*i’
TEXAS Application Report
INSTRUMENTS SPRA531

TMS320C54x Interface with SDRAM

Vivian Shao/Soon Chye C5000

Abstract

This application report provides a comprehensive guide into the design of the hardware interface
between the Texas Instruments (TIO) TMS320C54x digital signal processor (DSP) and the
TMS626812A 2MX8 synchronous dynamic random-access memory (SDRAM) using field
programmable gate arrays (FPGA). A test algorithm is also written, in assembly, to test the
hardware design and the SDRAM. This design can be applied to systems that need external
memory as a data buffer, for example, a digital still camera.

Tl is a trademark of Texas Instruments Incorporated.

Digital Signal Processing Solutions April 1999

Application Report ”
SPRA531

Contents
110 o (8 od 1 To] o ISR 3
HAIAWATIE INLEITACE. ... ittt e bt e e bttt e bt e e e bttt e e e s bt e e e e nbb e e e e ante e e e naneeas
SDRAM Timing and Commandcccceveeeeiiiiiiieiee e e
Interface Between SDRAM and TMS320C54x DSP................
Hardware Design in FPGA ...
DSP_IO oo
DMA_BUF (BO and B1)
SD_CMD
TMS320C549 Software
Memory Map of the DSP
Program Space..................
DalA SPACE ... oo
T ST o = Lol PP P P PP PRI
SOFtWAIE FIOW DIBGIAMceiiiiiie ittt ettt ettt e e e bt e e sbb e e s bbb e e e anbb e e e enbn et e e nnbneas
(0] Tod (113 o o RO PSPPSR
LR LE1 (=] (=] 0 [od T PSP PPPPOUPPPTPPTN
APPENAIX A FPGA VHDL FlIES ..ttt ettt e et e e et bn e e snnneas
PN o o1=T g To [D'q = T TS Y o T 11 1 1 PSP RUPTRRN
Figures
Figure 1. Digital Still Camera Demonstration Board System Block Diagramcccooeiiiiiieeeeeiiiniiineenn. 3
Figure 2. SDRAM Functional BIOCK DIagramccoiiiiuiiiiiiee ettt esirve e e e s e e e e e e s e sansbanee s
Figure 3. SDRAM Interface with TMS320C54x Block Diagram
Figure 4. Hardware Interface Design in FPGA-Top Level................
Figure 5. Detailed Design of DSP_IO (DSP_IO.GDF)ccccvvvveen...
Figure 6. Detailed Design of SD_CMD (SD_CMD.GDF)cc...c....
Figure 7. Memory Map of Program, Data, and 1/0O Space....................
Figure 8. Errors Seen during TeSHNGuueiiiiieee ettt e e e et e e e e e e e et be e e e e e e e e e annereeeaaeean
Figure 9. [[0V A DT To | =T a o EO PR RT
Tables
Table 1. SDRAM Basic Command Functional Table ... 5
Table 2. DaAta TraNSTEI EVENTS.....eiiiiiiii ittt ettt ettt ettt e e s bt e e sttt e e s nbebe e e s nnneeeeas
Table 3. 1/0-Mapped Control Registers..............

Table 4. DMA_CTL Register Bit Description

TMS320C54x Interface with SDRAM 2

Application Report ”
SPRA531

Introduction

In the development of the Digital Still Camera Demonstration Board, (referred as Project)
a 2 Mbytes SDRAM is used as a temporary storage space for raw video data from the
camera as well as manipulated video data to the display devices such as an LCD or
television. Since the DSP cannot be directly interfaced with the SDRAM, an FPGA is
used as the hardware interface to provide the necessary control signals and timing
requirements so that the DSP can write data to and read data from the SDRAM. This
application report focuses on the design and testing of the interface between the DSP
and SDRAM, which is highlighted in Figure 1.

This application report consists of two sections. The first section discusses the hardware
design, the use of the FPGA to provide the timing and controls to access SDRAM. The
second section describes the testing algorithm used by the DSP to test the FPGA and the
SDRAM.

Figure 1. Digital Still Camera Demonstration Board System Block Diagram

DSP to SDRAM Interface

ccD
2Mx 8 DSC Board
SDRAM
[
CCD SDRAM FPGA
CNTL CONTROLLER 5
PC |
[=] TRAFFIC | | DMmA
CONTROLLER
LCD Avall \/
DISPLAY IALASH L
SRAM
INTERFACE
Tv AV411 | | FLASH
TV encoder 256 X 16
o
[]

TMS320C54x Interface with SDRAM 3

Application Report Q’
SPRA531

Hardware Interface

The key issue in the design of the hardware interface between the DSP and SDRAM is
timing. To design the SDRAM interface, the first step is to understand the SDRAM
commands and timing requirements. Due to the complexity of the timing required, this
interface is designed using FPGA. In the following sections, SDRAM timing and
commands are introduced first, followed by the design of the interface between the
SDRAM and ‘C549.

SDRAM Timing and Command

The SDRAM used in this application report is the TMS626812A. The TMS626812A is a
high-speed, 16 777 216-bit SDRAM device organized as two banks of 1 048 576 words
with 8-bits per word. The SDRAM employs state-of-the art technology for high
performance, reliability, and low power. All inputs and outputs are synchronized with the
system clock (CLK) input to simplify system design and enhance the use with high-speed
microprocessors and caches. The functional block diagram is shown in Figure 2.

Figure 2. SDRAM Functional Block Diagram

CLK ————— P
CKE — P i

cs—P

DQM——— P,
—_— Control DQ
RAS b Buffer \‘/‘:>
cAS——P DQO-DQ7

w——P
A0-ALll e—— i Array Bank B

A

Mode Register

Array Bank T

All inputs to the ‘626812A SDRAM are latched on the rising edge of the synchronous
system clock (CLK). The outputs, DQX, also are referenced to the rising edge of CLK.
The ‘626812A has two banks that are accessed independently. A bank must be activated
before it can be accessed (read from or written to). Refresh cycles refresh both banks
alternately.

Six basic commands or functions control most operations of the ‘626812A:
O Bank activate/row-address entry

O Column-address entry/write operation

O Column-address entry/read operation
m

Bank deactivate

TMS320C54x Interface with SDRAM 4

Application Report Q’
SPRA531

O Auto-refresh
O Self-refresh

The basic command functional table is shown in Table 1.

Table 1. SDRAM Basic Command Functional Table

Stateof _ —
Command Bank(S) CS RAS CAS W All Al0 A0-A9 Mnemonic
Mode Register Set T =deac L L L L X X AO0-A6, A9 =V MRS
B = deac A7-A8 =L
Bank Deactivate (precharge) X L L H L BS L X DEAC
Deactivate all banks X L L H L X H X DCAB
Bank activate/row-address SB=deac L H L L BS V \Y, ACTV
entry
Column-address entry/write SB=actv L H L L BS L \% WRT
operation
Column-address entry/write SB=actv L H L L BS H \% WRT-P
operation with automatic
deactivate
Column-address entry/read SB=actv L H L H BS L \% READ
operation
Column-address entry/read SB=actv L H L H BS H \% READ-P
operation with automatic
deactivate
No operation X L H H H X X X NOOP
Control-input inhibit/no X H X X X X X X DESL
operation
Auto-refresh T =deac L L L H X X X REFR
B = deac

The commands used in this application report for interfacing SDRAM with ‘C54x are
MRS, DEAC, ACTV, WRT-P, READ-P, and REFR. The goal of the design is to generate
the control signals to meet the timing requirement of these commands. See the
TMS626812A data sheet for the operation timing.

Interface Between SDRAM and TMS320C54x DSP

Figure 3 shows the general block diagram of the interface between the DSP and the
SDRAM. The SDRAM is configured to read or write data in bursts of 128 bytes; whereas,
the DSP reads or writes data one byte at a time. Due to these differences, two buffers
(BO and B1) are required to store the data. Buffers BO and B1 are each RAM of 128
bytes. Data transfers to and from the SDRAM through B0 and B1. The two buffers are
mapped to the same address location FFOOh-FF80h in DSP data space and they are
mutually exclusive meaning that the DSP cannot access both BO and B1 at the same
time.

In fact, when BO is access by the DSP, B1 is access by the SDRAM; and, when B1 is
accessed by the DSP, B0 is accessed by the SDRAM. Thus, while the DSP is writing
data to BO, the SDRAM is reading data from B1. Alternatively, while the DSP is reading
data from BO, the SDRAM is writing data to B1. These events are listed in Table 2.

TMS320C54x Interface with SDRAM 5

Application Report Q’
SPRA531

Figure 3. SDRAM Interface with TMS320C54x Block Diagram

FPGA
BO
M M SDRAM
‘C549 DI/SFP U U CNTL SDRAM
X X
B1
Table 2. Data Transfer Events
Event Errors
DSP writes to BO --- SDRAM reads from B1 No
DSP writes to B1 --- SDRAM reads from B0 No
DSP reads from BO SDRAM writes to B1 No
DSP reads from B1 SDRAM writes to BO No
DSP writes to BO SDRAM writes to B1 Yes
DSP writes to B1 SDRAM writes to BO Yes
DSP reads from BO --- SDRAM reads from B1 Yes
DSP reads from B1 --- SDRAM reads from BO Yes

Certain events, for example, both the SDRAM and DSP writing to the buffers at the same
time or both the SDRAM and DSP reading from the buffers at the same time results in an
error. This method of data transfer achieves two major benefits: speeding up ‘C54x
accessing time of burst data and solving the problem of different clocking rates between
‘C549 and SDRAM.

Hardware Design in FPGA

The ‘C54x provides the following signals for external memory control: CLK, CS, A0-A15,
D0-D15, RW, MSTRB, ISTRB, and IS, but the SDRAM accepts the following control
signals: CLK, CKE, CS, DQM, W, RAS, CAS, and A0-A11. Due to the differences in
control signals, there is a need to interface these two devices with some hardware control
logic to generate SDRAM control signals from the command of the DSP. The complexity
of this data transfer interface warrants the need to use FPGA. Observing Figure 3, the
DSP I/F (interface) unit and the SDRAM CNTL (control) unit are designed to receive
SDRAM accessing commands from the ‘C54x and then generate control signals to the
SDRAM. Figure 4 shows the top-level view of an FPGA design.

TMS320C54x Interface with SDRAM 6

Application Report ”
SPRA531

Figure 4. Hardware Interface Design in FPGA-Top Level

A — S)
2. SR.DMALG
ore T sp.pvA.C
e — op DMALR.
oL 2 SD DMAC
. —— 2 Sp_DM
SD.CMD - e
B s Y
12 SD_DMA_C

- DSP_lO

£ SD_DVA_DQ
T SDA9.0
= SDDATA[7.

2. DSP.D. :
i DSP_MSTR!: VEE,

DMA_RII

DMA_BUF

The SDRAM is dynamic RAM,; therefore, it requires refreshing to prevent data loss. The
refresh circuit is designed into the FPGA, but is not shown in this section because it is
incorporated in another circuit not related to the SDRAM portion. The refresh cycle is
hardware controlled.

