
Application Report
SPRA517

Digital Signal Processing Solutions February 1999

Loop Partitioning on the TMS320C6x
Richard Scales Digital Signal Processing Solutions

Abstract
This document descibes the process used to develop loop partitioning for the Texas Instruments
(TIä) TMS320C6x digital signal processor (DSP). The ‘C6x code generation tools go through five
basic phases when scheduling a loop. At each of these stages there is a set of heuristics which
try to make intelligent decisions where multiple options exist. This document focuses on the third
stage, partitioning, which can have great impact on the performance achieved with the tools. The
document contains a discussion of the problem and of a suggested solution. Also included are
listings of several examples and an illustration of the state diagram of the example.

Design Problem
The ‘C6x code generation tools go through five basic phases when scheduling a loop:

1) Front-end C optimizations (C compiler only).

2) Instruction selection (C compiler only).

3) Partitioning (C compiler and assembly optimizer).

4) Instruction scheduling (C compiler and assembly optimizer).

5) Register allocation (C compiler and assembly optimizer).

The first three phases can have a direct impact on the fourth and most important stage,
instruction scheduling. At each of the first three stages, a set of heuristics tries to make
intelligent decisions where multiple options exist. This document focuses on the third
stage, partitioning, as this can have great impact on the performance achieved with the
tools.

Sometimes non-optimal partitioning can be the limiting factor in attaining the highest
possible performance. Once the instructions are chosen in phase 2, the compiler and/or
assembly optimizer must decide which instructions to execute on the A side and which to
execute on the B side in phase 3. This can have a direct affect on res MII because only
one cross path from A to B and one cross path from B to A are available on any given
cycle . If the partitioning is poor, either the number of cross paths or the number of
functional units on a particular side can become a limiting factor in the partitioned
resource bound shown in Example 1.

Application Report
SPRA517

Loop Partitioning on the TMS320C6x 2

Solution
The following code development flow is recommended to achieve the highest
performance on loops:

1) Compile native C code

2) Add const declarations and loop count information.

3) Optimize C code using intrinsics and other methods.

4) Write linear assembly.

5) Add partitioning information to the linear assembly.

The fifth stage, partitioning, is necessary when optimal partitioning is not achieved with
the compiler or assembly optimizer.

Example 1 shows example feedback obtained from the compiler and assembly optimizer
when using the -mw option. This information is valuable for pointing out potential
problems with partitioning. Notice that the unpartitioned resource bound on the loop
iteration interval is 3 but after partitioning it is 4. We can see below that this is due to 4 X
cross paths on the A side and that there are 10 non-M unit instructions on the A side.
Each of these forces the minimum iteration interval to be at least 4.

Example 1. Feedback Example

;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop label : LOOP
;* Loop Carried Dependency Bound : 3
;* Unpartitioned Resource Bound : 3
;* Partitioned Resource Bound(*) : 4
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 2 2
;* .D units 2 2
;* .M units 2 2
;* .X cross paths 4* 3
;* .T address paths 2 2
;* Long read paths 1 0
;* Long write paths 0 0
;* Logical ops (.LS) 4 1 (.L or .S)
;* Addition ops (.LSD) 2 1 (.L or .S or .D)
;* Bound(.L .S .LS) 3 2
;* Bound(.L .S .D .LS .LSD) 4* 2
;*
;* Searching for software pipeline schedule at ...
;* ii = 4 Schedule found with 4 iterations in parallel
;* Done
;*--*

Application Report
SPRA517

Loop Partitioning on the TMS320C6x 3

By passing partitioning information to the assembly optimizer, it is possible to improve the
loop minimum iteration interval to 3 even after partitioning. Example 2 shows the linear
assembly for the feedback in Example 1. Notice the functional units specified in boldface.
These pass enough information to the tools to improve the partitioning between the A and
B sides of the loop.

