
Application Report
SPRA601 - November 1999

1

Code Composer Studio’s  Command Window
Jeff Sherman Digital Signal Processing Solutions

ABSTRACT

With the introduction of Code Composer and Code Composer Studio, Texas Instruments
(TI) has provided a Command Window plug-in to ease the transition for customers who are
familiar with the TI debugger’s command line entries, legacy setup, and test scripts. Due to
some inherent differences in the products some of the old TI Debugger commands were not
duplicated in the Command Window.

This document describes:

• Code Composer Studio’s Command features

• GEL – Code Composer Studio’s scripting language

• Using GEL

• TI Debugger to GEL Command mapping

• Code Composer Studio’s Command Window features

• Using the Command Window

• Differences between the Command Window and the TI Debugger scripts

• How to transition TI Debugger script files

This document assumes the user has knowledge of the TI Debugger script commands and a
general knowledge of Code Composer Studio.

Contents

1 Introduction 3.

2 Code Composer’s GEL Command Features 3.
2.1 GEL language 3.
2.2 GEL Functions 3.
2.3 Entering GEL commands 4.
2.4 Auto-Executing GEL Functions at Startup 5.
2.5 Built-in GEL Commands 5.
2.6 TI to GEL Command Mapping 7.

3 Command Window 9.

SPRA601

2 Code Composer Studio’s Command Window

4 Command Window Features 10.
4.1 Starting the Command Window 10.

5 On-line Help 10.
5.1 Supported Commands 10.
5.2 New Commands 12.
5.3 Command Differences 13.
5.4 Unsupported Commands 13.

6 Moving TI Debugger Scripts to Code Composer Studio 14.
6.1 Translating to Code Composer Studio Command Window 14.
6.2 Logical Expression Issue 15.
6.3 Other Porting Issues 15.

7 Conclusion 16.

List of Figures

Figure 1. GEL Toolbar 4.
Figure 2. GEL Command Line Dialog Box 4.
Figure 3. Command Window Plug-in Window 9.

List of Tables

Table 1. GEL Commands 5.
Table 2. Target Manipulation Commands 7.
Table 3. Watch Commands 7.
Table 4. Memory Commands 7.
Table 5. Take File Commands 8.
Table 6. Miscellaneous Commands 8.
Table 7. Descriptions of the Partial Mappings 9.
Table 8. Supported Commands 10.
Table 9. New Commands 12.
Table 10. Command Differences 13.
Table 11. Unsupported Commands 14.
Table 12. Converting TAKE Files 14.

SPRA601

3 Code Composer Studio’s Command Window

1 Introduction

Moving to Code Composer Studio from the TI Debugger requires changes to both command
entry and script execution. While the Command Window eases this transition, it does not
eliminate it.

Before transitioning your scripting files to Code Composer Studio you will need to decide on
what scripting method you will use. Code Composer Studio has an integrated scripting
language called GEL – General Extension Language. GEL is ’C’ like and offers many new
features that were not available in the TI Debugger. For example, you can create menu items,
input dialogs, and have them execute on breakpoints, etc. While GEL offers many new features,
you will need to write your existing script files into the GEL scripting language. The number,
size, and complexity of your files will determine the effort required.

The other scripting method is to use the Command Window plug-in and its implementation of the
TI Debugger commands. The Command Window is very similar to the TI Debugger Command
Window in terms of appearance and performance. The script files require minimal changes and
your familiarity of the commands should make the transition easy.

There is also the option of mixing these two scripting mechanisms. GEL commands can be
called from within the Command Window, but the Command Window commands are not
recognized outside of the Command Window.

The following sections discuss GEL scripting followed by a discussion of the Command Window
scripting. The GEL section maps TI Debugger commands to its corresponding GEL command.
The Command Window section discusses the steps required to convert scripts from the TI
Debugger to the Command Window and all the issues and discrepancies.

2 Code Composer’s GEL Command Features

2.1 GEL language

GEL is an interpretive language similar to C that lets you create functions to extend Code
Composer Studio’s usefulness. You create your GEL functions using the GEL grammar and
then load them into Code Composer Studio. With GEL, you can access target memory locations
and add options to Code Composer Studio’s GEL menu. GEL is particularly useful for
automated testing and user workspace customization. You can call GEL functions from
anywhere that you can enter an expression. You can also add GEL functions to the Watch
window so they execute at every breakpoint.

2.2 GEL Functions

There are several built-in GEL functions that allow you to control the state of the target, access
target memory locations, and display results in the output window.

All GEL built-in functions are preceded with the prefix GEL_ to ensure that they are not confused
with user-defined GEL functions. If you wish to avoid preceding all calls to GEL built-in functions
with GEL_ you can define functions with your own names and call the GEL built-in functions
within your functions. For example, the following GEL function allows you to call the
GEL_Load() built-in functions just by typing-in Load.

SPRA601

4 Code Composer Studio’s Command Window

Load(a)
{
 GEL_Load(a);
}

2.3 Entering GEL commands

All built-in GEL functions and user-defined GEL functions consisting of GEL statements can be
invoked directly from the GEL toolbar. This toolbar consists of an expression field and an
Execute button (icon). To invoke any GEL statement or user-defined function, enter the
appropriate function call in this field box and press Execute to evaluate the expression. The
expression dialog box maintains a history of the most recently invoked GEL
statements/user-defined functions, any of which can be selected by using the scroll buttons.