There are three main blocks: DSP_10O is the interface with the ‘C54x that decodes the
SDRAM address and SDRAM commands, DMA_BUF is the BO and B1 buffers, SD_CMD
generates control signals of the SDRAM. These three blocks are described in more detail
in the following sections.

DSP_IO

The components in DSP_IO include: IO_DMA, DSP_BUF, and DSP_READ. Figure 5
shows the interconnection of these three components, I0_DMA generates the SDRAM
command signals; DSP_BUF generates B0 and B1 address, data, and control signals;
and DSP_READ controls the DSP read and write direction.

TMS320C54x Interface with SDRAM 7

Application Report Q’
SPRA531

Figure 5. Detailed Design of DSP_IO (DSP_10.GDF)

I0_DMA oRe
- DSP_RDY
82— B
o DSPIs M £ DSP_SD_RW
2 DSPRW [£ DSP_SD_BANK SW
LPSP_ISTRE >4 £ DSP_SD_START
., DSP_ADDR[15.0] [>—* £ DSP_SD_ADDR_RESET
£ DSP_SD_ADDR[20.0]
SR8 DSP_DATAIS.0]
GUTRLT [DSP_SD_BUFINIZ.0)
1. DSP DS [o—waw > DSP_SD_BUFCLKI
B - [DSP_SD_BUFCLKO
PSP MsTRE [k GUIeUT T DSP_sD_BURWE
T > DSP_SD_BUFADDRI6..0]

DSP_BUF
DSP_SD_BUFOUT[7..0] our 7;. 0.0 e

DSP_READ

Three 1/0-mapped registers (address) from the DSP are assigned for SDRAM control, as
listed in Table 3. The bit definition for the DMA_CTL register is listed in Table 4.

Table 3. I/O-Mapped Control Registers

I/O Address Definition Description

0000h SW_RESET Clear to 0 and then set to 1 to restart DSP
0003h DMA_ADDH SDRAM absolute address A20-A16

0004h DMA_ADDL SDRAM absolute address A15-A0

0005h DMA_CTL SDRAM read and write control. See Table 4

for a description of each bit.

Table 4. DMA _CTL Register Bit Description

Bit Definition Description
0 R/W _ 0: DSP write mode; SDRAM read mode
1: DSP read mode; SDRAM write mode
1 BO/B1 0: DSP uses BO, SDRAM uses B1
1: DSP uses B1, SDRAM uses BO
2 START 0: stop SDRAM R/W operation
1: start SDRAM R/W operation
3 Polling Reserved
4 SD_ADDR_RESET 1: set SDRAM burst start address

0: no operation

The number of addressable memory locations in the SDRAM is from 00000h-FFFFFh,
which is 2 Mbytes; however, the ‘C54x only has a 16-bit address line for data space.
Therefore, the ‘C54x has to send addresses to the SDRAM in two steps: send
DMA_ADDH followed by DMA_ADDL.

TMS320C54x Interface with SDRAM

Application Report Q’
SPRA531

DMA

The DMA_CTL register is used by the ‘C54x to control hardware operations. Bit O sets
the SDRAM read/write (R/W) mode. Bit 1 switches BO and B1, that is, defines which
buffer is used by the ‘C54x and which buffer is used by the SDRAM. Bit 2 starts a burst of
data, 128 words, reading from or writing to SDRAM through the BO or B1 buffer. To set a
new address of SDRAM, bit 4 is set to 1 before setting DMA_ADDH and DMA_ADDL.

BUF (BO and B1)

Two buffers, BO and B1, are used for data transmission. The input and output signals for
each buffer include CLKI, CLKO, WE, ADDR[6-0], DATA_IN[7-0], and DATA_OUT[7-0].
BANK_SW, an input signal of DMA_BUF, switches the signal connection between BO
and B1 with the ‘C549 and SDRAM.

The VHDL file, RAM_BUF.VHD, is attached in Appendix A.

SD_CMD

Figure 6 shows the detailed design of SD_CMD. Three SDRAM functions are
implemented here: refresh, read, and write. When the ‘C54x sets the READ command,
128-byte data is read from the SDRAM and stored to the BO or B1 buffer. When the
‘C54x sets the WRITE command, 128-byte data is transferred from the BO or B1 buffer
and written to the SDRAM.

The VHDL files of BIN_MUX.VHD, CLKI_MUX.VHD, SDACNT2.VHD, CNT1283.VHD,
SDRWMUX.VHD, RWMUX.VHD, SDR_CMD1.VHD, SDWCNTL1.VHD, SD_BIDIR.VHD,
REFR_CTL.VHD, and SDR_CNTL.VHD are attached in Appendix A.

TMS320C54x Interface with SDRAM 9

Application Report Q’
SPRA531

Figure 6. Detailed Design of SD_CMD (SD_CMD.GDF)

TMS320C549 Software

Data transfer between the DSP and the SDRAM has to go through the buffers BO and
B1; therefore, the DSP must notify the FPGA where to store the data in the SDRAM or
where to extract the data from the SDRAM. To accomplish this task, two dedicated 1/0
addresses are used by the DSP to transfer the address of the SDRAM data location to
the FPGA since there are 2 Mbytes of addressable space. These two I/O addresses are
03h (DMA_ADDH) and 04h (DMA_ADDL). In addition, another I/O address, 05h
(DMA_CTL), is used by the DSP to send commands to the FPGA to generate the
necessary control signals for controlling the SDRAM.

To perform data transfers, the following sequence must be used for writing to the
SDRAM.

1) The data must first be placed into either buffer BO or B1.

2) The address of the SDRAM must be sent to FPGA via I/O addresses DMA_ADDH
and DMA_ADDL.

3) The DSP sends a command to FPGA (I/O address DMA_CTL) to generate the
necessary control signals to enable the SDRAM to read the data from buffer BO or
B1.

TMS320C54x Interface with SDRAM 10

Application Report

SPRA531

g

The following sequence must be used for reading from the SDRAM.

1
2)

3)

The DSP sends the address.

The DSP sends a command to SDRAM to begin writing data to buffer BO or B1.

The DSP reads from buffer BO or B1.

Memory Map of the DSP

Figure 7 shows the memory map of the DSP. Note that this memory map only shows the

program, data, and I/O spaces used for data transfers between the SDRAM and the

DSP, and not the memory spaces used for the entire project.

Figure 7. Memory Map of Program, Data, and I/O Space
PROGRAM SPACE DATA SPACE
00060
04000 00080 MMR
PROGRAM 0008B BSS
07F00 00488 STACK
07F80 00500
VECTORS 00580 READ_BUF
08000 00600 | Reserved for READ_BUF
00680 COM_BUF
Reserved for COM_BUF
110 SPACE 00700 =
00000 SW_RESET
OFF00
00003 DMA ADDH OFF80 SD_BUF
00004 DMA ADDI OFFFE Reserved for SD_BUF
00005 DMA CTL

Program Space

a
a

PROGRAM - code for the test algorithm is stored here

VECTORS - contains interrupt branch routines

Data Space

m

a
a
a

MMR - contains the memory-mapped registers
BSS - contains all the data variables

STACK - software stack

READ_BUF — contains data values to be sent to SDRAM and also used as reference

for verification of data read back from SDRAM.

TMS320C54x Interface with SDRAM

11

Application Report Q’
SPRA531

O COM_BUF - contains the data read back by DSP from SDRAM

O SD_BUF — maps to buffer BO and B1 of FPGA. The gateway for data transfer to and
from SDRAM

I/O Space

O SW_RESET - contains the commands to perform a software reset to the project
O DMA_ADDH - contains the higher bits of the SDRAM address bus (A20-A16)

O DMA_ADDL - contains the lower bits of the SDRAM address bus (A15-A0)
O

DMA_CTL - contains the commands to perform SDRAM read/write, etc.

Software Flow Diagram

The basic flow of the program is discussed in detail rather then the algorithm. The
algorithm for testing the SDRAM is provided in Appendix B. Note that this algorithm is
specifically written to test the SDRAM used in this project and is not meant to be a
general testing algorithm. Basically, the testing algorithm is divided into two main
sections. The first section shows the code for writing data to all the available locations of
the SDRAM. In this project, a running number sequence (01h to 80h) totaling 128 bytes is
used as a test pattern. This test pattern tests the physical data lines from the DSP to the
FPGA to the SDRAM. In addition, this number sequence is able to find errors due to
timing deviation during the transfer, as shown in Figure 8.

Figure 8. Errors Seen during Testing

Timing is not Deviated: 1,2,3,4,5,........... 3a,3b,3c,3d,3e,3f,......... ,7a,7b,7¢,7d,7e,7f
Timing is Deviated: 1,2,3,4,5,,......... 3a,33,3a,3d,3e,3f,.......... ,7a,7a,7¢,7d,75,7f

Figure 8 is only one type of error that can occur; other types of errors are not shown here.
In the second section, the data written to the SDRAM is read back by the DSP and
compared with a set of reference data. The Error Counter is incremented if an error is
encountered. The flow diagram is shown in Figure 9.

TMS320C54x Interface with SDRAM 12

Application Report
SPRA531

Figure 9. Flow Diagram

DSP writes data to SDRAM

Initialization of the following:
¢ Address Counter — 2M
¢ Address Pointer

« Buffers Pointer

. Error Counter

« Polling Bit (Enabled)

v

DSP clears buffers BO and B1
(128 bytes each) in FPGA

I

DSP writes 128 bytes of data
to FPGA buffer BO

[¢8]

&

DSP sends address to SDRAM
via FPGA and then increments
address pointer by 80h

v

DSP sends a command to FPGA to
command SDRAM to start reading
data from FPGA buffer BO. At the
same time, DSP writes data to

FPGA buffer B1

DSP enters polling loop waiting
for interrupt from FPGA
indicating SDRAM has
completed data read from
buffer BO

O,

TMS320C54x Interface with SDRAM

13

Application Report
SPRA531

Figure 9. Flow Diagram (Continued)

Interrupt
from FPGA
occurred?

NO

Interrupt Service Routine:

(DSP disables polling bit and
decrements address counter)

o

Polling Bit Enables. DSP checks
whether address counter = 0 that
indicates 2Mbytes of data have

been written. 9

Address
counter =0?

TMS320C54x Interface with SDRAM

14

Application Report
SPRA531

Figure 9. Flow Diagram (Continued)

Current
buffer seen
by DSP is
buffer B1?

iYES

DSP sends address to SDRAM via
FPGA and then increments

address pointer by 80h 1

v

DSP sends a command to FPGA to
command SDRAM to start reading
data from FPGA buffer B1. At the
same time, DSP writes data to

13

FPGA buffer BO

DSP entered polling loop
waiting for interrupt from FPGA
indicating SDRAM has
completed data read from
buffer B1 14

!
©

TMS320C54x Interface with SDRAM

15

Application Report
SPRA531

Figure 9. Flow Diagram (Continued)

©
|

DSP reads data from SDRAM

Initialization of the following:

e Address Counter — 2M

e Address Pointer

e Buffers Pointer

e Error Counter

e Polling Bit (Enabled) 15

v

DSP clears buffers BO and B1
(128 bytes each) in FPGA

16

'

DSP sends address to SDRAM
via FPGA and then increments
address pointer by 80h

17

!

