
Application Report
SPRA555

Digital Signal Processing Solutions July 1999

Implementation of a Software UART on
TMS320C54x Using General-Purpose I/O Pins

Adrienne Prahler Jaffe C5000 Applications

Abstract
Asynchronous communication between a digital signal processor (DSP) and another device is a
common system requirement. This application report discusses a software implementation of a
universal asynchronous receiver and transmitter (UART) to enable asynchronous communication
with minimal hardware overhead using the Texas Instruments (TI) TMS320C54x DSP. Topics
covered include:

� Asynchronous communication discussion

� Advantages and disadvantages of a software UART

� Implementation of a software UART on a TMS320C54x

� Performance evaluations of software UART code

� Suggestions for user enhancements

� RS-232 interfacing

� C callable assembly source code

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 2

Contents

Introduction ..3
Data Format..3
Parity Standards ...4

Implementation ..4
Setup ...5
Receive Function..5
Transmit..7
Full-Duplex Operation...10
Parity Algorithm ..13
Bits Per Second (BPS) Calculation...13
Summary of Functions..14
Processor Configuration ...15

Performance Evaluations of Code ...15

Possible User Alterations ...17
RS-232 Interface ..17
Performance Enhancements ..17

Conclusions ...17

References...18

Appendix A Software UART Code ...19

Figures
Figure 1. UART Data Stream...3
Figure 2. Hardware Setup for Software UART...5
Figure 3. Timer ISR for Transmit and Receive Functions ..9
Figure 4. End Routines for Receive and Transmit Functions...10
Figure 5. Transmit Function...11
Figure 6. Receive Function..12
Figure 7. Timing of Receive and Transmit Functions when Operating in Full-Duplex Mode....................13
Figure 8. UART Status Register Bits ...15

Tables
Table 1. Values of PRD Register for Different BPS..14
Table 2. Memory locations of data used in Function Calls ...14
Table 3. Bit Meanings of UART Status Register...15
Table 4. Performance of Software UART Functions (Number of Clock Cycles)16

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 3

Introduction
Digital signal processors (DSPs) are used in real-time systems that involve the transfer of
information among system components. Two types of communication are possible,
synchronous, which requires continuous timing references that both devices use, and
asynchronous, which does not require continuous timing references. In synchronous
communication, the devices use a timing signal that is always present even if there is no
data to send. In asynchronous communication, the devices communicate with each other
using start and stop bits as timing references. These bits are generated only when there
is data present. A software universal asynchronous receiver and transmitter (UART)
provides the flexibility of asynchronous serial communication between devices with
minimal external hardware. The devices communicating operate under an established
protocol that includes the number of data bits, bits per second (bps), and parity. A
software implementation of a UART allows increased system functionality without
increasing hardware costs.

Data Format

In asynchronous communication, the transmit and receive lines are held high in the idle
state when no data is present. The data is sent over a serial line from least significant bit
(LSB) to most significant bit (MSB), as shown in Figure 1. The data stream begins with a
single start bit, a low, that signals the beginning of the data stream. After the data is sent,
the data stream ends with one or two stop bits. Half-duplex operation of the UART is
defined as being able to receive and transmit, but only performing one function at a time.
Full-duplex operation is achieved when the device can receive and transmit
simultaneously. The bit time is the total time the line is held at a value for each data bit as
shown in Figure 1. A half bit time is defined as half the time the line is held at a value for
each data bit. When operating at 9600 bits per second (bps), the half bit time is 0.05 ms
and the 1 bit time is 0.1 ms.

Figure 1. UART Data Stream

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 4

Parity Standards

Parity is a simple error-checking routine that can be added by including an additional bit
during data transmission. Two types of parity are supported in this implementation, odd
and even parity. If odd parity is selected, the parity bit is set to 1 when the number of 1s
transmitted (data bits only) is even. If even parity is selected, the parity bit is set to 1
when the number of 1s transmitted (data bits only) is odd. The parity bit in each case is
selected such that the total number of 1s transmitted (data bits and parity bits) is odd if
odd parity is active and even if even parity is active. In this implementation, odd or even
parity or no parity is selectable when the code is assembled and linked.

Implementation
This implementation of the UART in software on the ‘C54x allows several options,
including:

� Number of data bits(1–16)

� Choice of parity (even or odd) or no parity

� User specified bits per second (BPS)

� Number of stop bits(1–2)

These parameters must be set prior to assembling and linking the code. The code is
written in assembly and is not optimized. The assembly functions (setup, transmit, and
transmit_delay) are written to be C callable. The method used here allows for the full-
duplex operation of the device, while only using two general-purpose I/O pins (BIO\ and
XF), an external interrupt (INT0), and a timer. The hardware setup is shown in Figure 2.
The XF pin is used to transmit data and the BIO\ and INT0 pins are used to receive data.
A UART status register and counter are maintained in memory to control the software
and determine what actions should be performed.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 5

Figure 2. Hardware Setup for Software UART

Setup

The software UART has setup code to initialize the C54xx. Once setup, the UART is
ready to transmit and receive data. The process flow of the program is shown in Figure 3
through Figure 6. During setup, the memory locations are initialized, interrupts enabled,
and the status registers are set.

