessible by the host via the HPI, which the host would
routinely poll. If a packet exists to transmit, the host processes it; if not, it continues to the
next processor.

Another solution is for the DSPs to actively request service by the host controller,
requiring a dedicated interrupt line for each DSP. This method is more appropriate in a
situation in which only a subset of the DSPs generally are expected to require service,
thus not requiring the host to waste time polling DSPs that normally are idle.

Bus loading is another issue of note. Each device that connects to a bus creates a
capacitive and current load. If many devices are connected, this load requires more time
to charge, thus causing significant delays in bus transmissions. Each DSP also has limits
on current drive, limiting this charging time. Consequently, as devices are added to the
bus, drivers or transceivers may be required depending on individual loading
characteristics and the number of devices present on the bus. This presents a trade-off
decision since additional logic such as drivers and transceivers also create delays.

Conclusion
Designing a multiprocessor platform presents many challenges including, but not limited
to, system control, data path architectures, and software design. With the large software
base, tools, and flexible peripheral options of the TI C54x family, these challenges
become tractable and ultimately superior solutions.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 16

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026

Fax
International +81-3-3457-1259
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Application Report
SPRA510

Designing a Multiprocessor C54x Platform for Voice-Over-Network Applications 17

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright Ó 1999 Texas Instruments Incorporated