DSP sends a command to FPGA
to command SDRAM to start
writing data to FPGA buffer BO.

i 1

DSP entered polling loop
waiting for interrupt from FPGA
indicating SDRAM has
completed data write to buffer
BO 19

!
O,

TMS320C54x Interface with SDRAM

16

Application Report
SPRA531

Figure 9. Flow Diagram (Continued)

$

Interrupt
from FPGA
occurred?

NO

Interrupt Service Routine:

(DSP disables polling bit and
decrements address counter)

S

Polling Bit Enables. DSP checks
whether address counter = 0 that
indicates 2Mbytes of data have
been written. 22

Address
counter =07

END

TMS320C54x Interface with SDRAM

17

Application Report
SPRA531

Figure 9. Flow Diagram (Continued)

Current
buffer seen
by DSP is
buffer B1?

DSP sends address to SDRAM
via FPGA and then increments
address pointer by 80h

'

25

DSP sends a command to FPGA to
command SDRAM to start writing
data to FPGA buffer B1. At the
same time, DSP reads data from
FPGA buffer BO 26

v

DSP compares data read from
buffer with reference data. Error
counter increments when error is

discovered.
27

v

DSP entered polling loop
waiting for interrupt from FPGA
indicating SDRAM has
completed data write to buffer

Bl 28

!
O,

TMS320C54x Interface with SDRAM

18

Application Report

SPRA531

Figure 9.

Flow Diagram (Continued)

YES

DSP sends address to SDRAM
via FPGA and then increments
address pointer by 80h

'

DSP sends a command to FPGA to
command SDRAM to start writing
data to FPGA buffer BO. At the
same time, DSP reads data from
FPGA buffer B1

DSP compares data read from
buffer with reference data. Error
counter increments when error is

discovered.

DSP entered polling loop
waiting for interrupt from FPGA
indicating SDRAM has
completed data write to buffer

¢ 32
O,

29

30

31

As shown in Figure 9, the flow of the codes is in sequence from 1-32. The following
details are in accordance to the sequence.

Upon power up, the DSP initializes (#1) the following:

a
a
a

a 4a

Address Counter — holds the count value for testing 2 Mbytes of SDRAM.
Address Pointer — holds the address to be sent to the SDRAM.

Buffers Pointers — point to the reference data buffer and location FFOOh that is
mapped to the FPGA buffer.

Error Counter — holds the numbers of errors found.
Polling Bit — held the DSP in a polling loop

Stores the reference data into the reference buffer. Performed by subroutine
REF_DATA

TMS320C54x Interface with SDRAM

19

Application Report Q’
SPRA531

Once initialization is complete, the DSP clears the two buffers BO and B1 (#2) in the
FPGA. To differentiate the two buffers, two clear values are used,; for buffer BO, 00h is
used and for buffer B1, FFh is used. Note that these two values used are not within the
test sequence. Since both buffers are mutually exclusive, a command must be sent to the
FPGA to switch to the correct buffer. These commands are shown in the subroutine
DSPRB1 (DSP see BO and SDRAM see B1) and DSPRBO (DSP see B1 and SDRAM
see B0). These commands are also present in the following subroutines: DSP_WBOW,
DSP_WBO0, DSP_WB1W, DSP_WB1, DSP_RBO0, and DSP_RBL1. The difference between
these two groups is that the first group (DSPRBO and DSPRB1) does not contain
commands to activate the SDRAM.

After clearing the buffers, the DSP starts to write the first 128 bytes of the test sequence
into buffer BO (#3). This is performed by the subroutine WRITE_BUF. After writing the
data, the DSP sends the address to the FPGA (#4) and then increments the address
pointer by 80h (128 bytes). The DSP then sends a command to start the SDRAM reading
the data from buffer BO (#5). Once the command is sent, the DSP starts writing the test
sequence into buffer B1. All these steps are performed by the subroutine DSP_WBO.
When buffer B1 is fully written, the DSP enters into a polling loop (#6) waiting for SDRAM
to complete the read sequence at buffer BO. When the SDRAM completes reading

128 bytes, the FPGA sends an interrupt (INT1) to the DSP (#7).

When the DSP receives this interrupt, the DSP enters into an ISR (interrupt service
routine). In this ISR (#8), the polling bit is disabled and the address counter is
decremented by 1. A single decrement indicates 128 bytes of data have been
transferred. When returned from the ISR, the polling bit is enabled and the address
counter is checked (equal to 0) to determine if 2 Mbytes of data have been written (#9). If
the address counter is not 0, the DSP checks whether the buffer presently seen by it is
BO or B1. At this time, the DSP should see buffer B1 and so the DSP sends the address
for the next block of data to FPGA and increments the address pointer (#12). The DSP
then sends a command to start the SDRAM reading the data from buffer B1 (#13). Once
the command is sent, the DSP starts writing the data to buffer BO. The writing process
continues until the address counter reaches zero.

When the address counter reaches zero, indicating 2 Mbytes of data have been written,
the DSP proceeds to the second portion of the routine that is to read back the data and
perform a data comparison (#10).

Before the DSP starts reading data back from the SDRAM, it reinitializes all the
necessary pointers and counters (#15). Once initialization is complete, the DSP again
clears the two buffers BO and B1 (#16). This prevents the DSP from reading back data
that is inside the FPGA buffer during the write phase. The DSP sends the address of the
data it wants to read back to the SDRAM (#17) and then increments the address pointer.
The DSP then sends a command to start the SDRAM writing data into FPGA buffer BO
(#18). The DSP enters into a polling loop (#19) waiting for the SDRAM to complete
writing data into buffer BO. When the SDRAM completes writing data to buffer BO, FPGA
sends an interrupt (INT1) to the DSP (#20).

TMS320C54x Interface with SDRAM 20

Application Report ”
SPRA531

When the DSP receives this interrupt, the DSP enters into an ISR. In this ISR (#21), the
polling bit is disabled and the address counter is decremented by 1. When returned from
the ISR, the polling bit is enabled and the address counter is checked (equal to 0) to
determine if 2 Mbytes of data have been written (#22). If the address counter is not 0, the
DSP checks whether the buffer presently seen by it is BO or B1 (#23). At this time, the
DSP should see buffer B1 and so the DSP sends the address for the next block of data to
SDRAM and increments the address pointer (#25). The DSP then sends a command to
start the SDRAM writing the data to buffer B1 (#26). Once the command is sent, the DSP
starts reading the data from buffer BO. After reading the data, the DSP compares the data
with the reference data stored. When there is a mismatch, the error counter is
incremented (#27). The DSP enters into a polling loop (#28) waiting for the SDRAM to
complete writing data into buffer B1. When the SDRAM completes writing data to buffer
B1, FPGA sends an interrupt (INT1) to the DSP (#20).

This read process continues until the address counter is 0. When the address counter is
0, the test routine terminates and you can check the error counter for any errors that have
occurred.

Conclusion
This application report provides a detailed look into the design of a hardware interface
between a DSP and SDRAM using FPGA. In addition, a test algorithm is provided to test
the hardware design and at the same time shows how data is transferred to and from the
SDRAM.
References

1) TMS320C54x Reference Set Volume 1, CPU and Peripherals (SPRU131)

http://www.ti.com/sc/docs/dsps/literatu.htm

2) TMS320C54x Reference Set Volume 2, Mnemonic Instruction Set (SPRU172)

http://www.ti.com/sc/docs/dsps/literatu.htm

3) TMS320C54x Assembly Language Tools (SPRU102)

http://www.ti.com/sc/docs/dsps/literatu.htm

4) TMS626812A Synchronous Dynamic Random-Access Memories data sheet

http://www.ti.com/sc/docs/memory/sdram/16mb.htm

5) ALTERA FPGA user’s guide

http://www.altera.com

TMS320C54x Interface with SDRAM 21

Application Report
SPRA531

Appendix A FPGA VHDL Files
DMA_BUF.VHD

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
LIBRARY Ipm;

USE Ipm.Ilpm_components.ALL;
-- LIBRARY work;

-- USE work.ram_constants.ALL;

ENTITY DMA_BUF IS
GENERIC(ADDR_WIDTH : INTEGER :=7);
PORT(
LBUF_CLKI1, LBUF_CLKO1, LBUF_WE1 : IN STD_LOGIC;
LBUF_CLKI2,LBUF_CLKO2, LBUF_WE2 :IN STD_LOGIC;
LBUF_ADDRL,LBUF_ADDR2 :IN STD_LOGIC_VECTOR(6 DOWNTO 0);
BANK_SW : IN STD_LOGIC;
LBUF_DATA_IN1,LBUF_DATA_ IN2 :IN STD_LOGIC_VECTOR(7 DOWNTO 0);
LBUF_DATA_OUT1,LBUF_DATA_OUT2 : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)
);

END DMA_BUF;

ARCHITECTURE example OF DMA_BUF IS
SIGNAL DATA1,DATA2 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ADDRESS1,ADDRESS2 : STD_LOGIC_VECTOR (ADDR_WIDTH-1 DOWNTO 0);
SIGNAL WE1,WE2,INCLOCK1,INCLOCK2,0UTCLOCK1,0UTCLOCK2 : STD_LOGIC;
SIGNAL Q1,Q2 : STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

OUTCLOCK1 <= LBUF_CLKO1 WHEN (BANK_SW = '0') ELSE LBUF_CLKO2;
INCLOCK1 <= LBUF_CLKI1 WHEN (BANK_SW = '0") ELSE LBUF_CLKI2;
WEL <= LBUF_WE1 WHEN (BANK_SW = '0) ELSE LBUF_WEZ2;

ADDRESS1 <= LBUF_ADDR1 WHEN(BANK_SW='0") ELSE LBUF_ADDR?;

OUTCLOCK2 <= LBUF_CLKO1 WHEN (BANK_SW = '1') ELSE LBUF_CLKO2;
INCLOCK2 <= LBUF_CLKI1 WHEN (BANK_SW = '1') ELSE LBUF_CLKI2;
WE2 <= LBUF_WE1 WHEN (BANK_SW = '1') ELSE LBUF_WE2;

ADDRESS? <= LBUF_ADDR1 WHEN(BANK_SW="1") ELSE LBUF_ADDR?;

LBUF_DATA_OUT1 <= Q1 WHEN (BANK_SW='0") ELSE Q2;
LBUF_DATA_OUT2 <= Q1 WHEN (BANK_SW="1") ELSE Q2;
DATAL <= LBUF_DATA_IN1 WHEN (BANK_SW='0") ELSE LBUF_DATA_IN2;
DATA2 <= LBUF_DATA_IN1 WHEN (BANK_SW='1") ELSE LBUF_DATA_IN2;