It is important to note that the UART code is time sensitive. If uninterruptible code is
being executed, the latency between when the timer interrupt occurs and when the timer
interrupt service routine (ISR) is executed could cause the data to be corrupted. The data
bits must be received and transmitted within a specified time period. The appropriate
latency to prevent data corruption varies according to the bits per second operation rate
of the UART.

The transmit and receive functions require simple tasks for completion; however,
ensuring proper performance increases the complexity of the tasks. The two functions will
be examined separately and the final goal of achieving full-duplex operation will be
discussed.

Receive Function

The receive function recovers and formats the data from the input signal. To receive the
data from the input signal correctly, the UART must determine the timing references. The
timing references are provided by the start and stop bits that are added to the data
stream, so the problem is reduced to detecting the start bit. One method for detection of
the start bit is to poll the BIO\ pin at a rate that is greater than the expected bits per
second of the data. However, this requires a great deal of CPU overhead and does not
provide instantaneous detection of the start bit. Using an external interrupt pin to detect
the start bit solves the problem. The low signal is detected immediately with no CPU
overhead for polling. By connecting the BIO\ pin and an external interrupt pin together,
the external interrupt can detect the start bit and the BIO\ pin can receive the data.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 6

Once the start bit is detected, several things must be done. The interrupt is triggered at
the beginning of the start bit, but the best place to test for the value of the data bit is at
the half bit time. If the bit was sampled at the beginning or the end of the bit and the timer
ISR was not serviced immediately, invalid data could be detected. Sampling at the half bit
time also allows some margin if there is latency in the detection of the start bit or in the
servicing of future timer ISRs. When the start bit is detected, the external interrupt ISR
starts the timer for the half bit time so data samples can be taken at the half bit time.

Proper data reception requires more than just setting up a timer. The software must know
that the UART is actively receiving so another section of code (such as a transmit call)
will not disrupt the receive function. One way of doing this is to create a quasi UART
status register in memory and define a bit, the RCV bit, to determine if the UART is
receiving or not. A counter is needed to keep track of the number of data bits received so
the program knows when it is finished receiving. The counter for the number of data bits,
UART count, then needs to be reset at the start of a new data stream. The received data
will also need to be stored, so a memory location is also reset. Once the start bit is
detected, the external interrupt must be masked so an interrupt will not occur with the
start of every low data bit in the data stream. Once these pieces are in place for the data
reception, the code can return to the main program and wait for the timer interrupt to
occur.

The UART is setup to receive a data stream and the timer goes off a half bit time after the
start bit is detected. The data needs to be sampled and formatted when all the data is
recovered. The BIO\ pin is sampled and the data value is stored (in the rcv_data memory
location). The UART counter is updated to keep track of the number of data bits received.

There are two iterations of the timer ISR when additional steps must be included. The
first is when the counter is cleared to 0 (the first time the timer ISR is triggered for each
data stream). When the start bit is detected, the timer is setup and started for only a half
bit time for the first iteration of the timer ISR. The next data point needs to be sampled a
whole bit time later (sample at ½ bit time of start bit and again at the ½ bit time of data bit
1 so the total time is 1 bit time). If the counter is 0, the timer needs to be started for 1 bit
time. As an error checking measure, the BIO\ pin (the receive pin) is sampled at this time
(the ½ bit time of the start bit). If the pin is high, the timer is stopped and the program
exits immediately because the low detected was a glitch, not a valid start bit.

The second exception to the standard timer ISR is when the final data bit is received. For
the data to be useful, it needs to be formatted. To detect when the final bit is received, a
comparison of the number of data bits expected and the number received is included in
the timer ISR. When the final data bit is received, the received data must be formatted.
The start and stop bits must be cleared and if parity is enabled that bit must be cleared
after being checked. The exit routine must also reset the RCV bit in the UART status
register since data is no longer being received. The external interrupt must be cleared
(even though it was masked during data transmission, the interrupt flag was set to be
serviced with each logic low) and enabled so the next start bit can be detected.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 7

Transmit

The transmit function formats the data and sends the data out. The data to be
communicated must be passed to the transmit function in some way. One method is to
create a data memory location, tx_datapass, and prior to a transmit function call, place
the data in that location. Once the data is in place and the function is called, the data
must be formatted. Another step must be inserted to protect the data if you make back-to-
back calls to the transmit function. An additional bit can be used from the UART status
register (where a bit for receive has already been defined), the TX bit, to determine if
there is data already formatted for transmission. If the TX bit is set, the program can loop
until it is reset. Finally, the data formatting can begin. The start, stop and parity bits (if
enabled) can be added to the data stream. The data can then be stored in a memory
location ready for transmission.

The data is formatted and now needs to be sent out. To know when to send the next data
bit the timer needs to be setup. While the receive and transmit functions are operating
independently, they share one timer in this implementation. If the UART is in the middle
of receiving data, the data would be corrupted if the timer was suddenly used by the
transmit function. Prior to starting transmission, the RCV bit should be checked to
determine if the UART is receiving. Once the UART is not receiving, the data word can
be transmitted. For the same reason that the transmit function can not just take over the
timer, the receive function must be disabled from capturing the timer while the UART is
transmitting. Masking the external interrupt that detects the start bit during transmission
can do this. It is important to note that a start bit will not be detected if the UART is busy
transmitting. The other device must not begin a transmission if it is already receiving a
data stream because the ‘C54x device will not receive the data stream. Additionally, a
counter must be set up to keep track of the number of data bits transmitted. When the
data is formatted and the timer is started, the program returns and waits for the timer
interrupt to occur.