Example 2. Linear Assembly for IIR Filter

_iir .cproc cptr0,sptr0
 .reg cptr1, s01, s10, s23, c10, c32, s10_s, s10_t
 .reg p0, p1, p2, p3, s23_s, s1, t, x, mask, sptr1
 .reg s10p, ctr
 MV cptr0,cptr1
 MV sptr0,sptr1
 MVK 50,ctr ; setup loop counter
LOOP: .trip 50
 LDW .D1T1 *cptr0,c32 ; CoefAddr[3] & CoefAddr[2]
 LDW .D2T2 *cptr1,c10 ; CoefAddr[1] & CoefAddr[0]
 LDW .D1T2 *sptr0,s10 ; StateAddr[1] & StateAddr[0]
 MV s10,s10p ; save StateAddr[1] & StateAddr[0]
 MPY .M1 c32,s10,p2 ; CoefAddr[2] * StateAddr[0]
 MPYH c32,s10,p3 ; CoefAddr[3] * StateAddr[1]
 ADD p2,p3,s23 ; CA[2] * SA[0] + CA[3] * SA[1]
 SHR s23,15,s23_s; (CA[2]*SA[0] + CA[3]* SA[1])>>15
 ADD .2 s23_s,x,t ; t=x+((CA[2]*SA[0]+CA[3]*SA[1])>>15)
 AND t,mask,t ; clear upper 16 bits
 MPY c10,s10,p0 ; CoefAddr[0] * StateAddr[0]
 MPYH c10,s10,p1 ; CoefAddr[1] * StateAddr[1]
 ADD p0,p1,s10_t ; CA[0] * SA[0] + CA[1] * SA[1]
 SHR s10_t,15,s10_s ; (CA[0]*SA[0] + CA[1]*SA[1])>>15
 ADD s10_s,t,x ; x = t+((CA[0]*SA[0]+CA[1]*SA[1])>>15)
 SHL s10p,16,s1 ; StateAddr[1] = StateAddr[0]
 OR t,s1,s01 ; StateAddr[0] = t
 STW .D1 s01,*sptr1 ; store StateAddr[1]& StateAddr[0]
[ctr] ADD -1,ctr,ctr ; dec outer lp cntr
[ctr] B LOOP ; Branch outer loop

.endproc

Example 3 shows the improved result. Now the minimum iteration interval is 3 even after
partitioning and a schedule with ii=3 is found.

Example 3. Feedback Example After Partitioning

;*--*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop label : LOOP
;* Loop Carried Dependency Bound : 3
;* Unpartitioned Resource Bound : 3
;* Partitioned Resource Bound(*) : 3
;* Resource Partition:
;* A-side B-side
;* .L units 0 0
;* .S units 2 2
;* .D units 3* 1
;* .M units 2 2
;* .X cross paths 2 1

Application Report
SPRA517

Loop Partitioning on the TMS320C6x 4

;* .T address paths 1 3*
;* Long read paths 0 1
;* Long write paths 0 0
;* Logical ops (.LS) 0 3 (.L or .S)
;* Addition ops (.LSD) 2 3 (.L or .S or .D)
;* Bound(.L .S .LS) 1 3*
;* Bound(.L .S .D .LS .LSD) 3* 3*
;*
;* Searching for software pipeline schedule at ...
;* ii = 3 Schedule found with 5 iterations in parallel
;* Done
;*--*

The goal in defining functional units and/or sides, is to split the loop into two halves (A
and B) with minimal cross paths and minimal effect on the scheduling. When partitioning
a loop in linear assembly, try the following:

1) Minimize the number of cross paths. This usually involves looking at the dependency
graph of the loop and splitting it such that there are the fewest number of paths
crossing to the opposite side. Figure 1 shows a split where only one cross path is
required. Keep in mind that dependencies due to conditional registers do not require
a cross path (i.e., an instruction on the A side which is conditional on a B register
does not use the cross path).

2) Choose a fairly even number of instructions for each side.

3) Force even numbers of certain functional units on each side. Figure 1 shows that
even though there are four instructions that require a .D unit, they can be split on
opposite sides to allow for an iteration interval of 2. The same is true of the three
multiplies. Rather than putting all three on the same side, one is put on the opposite
side.

4) Force even numbers of instructions that write to a conditional value on each side.
Since there are a more limited number of conditional registers (there are 5 as
opposed to the full 32 available for other source operands), it is easier to register
allocate multiple conditional registers if they are split evenly between the two sides. If
you have an uneven number, put more on the B side since there are three
conditional registers on this side and only two on the A side.

5) Use the T1 and T2 path directives to force the result of Loads and the source of
Stores to a particular side (it can be different than the side the D unit is on). Refer to
the Memory Banks section in the “Assembly Optimizations” chapter of the TI
TMS320C6000 Programmer's Guide (literature number SPRU198C) for more
detailed information and examples.

Application Report
SPRA517

Loop Partitioning on the TMS320C6x 5

Figure 1. Splitting a Dependency Graph

u Unpartitioned Resource Bound = 2

n 4 .D Units

n 3 .M Units

n 2 .S Units

n 3 gen purpose ADDS

xi

LDH

p0

MPY

s0

ADD

count

SUB

loop

B

xi+1

LDH

p1

MPY

yi

LDH

p2

MPY

s1

ADD

yi+1

mem

SHR

STH

5

2

1

1

1

.D .D .D

.D

Application Report
SPRA517

Loop Partitioning on the TMS320C6x 6

TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026

Fax
International +81-3-3457-1259
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Application Report
SPRA517

Loop Partitioning on the TMS320C6x 7

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright Ó 1999 Texas Instruments Incorporated