PING_RAM: Ipm_ram_dq
GENERIC MAP (Ipm_widthad => ADDR_WIDTH, Ipm_width => 8)
PORT MAP (data => DATAL, address => ADDRESS1, we => WEL1,
inclock => INCLOCK1, outclock => OUTCLOCK1, q=> Q1);
PONG_RAM: Ipm_ram_dq
GENERIC MAP (Ipm_widthad => ADDR_WIDTH, Ipm_width => 8)
PORT MAP (data => DATAZ2, address => ADDRESS2, we => WE2,
inclock => INCLOCK?2, outclock => OUTCLOCK2, q => Q2);
END example;

TMS320C54x Interface with SDRAM

22

Application Report ”

SPRA531

DSP_BUF.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY DSP_BUF IS

PORT(

DSP_DS,DSP_RW,DSP_MSTRB :IN STD_LOGIC;
DSP_ADDR IN STD_LOGIC_VECTOR(15 downto 0);
DSP_DATA - IN STD_LOGIC_VECTOR(15 downto O);

- DSP_CLK :IN STD_LOGIC;
BUF_DATAI :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
BUF_CLKI,BUF_CLKO,BUF_WE :OUT STD_LOGIC;
BUF_ADDR :OUT STD_LOGIC_VECTOR(6 DOWNTO 0);
BUF R :OUT STD_LOGIC;
DSP_RDY :OUT STD_LOGIC);

-- CONSTANT DSP_RESET : STD_LOGIC_VECTOR(3 DOWNTO 0) := "0000",
-- FFOOH IN DATA SPACE

CONSTANT DSP_SDRAM : STD_LOGIC_VECTOR(7 DOWNTO 0) :="11111111",
END DSP_BUF;

ARCHITECTURE a OF DSP_BUF IS
SIGNAL BUF_W :STD_LOGIC;

BEGIN

-- KEEP DATA BUS AT 'Z' WHEN THERE IS NO /O READ ACCESS FROM DSP TO FPGA
-- DSP_DATA(15 DOWNTO 8) <= "Z7777777" WHEN (BUF_W ='1Y;

-- DSP_DATA(7 DOWNTO 0) <= BUF_DATAO WHEN(BUF_R ='1') ELSE

- "77777777";

-- 10 IS ONE WAIT STATE(DEFAULT OF DSP)
DSP_RDY <=1}
-- 10 ADDRESS R/W DECODER
BUF_W <="1' WHEN (DSP_DS ='0' AND DSP_RW = '0' AND
DSP_ADDR(15 DOWNTO 8) = DSP_SDRAM) ELSE '0';
BUF_R <='1' WHEN (DSP_DS ='0' AND DSP_RW ='1' AND
DSP_ADDR(15 DOWNTO 8) = DSP_SDRAM) ELSE '0’;
BUF_WE <= BUF_W;
BUF_CLKI <= DSP_MSTRB; -- WHEN (BUF_W="1") ELSE (DSP_MSTRB);
BUF_CLKO <='0' WHEN (BUF_W="1') ELSE (NOT DSP_MSTRB);
BUF_ADDR <= DSP_ADDR(6 DOWNTO 0);
BUF_DATAI <= DSP_DATA(7 DOWNTO 0) WHEN(BUF_W="1");

END a;

TMS320C54x Interface with SDRAM

23

Application Report
SPRA531

DSP_READ.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY DSP_READ IS

PORT(
BUF_R,DMA_CNTLR,I2C_CSR,CMOS_STATUSR :IN STD_LOGIC;
BUF_DATAO :IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SD_END :IN STD_LOGIC;
12C_DAT :IN STD_LOGIC:

CMOS_DIO1 :IN STD_LOGIC;
DSP_DATA :OUT STD_LOGIC_VECTOR(15 downto 0));

END DSP_READ;
ARCHITECTURE a OF DSP_READ IS

BEGIN
DSP_DATA <="000000000000" & SD_END & "000" WHEN (DMA_CNTLR="1") ELSE
"00000000" & BUF_DATAO WHEN (BUF_R="1") ELSE
"00000000000000" & 12C_DAT & "0" WHEN (I12C_CSR='1") ELSE
"000000000000000" & CMOS_DIO1 WHEN (CMOS_STATUSR='1") ELSE
Z 72277 :
END a;

TMS320C54x Interface with SDRAM

24

Application Report
SPRA531

IO_DMA.VHD

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY IO_DMAIS

PORT(
DSP_IS,DSP_RW,DSP_ISTRB :IN STD_LOGIC;
DSP_ADDR "IN STD_LOGIC_VECTOR(15 downto 0);
DSP_DATA :IN STD_LOGIC_VECTOR(15 downto 0);
DSP_RDY :OUT STD_LOGIC;
SD_RW,SD_BANK,SD_START :OUT STD_LOGIC;
SD_ADDR_RESET :OUT STD_LOGIC;
SD_ADDR :OUT STD_LOGIC_VECTOR(20 DOWNTO 0);
DMA_CNTLR :OUT STD_LOGIC

CONSTANT DMA_ADDRH : STD_LOGIC_VECTOR(3 DOWNTO 0) := "0011";
CONSTANT DMA_ADDRL : STD_LOGIC_VECTOR(3 DOWNTO 0) := "0100";
CONSTANT DMA_CNTL : STD_LOGIC_VECTOR(3 DOWNTO 0) := "0101";
CONSTANT DSP_RESET : STD_LOGIC_VECTOR(3 DOWNTO 0) := "0000";

END I0_DMA;

ARCHITECTURE a OF IO_DMA IS
SIGNAL DMA_ADDRHW,DMA_ADDRLW,DMA_CNTLW,SW_RESETW : STD_LOGIC;

BEGIN
-- 10 IS ONE WAIT STATE(DEFAULT OF DSP)
DSP_RDY <=1}
-- 10 ADDRESS R/W DECODER
DMA_ADDRHW <="1' WHEN (DSP_IS = '0' AND DSP_RW = '0' AND
DSP_ADDR(3 DOWNTO 0) = DMA_ADDRH) ELSE '0";
DMA_ADDRLW <="1' WHEN (DSP_IS = '0' AND DSP_RW = '0' AND
DSP_ADDR(3 DOWNTO 0) = DMA_ADDRL) ELSE '0";
DMA_CNTLW <="1' WHEN (DSP_IS ='0' AND DSP_RW = '0' AND
DSP_ADDR(3 DOWNTO 0) = DMA_CNTL) ELSE '0";
DMA_CNTLR <="1' WHEN (DSP_IS = '0' AND DSP_RW = '1' AND
DSP_ADDR(3 DOWNTO 0) = DMA_CNTL) ELSE '0’;

PROCESS
BEGIN
WAIT UNTIL (DSP_ISTRB'EVENT AND DSP_ISTRB="1");
IF(DMA_ADDRHW="1") THEN
SD_ADDR(20 DOWNTO 16) <= DSP_DATA(4 DOWNTO 0);
ELSIF(DMA_ADDRLW="1") THEN
SD_ADDR(15 DOWNTO 0) <= DSP_DATA;
ELSIF(DMA_CNTLW="1") THEN
SD_RW <= DSP_DATA(0);
SD_BANK <= DSP_DATA(1);
SD_START <= DSP_DATA(2);
SD_ADDR_RESET <= DSP_DATA(4);
END IF;
END PROCESS;
END a;

TMS320C54x Interface with SDRAM

25

Application Report
SPRA531

BIN_MUX.VHD

library ieee;
use ieee.std_logic_1164.all;

ENTITY BIN_MUX IS

PORT(SD_PIPE : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
DSP_BUF_IN: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
CMOS BUF_IN : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
BUF_ IN : OUT STD_LOGIC_VECTOR(7 DOWNTO 0)

)i
END BIN_MUX;

ARCHITECTURE dataflow OF BIN_MUX IS
BEGIN
BUF_IN <= DSP_BUF_IN WHEN (SD_PIPE="0001") ELSE
CMOS_BUF_IN WHEN (SD_PIPE(3 DOWNTO 1)="001") ELSE
"00000000";
END dataflow;

TMS320C54x Interface with SDRAM

26

Application Report
SPRA531

CLKI_MUX.VHD

library ieee;
use ieee.std_logic_1164.all;

ENTITY CLKI_MUX IS
PORT (SD_PIPE : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
WE_DMAIN,WE_411IN _ : IN STD_LOGIC;
WE_DMA : OUT STD_LOGIC;
WE_411 : OUT STD_LOGIC

);
END CLKI_MUX;

ARCHITECTURE dataflow OF CLKI_MUX IS
BEGIN
WE_411 <= WE_411IN WHEN (SD_PIPE(2)="1") ELSE '0;
WE_DMA <= WE_DMAIN WHEN (SD_PIPE="0001") ELSE '0";
END dataflow;

TMS320C54x Interface with SDRAM

27

Application Report ”

SPRA531

SDACNT2.VHD

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

ENTITY SDACNT2 IS

PORT(
CLK :IN STD_LOGIC;
TIME :IN INTEGER RANGE 0 TO 15;
SDRW :IN STD_LOGIC;

CNT_INIT W :IN STD_LOGIC;

CNT_INIT_ DSP :IN STD_LOGIC_VECTOR(20 DOWNTO 0);
CNT_INIT_AV411 :IN STD_LOGIC_VECTOR(20 DOWNTO 0);
SD_PIPE~ :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
CNT_INIT_CMOS : IN STD_LOGIC_VECTOR(20 DOWNTO 0);

SD_ADDO9 :OUT STD_LOGIC_VECTOR(9 DOWNTO 0);
SD_ADD10 :0OUT STD_LOGIC
);

end SDACNT2;

ARCHITECTURE a OF SDACNT2 IS

SIGNAL CNT_INIT : INTEGER RANGE 0 TO 31 ;

SIGNAL RADDO10 :STD_LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL CADDO010 :STD_LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL RESULT BIT : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL ADDR97 :STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL TIME_BIT : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL RESULT :INTEGER RANGE 0 TO 31;

SIGNAL TIME_BIT2 :STD_LOGIC;

SIGNAL TIME_DLYH :INTEGER RANGE 0 TO 15;

BEGIN

RADDO10 <= CNT_INIT_AV411(20 DOWNTO 10) WHEN (SD_PIPE(3 DOWNTO 2)="01") ELSE
CNT_INIT_CMOS(20 DOWNTO 10) WHEN (SD_PIPE(3 DOWNTO 1)="001") ELSE
CNT_INIT_DSP(20 DOWNTO 10) WHEN (SD_PIPE="0001") ELSE
"10000110011";

ADDRY7 <= CNT_INIT_AV411(9 DOWNTO 7) WHEN (SD_PIPE(3 DOWNTO 2)="01") ELSE
CNT_INIT_CMOS(9 DOWNTO 7) WHEN (SD_PIPE(3 DOWNTO 1)="001") ELSE
CNT_INIT_DSP(9 DOWNTO 7) WHEN (SD_PIPE="0001") ELSE
"000";