When the timer ISR is executed, the data must be sent serially to the other device. The
XF pin is set for the next data bit each time the ISR is iterated, but the timer ISR is a
single piece of code. When the ISR is executed, the state of the UART is determined so
the proper functions (reception or transmission) are implemented. There is a receive
section that was previously described. This is accessed if the RCV bit in the quasi UART
status register is set. There is also a transmit section. It makes sense to just use the TX
bit that is set when the transmit function call is made to determine if the transmit code
needs to be executed. However, when the transmit function call is made, the code loops
if the UART is busy receiving to prevent data corruption. At this point though, the TX bit is
set and each time the timer ISR is executed, the transmit code would be performed.
There is no counter or way of knowing how many bits have been sent or even if the data
was actually formatted and ready to be sent (the timer ISR could occur in the middle of
the data formatting). To prevent this situation, an additional bit is specified in the quasi
UART status register, the UART bit. The UART bit is set prior to starting the timer for the
transmit function if the timer is free and the data transmit has commenced. The UART bit
can be used to determine what code needs to be executed for the transmit section of
code in the timer ISR.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 8

The final steps of the timer ISR for the transmit function are shared with the receive
function. The normal exit routine is used after every complete iteration of the timer ISR.
The exit routine checks for the final bit count and increments the UART counter. When
the final bit is transmitted and received, the exit routine branches to an end routine.
During the end routine, the timer is halted, the UART status register is reset from the
transmit function call, and the hardware interrupt is enabled after clearing any pending
interrupts that occurred during the transmit functions (if a low bit was transmitted, the IFR
register flag will be set even while the interrupt is masked).

The timer ISR program flow that includes both the receive code and the transmit code is
shown in Figure 3. Notice the two sections of code – one for the receive function and the
other for the transmit section. The normal end routine program flow for both the receive
function and the transmit function is shown in Figure 4.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 9

Figure 3. Timer ISR for Transmit and Receive Functions

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 10

Figure 4. End Routines for Receive and Transmit Functions

Full-Duplex Operation

Receive and transmit have both been examined operating independently. Much of the
overhead of the functions like counters and exit routines are the same, so full-duplex
operation (both receive and transmit at the same time) is desirable. The limiting factor is
the single timer used in the implementation. While independently functioning transmit and
receive functions are not possible, dependent full-duplex operation is possible. The
receive function is an asynchronous event since the start bit can occur at any time.
However, the transmit calls are controlled by the program.

A transmit delay function was implemented in the code to give the flexibility of dependent
full-duplex operation. The program flow for the transmit function calls are shown in Figure
5. To support the transmit delay function, another bit in the UART status register,
TX-delay, is set when a transmit delay function call is made. The data is formatted and
placed in the appropriate memory location, but prior to setting up the timer, the code
returns to the main program. The delayed transmit is activated when the next receive
function starts. The final program flow for the receive function is shown in Figure 6. When
the start bit is detected, the TX-delay bit in the UART status register is checked. If the bit
is set, the UART is setup to transmit and receive simultaneously.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 11

Figure 5. Transmit Function

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 12

Figure 6. Receive Function

It is possible for full-duplex operation of the UART to be achieved. If the application
allows (for example, receive functions occur within a tolerated delay time for the transmit
data), you can use transmit delayed function calls. When a start bit is detected, the flag is
tested and a full-duplex transmit and receive occurs with a half bit offset of each other as
shown in Figure 7. This timing allows for the full-duplex operation of the UART. The offset
is created because the first transmit bit is set at the middle of the receive start bit.
Continuous communication with a start bit occurring after the final stop bit of the previous
data is possible even in full-duplex operation; the earliest a receive start bit could be sent
is a ½ bit time after the final stop bit is received. Since the first timer ISR does not occur
until a ½ bit into the start bit, the final stop bit for the transmit function will be completed
before the next transmit data would be sent. The ½ bit delay allows enough time for the
final formatting and the resetting of the system before the next data word is transmitted.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 13

Figure 7. Timing of Receive and Transmit Functions when Operating in Full-Duplex
Mode

Parity Algorithm

The parity algorithm used in the software is described in the Texas Instruments
Application Brief, Parity Generation on the TMS320C54x (literature number SPRA266).
The parallel “successive approximations” in software method is used that involves a
minimal overhead to generate the parity value. The data is loaded into an accumulator
and exclusive ORed with itself shifted by the appropriate bits. Because the values are
continually shifted, the parity value is not the least significant bit. In this software, the
parity value is stored into a memory location with the appropriate shift so the value is in
the least significant bit of the memory location. This allows bit tests to be performed
easily to determine what needs to be added for the parity bit or if there is a parity error.
Further explanation of the calculation method can be found in the application brief.

Bits Per Second (BPS) Calculation

Prior to assembling and linking the code, the timer registers must be set such that the
timer interrupt rate is set for the appropriate bits per second rate. The bits per second
rate is determined by the following equation:

() ()11
1

+∗+∗
=

PRDTDDRclkout
bps

The clock out value is the effective clockout of the device measured in seconds. Using
the clockout value and the desired bits per second rate, the user can determine the
appropriate prescalar (TDDR) and period (PRD) prior to compile time.