-- LATENCY=3, BURST=8

RESULT BIT <= CONV_STD_LOGIC_VECTOR(RESULT,3);

CADDO10 <= "10000110011" WHEN (SD_PIPE(3)="1") ELSE
"00" & ADDR97 & RESULT_BIT & "000";

TIME_BIT <= CONV_STD_LOGIC_VECTOR(TIME 4);
-- ADJUST COUNTER TRANSISTION TO RAS TIMING
PROCESS(CLK)
BEGIN
IF (CLK'EVENT AND CLK="1") THEN
TIME_BIT2 <= TIME_BIT(3);
END IF;
END PROCESS;

PROCESS (TIME_BIT2,CNT_INIT_W)
VARIABLE ~ CNTR :INTEGER RANGE 0 TO 7;

BEGIN
IF (CNT_INIT_W="1") THEN
CNTR :=7;

ELSIF (TIME_BIT2'EVENT AND TIME_BIT2="1") THEN
CNTR := CNTR+1;
END IF;
RESULT <= CNTR;
END PROCESS;

TMS320C54x Interface with SDRAM

28

Application Report
SPRA531

-- ADJUST THE ADDRESS TIMING WITH RAS TIMING
PROCESS(CLK)
BEGIN
IF(CLK'EVENT AND CLK='0") THEN
TIME_DLYH <=TIME;
END IF;
END PROCESS;
-- Synchronize address output
PROCESS(CLK)
BEGIN
IF(CLK'EVENT AND CLK="1") THEN

IF (((TIME_DLYH=1 OR TIME_DLYH=9) AND SD_RW="1") OR
((TIME_DLYH=4 OR TIME_DLYH=12) AND SD_RW='0))

THEN
SD_ADDO9 <= RADD010(9 DOWNTO 0);
SD_ADD10 <= RADD010(10);
ELSE
SD_ADDO9 <= CADD010(9 DOWNTO 0);
SD_ADD10 <= RADD010(10);
ENDIF;
END IF;
END PROCESS;

END a;

TMS320C54x Interface with SDRAM

29

Application Report ”

SPRA531

CNT1283.VHD

-- CNT128.vhd

-- JAN 23, 1998

-- Vivian Shao

-- Counter for periodic operation : COUNTING RANGE FROM 0 TO 15
-- Mandy Tsai APR,10th,98 modify

library ieee;

use ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY CNT1283 IS

PORT(
SD_PIPE :IN STD_LOGIC_VECTOR(3 DOWNTO 0);
SYS_RES :IN STD_LOGIC;
CLK 'IN STD_LOGIC;
CLEAR 'IN STD_LOGIC;
SD_ RW :INSTD_LOGIC;
TIMEO5 :OUT STD_LOGIC_VECTOR(6 DOWNTO 0);

RESULT DMA :OUT STD_LOGIC_VECTOR(6 DOWNTO 0);
TIME :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
CKE,WE_DMAWE_411: OUT STD_LOGIC;
RESULT 411 :OUT STD_LOGIC_VECTOR(6 DOWNTO 0);
RESULT _CMOS :OUT STD_LOGIC_VECTOR(6 DOWNTO 0)
)
end CNT1283;

ARCHITECTURE a OF CNT1283 IS

SIGNAL CNT_ENABLE,CNT_ENABLE_DLY1,CNT_ENABLE_DLY2, CNT_END: STD_LOGIC;
SIGNAL CLEAR DLY :STD_LOGIC;

SIGNAL SD_PIPE_RW : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL CNT_INIT_VALUE, CNT_END_VALUE : INTEGER RANGE 0 TO 511;

SIGNAL CKE_WE_TEMP,CKE_WE_TEMP1,CKE_DLY1,CKE_DLY2,CKE_DLY11 : STD_LOGIC;

SIGNAL RESULT BIT : STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL RESULT1 :INTEGER RANGE 0 TO 511;

SIGNAL CNT_EN,CNT_CLR :STD_LOGIC;

SIGNAL CKE_DLY3,CKE_DLY4,CKE_DLY5 : STD_LOGIC;

SIGNAL CNT_EN2:STD_LOGIC;

SIGNAL RESULT2_BIT : STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL RESULT2,CNT_INIT_VALUE2 : INTEGER RANGE 0 TO 511;
SIGNAL CKE_DLY12 :STD_LOGIC;

SIGNAL CNT_EN3:STD_LOGIC;

SIGNAL RESULT3 BIT : STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL RESULT3,CNT_INIT_VALUE3 : INTEGER RANGE 0 TO 511;
SIGNAL CNT_EN4:STD_LOGIC;

SIGNAL RESULT4_BIT : STD_LOGIC_VECTOR(8 DOWNTO 0);
SIGNAL RESULT4,CNT_INIT_VALUE4 : INTEGER RANGE 0 TO 511;
SIGNAL CLK_NOT : STD_LOGIC;

COMPONENT CNT4
GENERIC (N - INTEGER :=7);
PORT(
ENABLE :IN STD_LOGIC;
LOAD_VALUE : IN INTEGER RANGE 0 TO N;
CLK,CLEAR :IN STD_LOGIC;
RESULT :OUT INTEGER RANGE 0 TO N

);
end COMPONENT;

TMS320C54x Interface with SDRAM

30

Application Report ”
SPRA531

BEGIN
CNT_INIT_VALUE <= 128 WHEN (SD_PIPE(3)='1") ELSE
123 WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
120 WHEN (SD_PIPE(3)='0' AND SD_RW='1);

CKE <= CKE_DLY1;
PROCESS(CLK)
BEGIN
IF(CLK'EVENT AND CLK="1") THEN
CKE_DLY1 <= CNT_EN;
END IF;
END PROCESS;

RESULT_BIT <= CONV_STD_LOGIC_VECTOR(RESULT1,9);
TIMEO5 <= RESULT_BIT(6 DOWNTO 0);
-~ RESULT <= RESULT_BIT(6 DOWNTO 0);
- INHIBIT THE LAST COMMAND OUT AFTER FINISHED 128-BYTE OPERATION
TIME <= RESULT_BIT(3 DOWNTO 0) WHEN(RESULT_BIT(7 DOWNTO 3)/="11111")
ELSE "0000" ;
CNT_EN <= NOT RESULT_BIT(8);
CNT_CLR <= NOT CLEAR AND SYS_RES;

CNT128: CNT4
GENERIC MAP(511)
PORT MAP(CNT_EN,CNT_INIT_VALUE,CLK,CNT_CLR,RESULT1);

WE_DMA <= SD_RW AND CKE_DLY1;

CNT_INIT_VALUE2 <= 128 WHEN (SD_PIPE(3)="1") ELSE
125 WHEN (SD_PIPE(3)='0' AND SD_RW="0") ELSE
119 WHEN (SD_PIPE(3)="0' AND SD_RW="1Y);
RESULT2_BIT <= CONV_STD_LOGIC_VECTOR(RESULT2,9);
RESULT_DMA <= RESULT2_BIT(6 DOWNTO 0);
CNT_EN2 <= NOT RESULTZ2_BIT(8);
— CNT_INIT_VALUE1 <=0;

CNT1282: CNT4
GENERIC MAP(511)
PORT MAP(CNT_EN2,CNT_INIT_VALUE2,CLK,CNT_CLR,RESULT2);

WE_411 <= SD_RW AND CNT_EN3;

CNT_INIT_VALUE3 <= 128 WHEN (SD_PIPE(3)="1") ELSE
125 WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
119 WHEN (SD_PIPE(3)="0' AND SD_RW="1Y;

RESULT3_BIT <= CONV_STD_LOGIC_VECTOR(RESULT3,9);

RESULT_411 <= RESULT3_BIiT(6 DOWNTO 0);

CNT_EN3 <= NOT RESULT3_BIT(8);

CLK_NOT <= NOT CLK; -~ TIMING ADJUST FOR AV411 BUF

CNT1283: CNT4
GENERIC MAP(511)
PORT MAP(CNT_EN3,CNT_INIT_VALUE3,CLK_NOT,CNT_CLR,RESULT3);

CNT_INIT_VALUE4 <= 128 WHEN (SD_PIPE(3)="1") ELSE
125 WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
119 WHEN (SD_PIPE(3)='0' AND SD_RW="1);

RESULT4_BIT <= CONV_STD_LOGIC_VECTOR(RESULT4,9);

RESULT_CMOS <= RESULT4_BIT(6 DOWNTO 0);

CNT_EN4 <= NOT RESULT4_BIT(8);

CNT1284: CNT4
GENERIC MAP(511)
PORT MAP(CNT_EN4,CNT_INIT_VALUE4,CLK,CNT_CLR,RESULT4);

END a;

TMS320C54x Interface with SDRAM

Application Report
SPRA531

SDRWMUX.VHD

library ieee;
use ieee.std_logic_1164.all;

ENTITY SDRWMUX IS
PORT (SD_PIPE : IN STD_LOGIC_VECTOR(3 DOWNTO 0);

SD_RW : IN STD_LOGIC;
RASR : IN STD_LOGIC;
CASR : IN STD_LOGIC;
SDWR : IN STD_LOGIC;
SDALOR :IN STD_LOGIC;
SDA11R :IN STD_LOGIC;
SDCSR : IN STD_LOGIC;
RASW : IN STD_LOGIC;
CASW : IN STD_LOGIC;
SDWW : IN STD_LOGIC;
SDALOW :IN STD_LOGIC;
SDA11W :IN STD_LOGIC;
SDCSW : IN STD_LOGIC;
RASREF :IN STD_LOGIC;
CASREF :IN STD_LOGIC;
SDWREF : IN STD_LOGIC;
SDAL0REF: IN STD_LOGIC;
SDA11REF: IN STD_LOGIC;
SDCSREF : IN STD_LOGIC;
RAS :OUT STD_LOGIC;
CAS :0UT STD_LOGIC;
SDW : OUT STD_LOGIC;
SDA10 :OUT STD_LOGIC;
SDA1l :OUT STD_LOGIC;
SDCS :OUT STD_LOGIC;
SDDQM : OUT STD_LOGIC

);
END SDRWMUX;
ARCHITECTURE dataflow OF SDRWMUX IS

BEGIN
SDDQM <= '0";

RAS <= RASREF WHEN (SD_PIPE(3)='1") ELSE
RASW WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
RASR;

CAS <= CASREF WHEN (SD_PIPE(3)="1") ELSE
CASW WHEN (SD_PIPE(3)='0' AND SD_RW="0") ELSE
CASR;

SDW <= SDWREF WHEN (SD_PIPE(3)="1") ELSE
SDWW WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
SDWR;

SDA10 <=SDA10REF WHEN (SD_PIPE(3)="1") ELSE
SDA10W WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
SDAI0R;

SDA11 <= SDAI11REF WHEN (SD_PIPE(3)='1") ELSE
SDA11W WHEN (SD_PIPE(3)="0' AND SD_RW='0) ELSE
SDALILR;