Settings for the PRD register, assuming a 100 MHz device (10 ns clockout), and a TDDR
value of 1, are shown in Table 1. Changes in the clockout value of the device or the value
of the TDDR register would alter these values.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 14

Table 1. Values of PRD Register for Different BPS

Whole bit Half bit
BPS PRD PRD

2400 20832 10416

9600 5207 2603

19200 2603 1301

38400 1301 650

57600 867 433

115200 433 216

Summary of Functions

A summary of the function calls supported in this software UART, the locations of the
appropriate data, and the hardware pins used are listed in Table 2. In addition, the timer
is used during transmit and receive function calls. Context save and restore is
implemented in the code, but status register ST1 is not maintained. During transmit, the
XF pin is used and the XF pin state is defined by a bit in the ST1 register. The user
should be aware of this and ensure that no other program will use the XF pin during a
transmit function call. The data placed in tx_datapass is not preserved.

Table 2. Memory locations of data used in Function Calls

Function calls Data location Pins Used

Transmit tx_datapass XF

Transmit_delay tx_datapass XF

Receive rcv_datapass BIO and int0

The number of data bits (1-16), number of stop bits (1 or 2), parity (even, odd, or none),
and the bps of the system are specified when the code is assembled and linked. These
values could be made variable by specifying the values in a soft register in memory (like
the reserved space in the UART status register).

The UART uses several memory locations listed below during its operation. To support
the ability of 16-bit data communication (since the ‘C54x is a 16-bit machine) of the
UART, two memory locations are used for both receive and transmit data. If the total
number of bits to be communicated using the UART including start, stop, parity, and data
is less than 16, the second memory location can be eliminated.

� UART_counter

� UART status register, UART_reg

� Tx_datalo

� Tx_datahi

� Rcv_datalo

� Rcv_datahi

� Tx_datapass

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 15

� Rcv_datapass

� Parity_value

The UART status register bits are shown in Figure 8. If the bit is 0, that component is not
active. The bit descriptions are in Table 3.

Figure 8. UART Status Register Bits

15-5 4 3 2 1 0

reserved Parity error Delay UART TX RCV

Table 3. Bit Meanings of UART Status Register

Bit Value Status

RCV 1 UART receiving data

0 No data being received

TX 1 Data to transmit

0 No valid transmit data

UART 1 UART busy transmitting

0 UART not transmitting

Delay 1 Delayed transmit ready

0 No delayed transmit

Parity error 1 Parity error occurred in last receive

0 Parity correct or not used

Processor Configuration

As previously mentioned in this application report, there are several conditions that must
be met for this software to operate correctly. The processor must be set with Sign
Extension Mode (SXM) suppressed to allow the correct bit manipulations for transmit and
receive. During transmit, the status register 1, ST1, can not be context saved and
restored since the XF pin is set from that register and is used as the transmit line. You
must also ensure interrupt latencies for the timer ISR so data is communicated correctly.
When you are incorporating the software UART into a program all of these issues must
be addressed. The code listed here assembles error free using the TMS320C54x COFF
Assembler Version 1.20. The UART was tested using the C541 EVM that operates at
40 MHz. The UART was connected to a hardware UART on the TMS320F240 to
demonstrate valid data transmission and reception.

Performance Evaluations of Code
Without any modifications, the performance of the software UART at 9600 bps is
approximately 0.75 MIPS in full-duplex operation. There are several timing references
that limit the performance of the software programming. These performance metrics
shown in Table 4 are for the software as documented, operating in full-duplex mode with
a transmit delay and receive function calls and context save and restore of status
registers and accumulators.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 16

Table 4. Performance of Software UART Functions (Number of Clock Cycles)

Function
Transmit,
no parity

Transmit,
odd parity

Receive,
no parity

Receive,
odd parity

Full-duplex,
no parity

Full-duplex,
odd parity

UART_setup 16 16 16 16 16 16

Transmit 71 93

Tx_delay 45 67

Hw_int0 33 33 33 33

Timer_isr 1st

iteration
43 43 59 59 69 69

Timer_isr 2nd - final–
1 iterations

43 43 52 52 62 62

Timer_isr final 78 78 102 135 112 145

There are three routines that determine the performance of the software implementation.
The timer ISR must be completed in less than one bit time since it must be able to
recover each data bit. The setup for the receive function must be completed in less than
a half bit time so the timer references are maintained. Additionally, the final timer ISR
must be completed in less than a half bit time to allow the UART to detect back to back
data streams (final stop bit of one data stream is followed immediately with a start bit,
signaling a new data stream). The maximum performance is determined by the total time
to complete the number of cycles specified. In this equation, clkfreq is the clock
frequency of the device, #cycles is the number of cycles for the function, and bit is the
limitation of when the function needs to be complete (1/2 or 1).

bit
cycles

clkfreq
bps ∗=

#
max

To put this in perspective, the performance of the unoptimized code for full-duplex
operation assuming a 100MHz device would be limited to 400 000 bps. The external ISR
for the receive function setup takes approximately 33 cycles, which would limit the
performance of the UART to 1 500 000 bps (max bps = 100MHz/(2*33cycles)). The
limitation of the timer ISR to one bit time limits the performance to 1 400 000 bps with 69
clock cycles for completion. The longest ISR (the final bit that also includes the end
routine call) takes 125 clock cycles to complete, which reduces the maximum
performance to 400 000 bps. In this software implementation, the longest timer ISR is the
limiting factor. The code used to test this software makes a call to transmit delay when
the final stop bit is set. This increases the longest ISR, which decreases the performance
of the algorithm. Any modifications of the software will effect the maximum bit per second
rates.