SDCS <= SDCSREF WHEN (SD_PIPE(3)="1") ELSE
SDCSW WHEN (SD_PIPE(3)='0' AND SD_RW='0") ELSE
SDCSR;

END dataflow;

TMS320C54x Interface with SDRAM

Application Report
SPRA531

RWMUX.VHD

library ieee;
use ieee.std_logic_1164.all;

ENTITY RWMUX IS
PORT (SD_PIPE : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
DSP_RW :IN STD_LOGIC;
SD_RW :OUT STD_LOGIC

);
END RWMUX;

ARCHITECTURE dataflow OF RWMUX IS
BEGIN
SD_RW <=DSP_RW WHEN (SD_PIPE="0001") ELSE -- DSP
"1' WHEN (SD_PIPE(3 DOWNTO 2)="01") ELSE -- AV411
'0' WHEN (SD_PIPE(3 DOWNTO 1)="001") ELSE '1'; --CMOS

END dataflow;

TMS320C54x Interface with SDRAM

33

Application Report
SPRA531

SDR_CMD1.VHD

PACKAGE SDRAM_CMD_PKG IS
TYPE SDRAM_STATE_TYPE IS (REFR, WRITE128, READ128,READ32);
TYPE PULSE_SW_STATE IS (ZERO,CKEE,DSP,AV411,CMOS);

END SDRAM_CMD_PKG,;

USE WORK.SDRAM_CMD_PKG.ALL,;

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY SDR_CMD1 IS
PORT(

-- LET ENABLE(SD_RW, SD_REF) SYNC WITH DSP_CLK

-- TO MAKE SURE THAT ALL COUNTER CAN BE SYNC

SYS_RES :IN STD_LOGIC;
DSP_CLK,CKE . IN STD_LOGIC;
CMD_TRIG,DSP_START . IN STD_LOGIC;

CMD - IN SDRAM_STATE_TYPE;

CMOS_TRIG :IN STD_LOGIC;

CNT_RES :OUT STD_LOGIC;

SD_PIPE :OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
INT1 :OUT STD_LOGIC

)i
end SDR_CMD1;

ARCHITECTURE a OF SDR_CMD1 IS
SIGNAL SD_LAT1,SD_LAT2,SD_LAT3: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL CKE_AV411_RES, CKE_DSP_RES, CKE_REFR_RES : STD_LOGIC;
SIGNAL CMD_TRIG_DLY1, CMD_TRIG_DLY2 : STD_LOGIC;
SIGNAL DSP_START DLY1, DSP_START DLY2 :STD_LOGIC;
SIGNAL CKE_DLY1,CKE_DLY2 : STD_LOGIC;
SIGNAL CMD_TRIG_PULSE,DSP_START_PULSE :STD_LOGIC;
SIGNAL CKE_RES_PULSE,CKE_RES_PULSE_DLY : STD_LOGIC;
SIGNAL CNT_PULSE_SW : PULSE_SW_STATE;
SIGNAL CKE_CLR_PULSE, DSP_CLR_PULSE, AV411_CLR_PULSE : STD_LOGIC;
SIGNAL DSP_START_CLK,CMD_TRIG_CLK :STD_LOGIC;
SIGNAL CKE_DSP_RES1 : STD_LOGIC;
SIGNAL CMOS_TRIG_CLK, CMOS_TRIG_PULSE : STD_LOGIC;
SIGNAL CMOS_TRIG_DLY1, CMOS_TRIG_DLY2 :STD_LOGIC;
SIGNAL CKE_CMOS_RES STD_LOGIC;
BEGIN
-- SYNC TRIG SIGNALS WITH DSP_CLK
PROCESS(DSP_CLK)
BEGIN
CMD_TRIG_CLK <= CMD_TRIG;
DSP_START_CLK <= DSP_START;
CMOS_TRIG_CLK <= CMOS_TRIG;
END PROCESS;

SD_PIPE <= SD_LATL;
PROCESS(CMD_TRIG_CLK,CKE_REFR_RES)
BEGIN
IF(CKE_REFR_RES ='1) THEN
SD_LAT(3) <=0}
ELSIF(CMD_TRIG_CLK'EVENT AND CMD_TRIG_CLK='1") THEN
IF(CMD=REFR) THEN
SD_LATA(3) <=1}
ELSE SD_LAT1(3) <= '0";
END IF;
END IF;
END PROCESS;

TMS320C54x Interface with SDRAM

34

Application Report ”

SPRA531

PROCESS(CMD_TRIG_CLK,CKE_AV411_RES)
BEGIN
IF(CKE_AV411_RES ='1') THEN
SD_LAT1(2) <= '0;
ELSIF(CMD_TRIG_CLK'EVENT AND CMD_TRIG_CLK="1") THEN
IF(CMD/=REFR) THEN
SD_LATL(2) <=1}
ELSE SD_LATL(2) <= '0";
END IF;

END IF;
END PROCESS;

PROCESS(CMOS_TRIG_CLK,CKE_CMOS_RES)
BEGIN
IF (CKE_CMOS_RES='1") THEN
SD_LAT1(1) <=0}
ELSIF(CMOS_TRIG_CLK'EVENT AND CMOS_TRIG_CLK="1") THEN
SD_LAT1(1) <=1}
ENDIF;
END PROCESS;

PROCESS(DSP_START_CLK,CKE_DSP_RES)
BEGIN
IF (CKE_DSP_RES='1") THEN
SD_LAT1(0) <=0’
ELSIF(DSP_START_CLK'EVENT AND DSP_START_CLK='1") THEN
SD_LAT1(0) <=1}
ENDIF;
END PROCESS;

PROCESS(DSP_CLK)
BEGIN
IF(DSP_CLK="1") THEN
SD_LAT2 <= SD_LATL;
SD_LAT3 <= SD_LAT2; - PREVIOUS SD STATE
CMD_TRIG_DLY1 <= CMD_TRIG;
CMD_TRIG_DLY2 <= CMD_TRIG_DLY1;
CMOS_TRIG_DLY1 <= CMOS_TRIG:
CMOS_TRIG_DLY2 <= CMOS_TRIG_DLY1:
DSP_START_DLY1 <= DSP_START;
DSP_START DLY2 <= DSP_START DLY1;
CKE_DLY1 <= CKE;
CKE_DLY2 <= CKE_DLY1;
END IF;
END PROCESS;

PULSE GENERATOR
CKE_RES_PULSE <= NOT CKE AND CKE_DLY1;
CKE_RES_PULSE_DLY <= NOT CKE_DLY1 AND CKE_DLY2;
CMD_TRIG_PULSE <= CMD_TRIG_DLY1 AND NOT CMD_TRIG_DLY2;
CMOS_TRIG_PULSE <= CMOS_TRIG_DLY1 AND NOT CMOS_TRIG_DLY2;
DSP_START_PULSE <= DSP_START_DLY1 AND NOT DSP_START DLY2;
-- CLEAR SD_LAT STATE WHEN CKE OCCURS
CKE_REFR_RES <= (CKE_RES_PULSE AND SD_LAT3(3)) OR NOT SYS_RES:
CKE_AV411_RES <= (CKE_RES_PULSE AND (NOT SD_LAT3(3) AND SD_LAT3(2)))

OR NOT SYS_RES;
CKE_CMOS_RES <= (CKE_RES_PULSE AND

(NOT SD_LAT3(3) AND NOT SD_LAT3(2) AND SD_LAT3(1)))

OR NOT SYS_RES;
CKE_DSP_RES1 <= CKE_RES_PULSE AND

(NOT SD_LAT3(3) AND NOT SD_LAT3(2) AND NOT SD_LAT3(1) AND SD_LAT3(0));
CKE_DSP_RES <= CKE_DSP_RES1 OR NOT SYS_RES;

TMS320C54x Interface with SDRAM

35

Application Report
SPRA531

- CNT_RES ABITRATOR
CNT_RES <= 0’ WHEN SD_LAT1="0000" ELSE
CKE_RES_PULSE_DLY WHEN (SD_LAT1(0)="1' AND
((SD_LATL(3)='0' AND SD_LAT3(3)="1") OR
(SD_LAT1(2)='0' AND SD_LAT3(2)='1") OR
(SD_LAT1(1)='0' AND SD_LAT3(1)="1"))) ELSE
CKE_RES_PULSE_DLY ~WHEN (SD_LAT1(1)='1' AND
((SD_LATL(3)='0' AND SD_LAT3(3)='1') OR
(SD_LAT1(2)='0' AND SD_LAT3(2)="1"))) ELSE
CMD_TRIG_PULSE WHEN (SD_LAT1(3)='1' OR
SD_LAT1(2)="1") ELSE
CMOS_TRIG_PULSE ~ WHEN (SD_LAT1(3 DOWNTO 1)="001" AND
SD_LAT3(3 DOWNTO 1)="000") ELSE

DSP_START PULSE WHEN (SD_LAT1="0001" AND
SD_LAT3="0000") ELSE '0;

-- GENERATE INT1 TO DSP (20 CLK WIDTH)
PROCESS(DSP_CLK,SYS_RES)
VARIABLE CNTR :INTEGER RANGE 0 TO 31;
BEGIN
IF (SYS_RES ='0") THEN
CNTR:=20;
INT1 <="1";
ELSIF (DSP_CLK'EVENT AND DSP_CLK='0") THEN
IF (CKE_DSP_RES1 ="1") THEN
CNTR:=0;
ELSIF (CNTR = 20) THEN
INT1 <="1";
ELSE
INT1 <="0%;
CNTR := CNTR+1;
END IF;
END IF;
END PROCESS;

END a;

TMS320C54x Interface with SDRAM

36

Application Report
SPRA531

SDR_CNTL.VHD

library ieee;
use ieee.std_logic_1164.all;

ENTITY SDR_CNTL IS

PORT (
SYS_RES :IN STD_LOGIC;
SDAI0 :IN STD_LOGIC;
TIME “IN INTEGER RANGE 0 TO 15;
CLK80 :IN STD_LOGIC;
RRAS :OUT STD_LOGIC;
RCAS :OUT STD_LOGIC;
RSD_W :OUT STD_LOGIC;
RSD_A10 :OUT STD_LOGIC;
RSD_A11l :OUT STD_LOGIC;
RSD_CS :OUT STD_LOGIC

);
END SDR_CNTL;
ARCHITECTURE a OF SDR_CNTL IS

SIGNAL RAS,CAS,CAS1,SD_W,SD_A10,SD_A11,SD_CS,CMD_EN:

SIGNAL RSD_A111 : STD_LOGIC;
BEGIN

WITH TIME SELECT

RAS <=

'0' WHEN 1,

'0' WHEN 9,

'1' WHEN others;
WITH TIME SELECT
CAS <=

'0' WHEN 4,

‘0" WHEN 12,

'1' WHEN others;
SD W <= '1%

WITH TIME SELECT
SD_All <=

'0' WHEN 9,

'0" WHEN 12,

'"1' WHEN others;
SD_CS <=0}

WITH TIME SELECT
SD_A10 <="'1'"WHEN 4,
'1' WHEN 12,

SDA10 WHEN others;
PROCESS(CLK80)
BEGIN

IF (CLK8O'EVENT AND CLK80 ='1") THEN

RRAS <= RAS;

RCAS <= CAS;

RSD_W<=SD_W;

RSD_A10 <= SD_A10;

RSD_A1l <= SD_Al1;

RSD_CS <= SD_CS;

END IF;
END PROCESS;
END a;

TMS320C54x Interface with SDRAM

STD_LOGIC;

37

Application Report
SPRA531

Appendix B Test Algorithm

Main Program : Demo.asm

* This program is written specially for testing the SDRAM used in *
* the Digital Still Camera Demonstration Board. *

* +

* 10 PORT address designation |
* +
RESET_PORT .set 0000H
DMA_ADDRH .set 0003H
DMA_ADDRL .set 0004H
DMA_CTL .set 0005H

* +

* Constants declaration |

* +

STARTEND .set OFFFBH

ADDR_INC .set 0128D ;Address incremental at 80H steps
ENDLOOP .set 16384D ;Counter for 2 Mbyte write to SDRAM
* +

* Command to FPGA is in Data Bits of /O Address DMA_CTL |
*
|
* Data Bits : D4 D3 D2 D1 DO |
*Command :SD_ADDR Polling Start B0/B1 R/W |
*

|
* SD_ADDR - Hold SDRAM Address |
* Polling - Not Used |
* Start - Start the read or write cycle |
*B0O/B1 - Set either BO or B1 buffer for SODRAM |
*R/W - Read or Write command |

* +
* +

* Command to toggle the buffer only |

* +

SW BO .set OFFFDH
SW B1 .set 00002H

* +

* Command to toggle, Read/Write |

* +

DSPBO_WS .set 0004H ;:DSP write - SDRAM read to BO w START
DSPB1_WS .set 0006H ;:DSP write - SDRAM read to B1 w START
DSPB0O_RS .set 0005H ;DSP read - SDRAM write from BO w START
DSPB1_RS .set 0007H ;DSP read - SDRAM write from B1 w START
* +

* Command to toggle, Read/Write & Hold Addr |
* +

DSPBO_WAD .set 0010H ;DSP write from BO w SD_ADDr
DSPB1_WAD .set 0012H ;DSP write from B1 w SD_ADDr
DSPBO_RAD .set 0011H ;DSP read to BO w SD_ADDr
DSPB1_RAD .set 0013H ;DSP read to B1 w SD_ADDr

TMS320C54x Interface with SDRAM

38

Application Report ”

SPRA531

*. +
* Buffers and Variables Declaration |
* +
READ_BUF .usect ".READ_BUF",128,1 ;Store 128 bytes of ref data
COM_BUF .usect ".COM_BUF",128,1 ;Store 128 bytes of data read from SD_BUF
SD_BUF .usect ".SD_BUF" ,128,1 ;Store 128 bytes of data read from or
;write to SDRAM

stk .usect ".stack",32 ;initializing stack
.bss ADDR 2,1 ;Store address for SDRAM
.bss 10_DMA 1,1 ;Store command to send to SDRAM
.bss ERRCOUNT 1 ,1 ;Store error for data comparison
.bss LOOPCT 1,1 ;Store loop count
.bss INTPOLL ,1 ,1 ;Use for polling
.bss 10_DMA1 1 .1 ;Store High and Low SDRAM address byte
K e +
* MAIM PROGRAW
K e +

.def |0_DMA, IO_DMAL, INTPOLL
.def READ_BUF, ADDR, ERRCOUNT, LOOPCT, SD_BUF, COM_BUF
.def INT1, ENDLOOP

.def MAIN
.mmregs
text
MAIN:
SSBX INTM ;disable interrupt
STM #0111111110100000b ,PMST ;initial PMST... MP/MC=0,0VLY=1,DROM=0
STM #OH ,IMR
STM #stk+32 ,SP ;set stack pointer to the bottom of the stack
STM #0010001000000000b ,ST1 ;initial ST1
STM #0 ,SWWSR ;zero wait state
STM #37FEH ,CLKMD ;PLL X 4,
;PLLMUL=3,PLLNDIV=1,PLLCOUNT=0XFF,PLLON=1
STM #00DOH ,PRD ;GENERATE 4.7US, PRD=000EH, TDDR=1H
ORM #8 JIMR
STM #0020h ,TCR ;TRB=1,reload: PRD -> TIM, TDDR -> PSC
ANDM #OFFFFH JFR ;CLEAR PENDING INTRERUPT
NOP
NOP
RSBX INTM ;enable interrupt
LD #IO_DMA ,DP ;INITIAL DMA CONTROL PORT
ST #0 ,|IO_DMA ;START=0

PORTW |0_DMA ,DMA_CTL ' START=0

TMS320C54x Interface with SDRAM

39

Application Report
SPRA531

*.

+

* DSP write to SDRAM Phase |

;===Initializing Phase

LD #0,DP

ORM #2,IMR ;ENABLE INT1

LD #0 B ;Init pointer of SDRAM addr (WR)

STM #ADDR JAR1 ;Init pointer of SDRAM addr (WR)
DST B FARL ;Init pointer of SDRAM addr (WR)
STM #READ_BUF ,AR3 ;Init pointer of READ_BUF

ST #0 *AR3 ;Init pointer of READ_BUF

STM #ERRCOUNT AR5 ;Init Err indicator in COM_DATA
ST #0 *ARS ;Init Err indicator in COM_DATA

STM #INTPOLL ,ARO ;Init Polling Bit

ST #0 *ARO ;Init Polling Bit

STM #LOOPCT JAR4 ;Init loop counter for 2M SDRAM
ST #(ENDLOOP) ,*AR4 ;Init loop counter for 2M SDRAM

CALL

REF_DATA

* B0 : 0X00, B1 : OXFF

CALL
NOP
NOP
CALL
NOP
NOP
CALL
NOP
NOP
CALL
NOP
NOP
CALL
NOP
NOP

DSPRB1

CL_BUFO00

DSPRBO

CL_BUFFF

DSPRB1

CALL WRITE_BUF

CALL

DSP_WBO

DSP_WRSTART:

SSBX

INTM

CALL WRITE_BUF

RSBX

DSP_WR:
LD
AND
BC

SSBX
ST
LD
BC

LD
AND
CcC
CcC

INTM

*ARO A

#01H A

DSP_WR

INTM

;Store ref data

;Toggle B1 to BO, DSP see BO

:DSP clear BO buffer

;Toggle BO to B1, DSP see B1

;DSP clear B1 buffer

;Toggle B1 to BO, DSP see BO

;DSP write data to BO
:SDRAM read from BO, DSP see B1

;Disable interrupts

;DSP write data to B1

;Enable interrupts

;lo
|

AEQ

#0 *ARO

*AR4 A
DSP_READ

I0_DMA
#00010B
DSP_WB1W
DSP_WBOW

oping for Interrupt
ooping for Interrupt
;looping for Interrupt

;Set INTPOLL=0 to enable looping

H

AEQ

A
A

JAEQ
ANEQ

as DSP complete write to 2M SDRAM
;A=0 => yes, jump to DSP_READ

;Verify whether BO or B1 is access
:Verify whether BO or B1 is access
:DSP write data to B1
:DSP write data to BO

TMS320C54x Interface with SDRAM

40

Application Report
SPRA531

RSBX INTM

B DSP_WRSTART

DSP_READ:
LD #0 B ;Init pointer to SDRAM addr (RD)
STM #ADDR JAR1 ;Init pointer to SDRAM addr (RD)
DST B FARL ;Init pointer to SDRAM addr (RD)
STM #INTPOLL ,ARO ;Init Polling Bit
ST #0 *ARO ;Init Polling Bit
STM #LOOPCT JAR4 ;Init loop counter for 2M SDRAM
ST #(ENDLOOP) ,*AR4 ;Init loop counter for 2M SDRAM

*B0 : 0X00, B1 : OXFF

CALL DSPRB1 ;Toggle B1 to BO, DSP see BO
NOP

NOP

CALL CL_BUFO00 ;DSP clear BO buffer

NOP

NOP

CALL DSPRBO ;Toggle BO to B1, DSP see B1
NOP

NOP

CALL CL_BUFFF ;DSP clear B1 buffer

NOP

NOP

CALL DSP_RBO ;SDRAM write to BO, DSP see B1
DSP_RD:
LD *ARO A ;looping
AND #01H A ;looping
BC DSP_RD LAEQ ;looping
ST #0 *ARO ;Set INTPOLL=0
LD *AR4 A ;Has DSP write to 2M SDRAM
BC END_RD JAEQ ;A=0 => yes, jump to DSP_READ
LD 10_DMA A ;Verify whether BO or B1 is access
AND #00010B A :Verify whether BO or B1 is access
CC DSP_RB1 JAEQ ;SDRAM write to B1
CC DSP_RBO LANEQ ;SDRAM write to BO
SSBX INTM ;Disable Interrupt
CALL CL_COMPBUF ;Clear COM_BUF
CALL COMPBUF ;Load data from SD_BUF to COM_BUF
CALL COM_DATA ;Compare data from COM_BUF to READ_BUF
RSBX INTM ;Enable Interrupt
B DSP_RD ;Jump back to DSP_RD
END_RD:
LD 10_DMA A ;Verify whether BO or B1 is access
AND #00010B A :Verify whether BO or B1 is access
CC DSPRB1 JAEQ ;Toggle B1 to BO, DSP see BO
CC DSPRBO LANEQ ;Toggle BO to B1, DSP see B1

TMS320C54x Interface with SDRAM

41

Application Report
SPRA531

CALL CL_COMPBUF

CALL COMPBUF ;Load data from SD_BUF to COM_BUF
CALL COM_DATA ;Compare data from COM_BUF to READ_BUF
END_TEST:

B END_TEST

END OF MAIN PROGRAM

******************I NTER R U PT SERVI CE ROUTI N E : I NTl*********************

INT1: ;hardware interrupt from SDRAM,;

NOP
ST #1 *ARO ;set INTPOLL=1 to disable looping
LD *AR4 A ;Decrement loop count
SUB #1D A ;Decrement loop count
STL A *AR4 ;Decrement loop count;
LD #0 A ;Clear acc A, errors detected is reduce
RETE
END OF ISR
K e +
* Subroutines |
K +

;----Subroutine #1----Write REF Data----;
REF_DATA: ;store ref data into READ_BUF
LD #1 A
STM #READ_BUF ,AR3
STM #128-1 ,BRC

RPTB READ-1

STL A JAR3+

ADD #1 A A
READ:

RET

;--—-End of Subroutine #1----;

i

;----Subroutine #2----DSP write to Buffer BO/B1----;
WRITE_BUF: ;write data to buffer

STM #READ_BUF ,AR3
STM #SD_BUF ,AR6
STM #128,BK
* MANDY, DSP STRB IN FPGA AND NEED ONE LATENCY FOR WRITING
STM #128 ,BRC

RPTB WRI-1

LD *AR3+% A

STL A *AR6+%
WRI: RET

;----End of Subroutine #2----;