The MIPS performance is determined by calculating the average number of cycles for
each bit to be transmitted, including overhead cycles. Assuming full-duplex operation with
8 data bits, 2 stop bits, and parity, the average number of cycles for each bit is 78 cycles.
Therefore, the total number of MIPS if the UART is in continuous operation is 78 cycles
times the desired bps. For the example at 9600 bps, the UART uses approximately 0.75
MIPS. The code size is approximately 2K words. Modifications to the code will alter these
performance numbers, but they are provided to give some idea of the overhead required
to run this code.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 17

Possible User Alterations

RS-232 Interface

The transmit and receive lines can be used to interface to RS-232 compatible serial ports
by hooking up a line driver and receiver to provide the required differential voltages. The
only RS-232 signals supported are the transmit (DX) and receive (DR) lines. Other
desired signals, such as handshaking could be accommodated by you with additional bit
I/O lines as desired. The ‘C5402, ‘C5410, and ‘C5420 have additional general-purpose bit
I/O available depending on which peripherals are in use (for example, HPI or McBSP).

Performance Enhancements

Depending on the specific application the software UART is being used for, several
adjustments to the code are possible to optimize performance. The code itself can be
optimized for speed and/or code size as needed. Reordering some commands to
effectively use available delay slots will increase the performance. Some other areas that
could be optimized include temporary data storage. If the total number of bits, data, stop,
start, and parity is less than or equal to 16, the additional temporary data locations,
tx_datahi and rcv_datahi can be discarded. This would free up memory space and
reduce the number of instructions in the timer ISR. Additionally, the waiting loops to
prevent the user from overwriting data can be modified to return to the main program
instead of just looping until the flags are cleared. You can also modify the error checking
routines. If parity is enabled, a flag is set in the UART status register if an error occurs.
The error routine could also be modified to include requesting the other device to resend
data or to sample each data value multiple times to reduce the probability of an error.
Modification of the software UART code is possible depending on application
requirements.

Conclusions
A software implementation of a UART has been presented for the TMS320C54x DSP.
The UART is a universal asynchronous receive and transmit that allows communication
between two devices that is not possible if serial port communication is not available.
This implementation requires approximately 2K words of memory for code size and uses
approximately 0.75 MIPS when operating at 9600bps. The software UART is a valuable
tool for connecting two devices with minimal overhead; however, CPU overhead is
application dependent.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 18

References
1. Nerge, David.Parity Generation on the TMS320C54x, TMS320 DSP Designer’s

Notebook, Application Brief, SPRA266, February, 1996.

2. Zalac, David. An Implementation of a Software UART Using the TMS320C25,
Application Report, SPRA077, 1997.

3. Fried, Ted. Developing a Full-Duplex UART on the TMS320C3x, TMS320 DSP
Designer’s Notebook, Application Brief, SPRA254, February, 1995.

4. Ward, Stephen A. and Halstead, Robert H., Jr., Computation Structures. The MIT
Press, Cambridge, 1991.

5. TMS320C54x DSP Reference Set, Volume I: CPU and Peripherals, SPRU131, 1997.

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 19

Appendix A Software UART Code
**
*This program is a s/w UART for the C54x using the BIO and *
*XF, I/O pins, a hardware interrupt, and a timer. *
*The device operates in full-duplex mode and supports *
*up to 16 data bits, 1 or 2 stop bits, and parity (even or *
*odd). *
* *
*Written by: Adrienne Prahler Jaffe *
*Modified: 3/10/99 *
*Three function calls are available in this program, *
*setup, transmit and transmit_delay. *
*Functions being made c-callable *
**

 .global _timer_isr, _transmit, _transmit_delay, _setup, _hw_int0,
_tx_datapass
 .global _rcv_datapass, _UART_reg, _parity_value, _one, _UART_count,
_tx_datalo
 .global _rcv_datalo

****************** MAIN SHELL **********************************
 .mmregs ; allow addressing of memory registers by name

 .bss _UART_reg,1 ; location of status register flags
 .bss _rcv_datalo,1 ; rcv location
 .bss rcv_datahi,1 ; rcv location
 .bss _tx_datalo, 1 ; tx_data location
 .bss tx_datahi, 1 ; tx_data location
 .bss _UART_count,1 ; counter
 .bss _one, 1 ; constant location
 .bss _tx_datapass, 1 ; where transmit data is put for transmission
 .bss _rcv_datapass, 1 ; where receive data is stored
 ; (striped of stop, start, parity)
 .bss _parity_value,1 ; parity value location
 ; if total #1's in dataword even then
 ; lsb = 0, odd lsb = 1
 .bss parity_bit, 1 ; parity_bit value
****************Added for debugging*******************************