;-----Subroutine #3----DSP wrtie data from SD_BUF to COM_BUF----;
COMPBUF: ;write data to buffer
STM #COM_BUF+127 ,AR2
STM #SD_BUF+1 ,AR6
STM #128,BK
STM #128+1 ,BRC
RPTB COMB-1
LD *AR6+% A
STL A *AR2+%
COMB: RET
;--—-End of Subroutine #3----;

TMS320C54x Interface with SDRAM

42

Application Report
SPRA531

;----Subroutine #4----Clear Data from COM_BUF----;
CL_COMPBUF: ;Clear data from COM_BUF
LD #0 A
STM #COM_BUF JAR2
STM #128-1 ,BRC
RPTB CL-1
STL A JFAR2+
CL: RET
;----End of Subroutine #4----;

;----Subroutine #5----Compare data----;
COM_DATA: ;comparing data from SDRAM with ref data
STM #COM_BUF JAR2
STM #READ_BUF ,AR3
STM #128-1 ,BRC
RPTB COM-1
SUB *AR2+ JFAR3+ A
CcC ERRCOUNTER ,ANEQ
COM: RET

ERRCOUNTER:
LD *ARS5 A
ADD #1 A
STL A *ARS
LD #0 A
RET

;--—-End of Subroutine #5----;

i

;----Subroutine #6----Send address to SDRAM----;
SDRAM_ADDR: ;sending addr via /0O to SDRAM
LD #lO_DMAl1 DP
DLD *AR1 B
STH B ,|I0_DMA1
PORTW I10_DMA1 ,DMA_ADDRH
NOP
NOP
NOP
STL B ,IO0_DMA1
PORTW I10_DMA1 ,DMA_ADDRL
NOP
NOP
NOP
ADD #(ADDR_INC) ,B
DST B FARL
RET
;--—-End of Subroutine #6----;

;----Subroutine #7----DSP write data to SDRAM thru BO----;
;----Start of DSP_WBO0----;
DSP_WRBO: ;setup writing of data to BO

CALL SDRAM_ADDR

LD #lO_DMA DP
ST #DSPBO_WAD) ,J0_ DMA :Load SD_ADDr, Read, BO instr
PORTW I0_DMA ,DMA_CTL :Send SD_ADDr, Read, BO instr
NOP

NOP

NOP

ST #DSPBO_WS) ,I0_DMA ;W=0, START=HIGH PULSE, B#=B0

TMS320C54x Interface with SDRAM

43

Application Report
SPRA531

PORTW |O_DMA ,DMA_CTL
NOP
NOP
NOP
ANDM #STARTEND ,|IO_DMA
PORTW |0_DMA ,DMA_CTL
NOP
NOP
NOP
RET
;----End of DSP_WBO0----;

;----Start of DSP_WBOW----;
DSP_WBOW: ;setup writing of data to BO

CALL SDRAM_ADDR ;Send address to SDRAM

LD #IO_DMA ,DP
ST #(DSPBO_WAD) ,I0_DMA ;Load SD_ADDr, Read, BO instr
PORTW I0_DMA ,DMA_CTL ;Send SD_ADDr, Read, BO instr
NOP
NOP
NOP
ST #(DSPBO_WS) ,I0_DMA :W=0, START=HIGH PULSE, B#=B0
PORTW I0_DMA ,DMA_CTL
NOP
NOP
NOP
ANDM #STARTEND ,|O_DMA ;W=0. START=LOW PULSE, B#=B0
PORTW I0_DMA ,DMA_CTL
CALL WRITE_BUF
RET
;----End of DSP_WBOW----;
;--—-End of Subroutine #7----;

i

;----Subroutine #8----DSP write data to SDRAM thru B1----;
;----Start of DSP_WB1----;
DSP_WB1: ;setup writing of data to B1

CALL SDRAM_ADDR

LD #IO_DMA ,DP
ST #DSPB1_WAD),l0_ DMA ;Load SD_ADDr, Read, B1 instr
PORTW 10 DMA ,DMA _CTL :Send SD_ADDr, Read, Bl instr
NOP

NOP

NOP

ST #DSPB1_WS) ,I0_ DMA ;W=0, START=HIGH PULSE, B#=B1
PORTW 10 DMA ~ ,DMA_CTL

NOP

NOP

NOP

ANDM #STARTEND, I0_DMA :W=0, START=LOW PULSE, B#=B1
PORTW IO_DMA, DMA_CTL

NOP

NOP

NOP

RET

:--—End of DSP_WB1----;

;----End of DSP_WB1W---;
DSP_WBI1W: ;setup writing of data to B1
CALL SDRAM_ADDR
LD #lO_DMA ,DP
ST #[DSPB1_WAD) ,|0_DMA :Load SD_ADDr, Read, B1 instr

TMS320C54x Interface with SDRAM

44

Application Report
SPRA531

PORTW I0_DMA ,DMA_CTL
NOP
NOP
NOP
ST #(DSPB1_WS) ,I0_DMA
PORTW I0_DMA ,DMA_CTL
NOP
NOP
NOP
ANDM #STARTEND, IO_DMA
PORTW 10_DMA, DMA_CTL
CALL WRITE_BUF
RET

;----End of DSP_WB1W----;

;--—-End of Subroutine #8----;

;Send SD_ADDr, Read, B1 instr

\W=0, START=HIGH PULSE, B#=B1

;W=0, START=LOW PULSE, B#=B1

;-----Subroutine #9- SDRAM write to DSP thru BO----;
DSP_RBO: ;sending intr to SDRAM to send data to buffer BO

CALL SDRAM_ADDR

LD #O_DMA ,DP ;

ST #(DSPBO_RAD),IO_DMA
PORTW I0_DMA ,DMA_CTL
NOP

NOP

NOP

ST #(DSPBO_RS) ,I0_DMA

PORTW 10_DMA ,DMA_CTL
NOP

NOP

NOP

ANDM #STARTEND ,IO_DMA
PORTW 10_DMA ,DMA_CTL
NOP

NOP

NOP

RET

;----End of Subroutine #9----;

;write & SD_ADDr

; R=1, START=HIGH PULSE, B#=B0

; R=1, START=LOW PULSE, B#=B0

;----Subroutine #10----SDRAM write data to DSP thru B1----;
DSP_RB1: ;sending intr to SDRAM to send data to buffer B1

CALL SDRAM_ADDR

LD #IO_DMA DP
ST #(DSPB1_RAD),IO_DMA
PORTW 10_DMA ,DMA_CTL
NOP
NOP
NOP
ST #([DSPB1_RS) ,|0_DMA
PORTW 10_DMA ,DMA_CTL
NOP
NOP
NOP
ANDM #STARTEND ,IO_DMA
PORTW |10 _DMA ,DMA CTL
NOP
NOP
NOP
RET

;----End of Subroutine #10----;

;write & SD_ADDr
;R=1, START=HIGH PULSE, B#=B1

;R=1, START=LOW PULSE, B#=B1

TMS320C54x Interface with SDRAM

45

Application Report
SPRA531

;----Subroutine 11 ---- Toggling Buffer ----;
;----Start of DSPRBO----;
DSPRBO: ;To Toggle buffer : SDRAM-B0, DSP-B1
LD #IO_DMA DP ;
ANDM #SW_BO ,|IO_DMA
PORTW |0_DMA ,DMA_CTL
RET
;----End of DSPRBO----;

;----Start of DSPRB1----;
DSPRB1: ;To Toggle buffer : SDRAM-B1, DSP-BO
LD #O_DMA DP ;
ORM #SW _B1 ,|0_DMA
PORTW I0_DMA ,DMA_CTL
RET
;----End of DSPRB1----;

;----Subroutine 12---Clear Buffer----;
;----Start of CL_BUFFF----;
CL_BUFFF:
STM #SD_BUF ARG
STM #128-1 ,BRC

RPTB CL1-1

LD #OFFH A

STL A ARG+
CL1: RET

-—End of CL_BUFFFF--—-;

;----Start of CL_BUF00----;
CL_BUFO00:
STM #SD_BUF ,ARG
STM #128-1 ,BRC

RPTB CL2-1

LD #00H A

STL A ARG+
CL2: RET

;----End of CL_BUF00----;

END OF SUBROUTINE

TMS320C54x Interface with SDRAM

Application Report
SPRA531

Command File : Demo.cmd

demo.obj

SD_VEC.obj

[*-c*/

-0 demo.out

-m demo.map

[*-stack 0x100*/

/*-i c:\mandy\c54x\comp1.10*/

/*-1 c:\mandy\c54x\comp1.10\rts.lib*/

MEMORY

PAGE 0:
RAMO (RIX) : origin = 04000h length = 03F00h
RAML1 (RIX) :origin = 07F00h length = 00080h
VECS (RIX) :origin = 07F80h length = 00080h

PAGE 1:
DARAM_MMR (RW) : origin = 00060h length = 00020h
DARAM (RW) : origin = 00080h length = 01F80h
SARAMO (RW) : origin = 02000h length = 02000h
SARAML1 (RW) : origin = 04000h length = 04000h
FLASH (RW) :origin = 08000h length = 07F00h
SDRAM (RW) :origin = OFFOOH length = 00100h

}

SECTIONS

{
text: {} >RAMO PAGE 0
data: {} > SARAMO PAGE 1
.vectors : {} > VECS PAGE 0 /* interrupt vector table */
bss : {} >DARAM PAGE 1
.CMOS : {} > SARAMO PAGE 1
stack : {} > DARAM PAGE 1
.READ_BUF ALIGN(256): {} > DARAM PAGE 1
.COM_BUF ALIGN(256): {} > DARAM PAGE 1
.SD_BUF ALIGN(256): {} > SDRAM PAGE 1

I* .cinit : {} > ROM PAGE 0%/

I* .const :{} >ROM PAGE 0*/

}

END OF COMMAND FILE

TMS320C54x Interface with SDRAM

47

Application Report
SPRA531

TIl Contact Numbers

INTERNET

Tl Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas

Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Esparfiol +34-(0) 90 2354 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67
Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026
Fax
International +81-3-3457-1259
Domestic 0120-81-0036
Email pic-japan@ti.com

TMS320C54x Interface with SDRAM

Asia
Phone
International +886-2-23786800

Domestic

Australia 1-800-881-011

Tl Number -800-800-1450
China 10810

Tl Number -800-800-1450
Hong Kong 800-96-1111

Tl Number -800-800-1450
India 000-117

Tl Number -800-800-1450
Indonesia 001-801-10

Tl Number -800-800-1450
Korea 080-551-2804
Malaysia 1-800-800-011

Tl Number -800-800-1450
New Zealand 000-911

Tl Number -800-800-1450
Philippines 105-11

Tl Number -800-800-1450
Singapore 800-0111-111

Tl Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

Tl Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

48

Application Report Q’
SPRA531

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of Tl covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright 0 1999 Texas Instruments Incorporated

TMS320C54x Interface with SDRAM 49