 .bss _data_storage, 330, 1 ; where receive data is stored

**

**********************Timer information**************************
* timer interrupt rate (baud rate)= 1/(clkout*(TDDR+1)*(PRD+1))*
* TDDR is timer divide down ratio, 4 bits *
* PRD is the timer period register, 16 bits *
* *
* Knowing the desired baud rate and clkout of device, the values*
* of TDDR and PRD can be determined. *
* *

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 20

* In this example, the TDDR is set to 1, if that is changed, the*
* values of tcr_timer_go needs to be changed so the lower 4 bits*
* are the desired values. *
* *
* The program uses two timer rates, one for a half bit time and *
* one for a whole bit time. The value calculated for the PRD *
* in the above equation is for the whole bit time. *

whole_bit_time .set 8332d ; set whole bit time assuming 40MHZ
 ; and 2400 baud
half_bit_time .set 4167d ; set half bit time assuming 40MHz
 ; and 2400 baud
tcr_setup .set 0000000000010000b ; setup tcr values, stop timer
tcr_timer_go .set 0000000001100001b ; tcr register values for
 ; timer start

*************variables set for operation of UART*****************
* UART_reg: *
*___15-5__________4__________3_______2_______1_______0____ *
*|reserved| parity error | delay | uart | tx | rcv | *
*--- *
*RCV *
* 0 = not receiving data *
* 1 = receiving data *
*TX *
* 0 = no data to transmit *
* 1 = data waiting to be transmitted *
*UART *
* 0 = not busy transmitting *
* 1 = actively transmitting *
*Delay *
* 0 = not delayed *
* 1 = delayed *
*Parity error *
* 0 = nothing wrong *
* 1 = error occurred *

data_bits .set 8 ; number of data bits being transferred
stop .set 2 ; number of stop bits, 1 or 2
start_bits .set 1 ; number of start bits
parity .set 0 ; if 0, no parity
 ; if 1, odd parity
 ; if 2, even parity

 .if parity != 0 ; if parity set then reserve a bit spot
par_bits .set 1
parity_or .set 01b<<data_bits+start_bits
 .else
par_bits .set 0
 .endif

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 21

************Setting up stopbit formatting values******************
 .if stop=2 ;if 2 stop bits then set up this value for formatting
stop_or .set 011b<<data_bits+par_bits+start_bits
 ; setting up for formatting data
 .elseif stop=1 ; if 1 stop bit set up this value for formatting
stop_or .set 01b<<data_bits+par_bits+start_bits
 ; setting up for formatting data
 .else
 .emsg "ERROR, must specify the number of stop bits to be 1 or 2"
 .endif

**********Parity Routines**
 .if parity > 2
 .emsg "ERROR, the parity value must correspond to no
parity, even parity or odd parity!"
 .endif

 .if parity !=0 ; if parity set
 .if data_bits+par_bits+start_bits>=17
N_par .set 32
 .elseif data_bits+par_bits+start_bits>=9
N_par .set 16
 .elseif data_bits+par_bits+start_bits>=5
N_par .set 8
 .elseif data_bits+par_bits+start_bits>=3
N_par .set 4
 .elseif data_bits+par_bits+start_bits=2
N_par .set 2
 .elseif data_bits+par_bits+start_bits=1
N_par .set 1
 .endif
 .endif

*******************Main Program***********************

 .text

******dummy main program to call UART setup and a delayed transmit******

start:
 nop
 call _setup
 nop
 nop
 call _transmit_delay
 nop
loop: nop ; looping
 nop
 nop
 b loop
 nop
 nop

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 22

************setup UART**************************
_setup:
 rsbx cpl ; enable direct addressing mode
 ld #_UART_reg, DP ; setup DP for direct addressing
 RSBX INTM ; enable global interrupts
 RSBX SXM ; turn off sign extension mode, the UART must
 ; operate with this setting!
 st #1, @_one ; create a Smem location with value 1 stored
 st #9h, *(IMR) ; enable interrupt (timer and hw_int)
 st #0, @_UART_reg ; initialize data locations
 st #0, @_tx_datalo
 st #0, @tx_datahi
**************Added for debugging**************
 stm #100, bk ; load circular buffer size
 ssbx xf ; set xf high
 nop
 nop
 nop
 nop
 stm #_data_storage, ar3 ; setup auxiliary register for
 ; receive data
 st #8bh, @_tx_datapass ; load data into tx_datapass
**
 ssbx cpl
 rete ; return to main program
************Timer ISR for UART**************************
_timer_isr: pshm st0 ; context save
 pshm AL
 pshm AH
 pshm AG
 rsbx cpl ; set cpl=0 for assembly functions
 ld #_UART_reg, DP ; setup DP for direct addressing

rcv: bitf *(_UART_reg), #1h ; test rcv flag
 nop
 nop
 bc tx, ntc ; if rcv not set then branch to tx
 cmpm @_UART_count, #0h ; is count = 0?
 nop
 nop
 bc exit_now, nbio, tc ; if count = 0 and bio =1 then exit now!
 ; not a VALID start bit!
 cc timerwhole, bio, tc ; setup timer for whole bit if count=0
 ; bio=0
 bc tx, bio, tc ; after time set up branch to tx routine
 ld @_UART_count, T ; load counter into T register
 ; used for offset since data received
 ; lsb first.
 ld @_rcv_datalo, A ; load rcv_data
 add @rcv_datahi, 16, A
 xc 1, nbio ; if bio pin high then
 add @_one, TS, A ; add one shifted by bit position(count)
 stl A, @_rcv_datalo ; store rcv data in memory location
 sth A, @rcv_datahi

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 23

tx: bitf @_UART_reg, #4h ; test UART flag
 nop
 nop
 bc exit_norm, ntc ; if not transmitting then just exit
 bitf @_tx_datalo, #1h ; what is lsb?
 ld @_tx_datalo, A ; load tx_data
 add @tx_datahi, 16, A
 xc 1, tc ; if lsb=1 set xf=1
 ssbx xf
 xc 1, ntc
 rsbx xf ; if lsb=0 set xf=0
 stl A, -1, @_tx_datalo ; store low portion of tx out with shift
 ; right of one
 sth A, -1, @tx_datahi ; store hi portion of tx out with shift
 ; right of one

*******************Exit Routines from timer isr******************
* Normal exit routine *
* Invalid start bit detected *
* End of rcv data routine *
* End of tx data routine *

*********Normal Exit routine*************************************
exit_norm: cmpm @_UART_count, #stop+start_bits+par_bits+data_bits-1
 ;test if final bit
 nop
 nop
 cc exit_final, tc ; if final bit exit
 Addm #1, @_UART_count ; update counter
restore: ssbx cpl ; reset cpl=1 for c program
 popm AG ; restore accumulator A contents and status
 popm AH
 popm AL
 popm ST0
timer_end: rete ; return to main program
 nop
 nop
*********Invalid start bit************************************
exit_now: bitf @_UART_reg, #4h ; What is UART bit set to?
 stm #tcr_setup, TCR ; stop timer by writing a 1 to tss in tcr
 xorm #1h, @_UART_reg ; reset RCV flag
 xc 2, tc ; if this was a delayed tx and uart=1
 xorm #0ah, @_UART_reg ; reset txdelay bit, and uart bit!
 st #9h, *(IMR) ; enable int0 and timer interrupts (timer
 ; stopped)
 b restore ; exit routine
 nop
 nop
*************Final Bit exit Routine
exit_final: bitf @_UART_reg, #1h ; check rcv bit
 ld @_rcv_datalo, A
 add @rcv_datahi, A
 cc end_rcv_routine, tc
 nop
 nop
 bitf @_UART_reg, #4h ; check uart bit
 stm #tcr_setup, TCR ; stop timer by writing a 1 to tss in tcr
 nop

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 24

 xc 2, tc
 xorm #6h, @_UART_reg ; reset TX and UART flags
 ldm IFR, A ; load interrupts pending
 nop
 nop
 and #1h, A ; get rid of int0 pending interrupts
 stlm A, IFR ; clear all pending interrupts
 st #9h, *(IMR) ; enable int0 (timer still active but stopped)
 call _transmit_delay ; loop back with a transmit delay call
 nop
 nop
 ret ; restore saved registers
 nop
 nop

******************end rcv data routine***********************

end_rcv_routine:
formatting xor #stop_or, A ; get rid of stop bits

******************Parity Bit Routine********************
** only compiled if parity set at compile time **
**
 .if parity != 0
 call parity_calc ; does this match with the
 ; type of parity expected?
 bitf @_parity_value, #1h ; check parity value
 ld @_rcv_datalo, A ; load rcv_data to edit out parity,
 add @rcv_datahi, 16, A ; stop, start
 stl A, -(start_bits+data_bits), @parity_bit
 ; store parity bit
 ;to lsb in parity_bit
 .if parity = 1 ; if odd parity & paritycalc is 0
 cc parity_error, ntc ; then call error
 .elseif parity = 2 ; if even parity & parity bit is 1
 cc parity_error, tc ; then call error
 .endif
 bitf @parity_bit, #1h ; check parity bit value
 xor #stop_or, A ; get rid of stop bits
 nop
 xc 2, tc ; if parity bit=1 then get rid of it
 xor #parity_or, A
 nop
 .endif

**

 stl A, -start_bits, @_rcv_datapass ; put unformatted data word
 ; in rcv location

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 25

********************Added for debugging******************************
 stl A, -start_bits, @_tx_datapass ; load tx data with just
 ; received data
 stl A, -start_bits, *AR3+% ; error checking routine –
 ; putting data into a
 ; memory location so it can
 ; be checked later

**

 xorm #1h, @_UART_reg ; reset RCV flag
 ret
 nop
 nop

************************ Timer setups**********************

timerhalf: stm #tcr_setup, TCR ; stop timer by writing a 1 to tss in tcr
 stm #half_bit_time, PRD ; load timer period
 stm #tcr_timer_go,TCR ; start timer
 ret
timerwhole:
 stm #tcr_setup, TCR ; stop timer by writing a 1 to tss in tcr
 stm #whole_bit_time, PRD ; load timer period
 stm #tcr_timer_go,TCR ; start timer
 ret

***************Parity calculation routine*****************
** only compiled if parity set at compile time **
**
parity_calc: .if parity != 0
 .if N_par = 32
 xor A, 16, A
 .endif
 .if N_par >= 16
 xor A, 8, A
 .endif
 .if N_par>= 8
 xor A,4, A
 .endif
 .if N_par>=4
 xor A, 2, A
 .endif
 .if N_par>=2
 xor A, 1,A
 stl A, -N_par+1, @_parity_value ; load parity status
 ; into lsb
 .endif
 ret
 nop
 nop
 .endif

********************Parity error routine*************************

parity_error: xorm #10h, @_UART_reg ;set parity error flag
 ret

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 26

*****************Transmit Routine********************************
* Data passed in mem location tx_datapass *
* The routine will check if the tx flag is set and wait until *
* the tx flag is reset so transmit data won't be overwritten *
* before it is sent. If it is a delayed transmit the routine *
* will just format the data and return to the main program until*
* the next receive interrupt occurs. If it is a transmit the *
* registers for transmit and the timer are setup and started. *
* *
* If a transmit is started, then the device can not receive. *
* Full-duplex operation occurs only when a transmit delayed is *
* called since there is only one timer. *

_transmit: pshm AL ; context save since Accumulator A used
 pshm AH
 pshm AG
 pshm ST0
 rsbx cpl ; enable direct addressing mode
 ld #_UART_reg, DP ; set DP for addressing

busy: BITF *(_UART_reg), #4h ; What is UART_flag set to?
 nop
 nop
 BC busy, tc ; if UART=1 then can not overwrite data

tx_set BITf @_UART_reg, #2h ; What is TX_flag set to?
 nop
 nop
 BC tx_set, tc ; if tx = 1 then can not overwrite data
 xorm #2h, @_UART_reg ; if tx = 0 set TX=1

format:
*******************Parity formatting of tx data***********
** only compiled if parity set at compile time **
**
 .if parity != 0
 ld @_tx_datapass, A ; load temp data for parity check
 call parity_calc ; calculate parity_value
 .endif
**

 ld @_tx_datapass, start_bits, A ; load temp data (offset by
 ; start_bit)
 nop
 stl A,-1, *AR3+% ; added for debugging
 add #stop_or, A ; add stop bits

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 27

**********************Add parity bit**********************
** only compiled if parity set at compile time **
**
 .if parity != 0
 bitf @_parity_value, #1h ; check parity value
 nop
 nop
 .if parity = 1
 xc 2, ntc
 add #1h, start_bits+data_bits, A ; add a 1 to make
 ; odd parity
 ; add #parity_or, A
 ; add a 1 to make
 ; odd parity
 .elseif parity =2
 xc 2, tc
 add #1h, start_bits+data_bits, A ; add a 1 to make
 ; even parity
 ; add #parity_or, A
 ; add a 1 to make
 ; even parity
 .endif
 .endif

 bitf @_UART_reg, #8h ; is this a delayed transmit?
 sth A,@tx_datahi ; store out data for transmit
 stl A,@_tx_datalo
 stl A, *AR3+% ; added for debugging
 ; return to user program if delayed
td_end: bc tx_end, tc ; transmit - wait for rcv in terrupt
 nop
 nop
waiting: BITf @_UART_reg, #1h ; what is RCV flag?
 nop
 nop
 BC waiting, tc ; if recieving have to wait until done
 ; can insert user program if desired
 st #8h, *(IMR) ; disable hw_int0, timer enabled
 call timerwhole ; setup timer for 1 bit and start
 xorm #4h, @_UART_reg ; set UART=1, going to transmit
 st #0, @_UART_count ; initialize UART_count
tx_end: ssbx cpl ; reset cpl=1
 popm st0 ; restore contents and status
 popm ag
 popm ah
 popm al
t_end ret
_transmit_delay: xorm #8h, *(_UART_reg) ; enable delay bit (this is a
 ; delayed tx)
 B _transmit
 nop
 nop

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 28

*********************Receive routine*************************************
*This is the hw_int routine that will be executed when a start *
*bit is detected. The routine checks the status of transmit and starts *
*the timer for a half bit time so the program can be sure a true start *
*bit not a glitch was detected. It also resets the counter, and *
*receive data locations. *
* *
*If the device is finishing a transmit routine, the TX and UART flags *
*will be reset. If the transmit_delay flag is set, the routine will *
*setup for a transmit during the receive. *

_hw_int0: pshm st0 ; context save
 rsbx cpl ; enable direct addressing mode
 ld #_UART_reg, DP ; setup DP for addressing
 bitf *(_UART_reg), #8h ; is txd set?
 call timerhalf ; setup and start time for half bit
 xc 2, tc ; if delayed transmit
 xorm #0ch, @_UART_reg ; reset TXD bit and set UART bit

end: ST #0, @_UART_count ; initialize UART counter
 st #8h, *(IMR) ; disable int0
 st #0, @_rcv_datalo
 st #0, @rcv_datahi
 xorm #1h, @_UART_reg ; set RCV flag = 1
 ; return with timer enabled
 ssbx cpl
 popm st0 ; context restore
hw_end: rete

Application Report
SPRA555

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 29

 TI Contact Numbers

INTERNET

TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS

Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com

Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3344-5311
Domestic 0120-81-0026

Fax
International +81-3-3344-5317
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Implementation of a Software UART on TMS320C54x Using General-Purpose I/O Pins 30

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright  1999 Texas Instruments Incorporated