Figure 1. GEL Toolbar

To access this toolbar, select View→GEL Toolbar from the menu. The scrollable list in the GEL
toolbar contains a history of the most recently executed GEL functions. To execute a previously
used command, select the command and press the Execute button.

The GEL Command Line dialog also provides a convenient way of entering expressions or
executing GEL functions. You can execute any of the built-in GEL functions or you can execute
your own GEL functions that have been loaded.

Figure 2. GEL Command Line Dialog Box

To access this dialog, select Edit→Edit Command Line from the menu. When the dialog box is
displayed enter an expression or GEL function in the Command field and click OK to execute the
command.

The following examples display commands that can be entered in the GEL toolbar or the GEL
command line dialog:

Modify variables by entering expressions:

PC = c_int00

Load programs with built-in GEL functions:

GEL_Load(”c:\\myprog.out”)

Run your own GEL functions:

SPRA601

5 Code Composer Studio’s Command Window

MyFunc()

2.4 Auto-Executing GEL Functions at Startup

GEL functions allow you to configure the development environment according to your needs.
You may want to set up your environment each time you start Code Composer Studio. Instead
of loading your GEL file using File→Load Gel each time and then executing the GEL function,
you can pass a GEL file name to Code Composer Studio on startup. This informs Code
Composer Studio to scan and load the specified GEL file. It may not be enough to just load the
GEL file; you may also want to execute the function as well. You can do this by naming one of
your GEL functions in the specified file StartUp(). When a GEL file is loaded into Code
Composer Studio, it searches for a function defined as StartUp(). If it finds this function in the
file, it automatically executes it.

To automatically load and execute a GEL function you place the filename in the command line of
the Properties dialog box of the Code Composer Studio icon. Detailed instructions on doing this
are available in the Code Composer Studio help file.

The following example shows a typical GEL file that you may load at startup. In this example,
each time you start Code Composer Studio the memory mapping feature is turned on and the
function LoadMyFile() is added to the menu bar.

StartUp()
{
 /*Everything in this function will be executed on startup*/
 /*turn on our memory map*/
 GEL_MapOn();
 GEL_MapAdd(0, 0, 0xF000, 1, 1);
 GEL_MapAdd(0, 1, 0xF000, 1, 1);
}
dialog LoadMyFile()
{
 /* load my coff file, and start at main */
 GEL_Load(”myfile.out”);
 GEL_Go(main);
}

2.5 Built-in GEL Commands

The following table lists the available built-in GEL functions.

Table 1. GEL Commands

GEL Command Description

GEL_Animate Start animating

GEL_BreakPtAdd Add a new breakpoint

GEL_BreakPtDel Delete an existing breakpoint

GEL_BreakPtReset Delete all breakpoints

GEL_CloseWindow Close an existing output window

GEL_Exit Close the active control window

SPRA601

6 Code Composer Studio’s Command Window

Table 1. GEL Commands

GEL Command Description

GEL_Go Run target to specified point

GEL_Halt Halt the target

GEL_Load Load a COFF file

GEL_MapAdd Add a memory map

GEL_MapDelete Delete a memory map

GEL_MapOn Enable memory mapping

GEL_MapOff Disable memory mapping

GEL_MapReset Clear the memory map

GEL_MemoryFill Fill a block of memory

GEL_MemoryLoad Load a block of memory from a file

GEL_MemorySave Save a block of memory to a file

GEL_OpenWindow Open an output window

GEL_PatchAssembly Patch memory with specified assembly instructions

GEL_ProjectBuild Build the current project

GEL_ProjectLoad Loads the specified project

GEL_ProjectRebuildAll Completely rebuild the current project

GEL_Reset Reset the target

GEL_Restart Reset PC to program entry point

GEL_Run Start executing the target

GEL_RunF Start executing and disconnect from the target

GEL_SymbolLoad Load symbols only

GEL_System Execute the ‘system’ command

GEL_TargetTextOut Output formatted target string

GEL_TextOut Print text to output window

GEL_WatchAdd Add expressions to the watch window

GEL_WatchDel Delete expressions from the watch window

GEL_WatchReset Delete all expressions from the watch window

GEL_XMDef Define extended memory ranges (C5000 targets only)

GeL_XMOn Enable extended memory mapping (C5000 targets only)

SPRA601

7 Code Composer Studio’s Command Window

2.6 TI to GEL Command Mapping

The following tables show a mapping of TI Debugger commands to the corresponding Code
Composer Studio GEL command. The table only shows the commands that can be mapped.
Some TI Debugger commands do not have corresponding GEL commands and vice-versa.

The ‘Mapping’ column in the tables indicates if the GEL command fully supports the TI
Debugger command or partially supports it. A full explanation is shown in a table following the
commands.

Table 2. Target Manipulation Commands

TI Command Description GEL Command Mapping

BA Add software breakpoint GEL_BreakPtAdd Full

BD Delete software breakpoint GEL_BreakPtDel Full

BR Reset software breakpoints GEL_BreakPtReset Full

GO Run to specified address GEL_Go Full

HALT Halt target system GEL_Halt Full

LOAD Load a target object file GEL_Load Full

RESET Reset target system GEL_Reset Full

RESTART Reset PC to program entry point GEL_Restart Full

RUN Run target program GEL_Run Partial

RUNF Free run the target GEL_RunF Full

SLOAD Load symbol table GEL_SymbolLoad Full

Table 3. Watch Commands

TI Command Description GEL Command Mapping

WA Add expression to watch window GEL_WatchAdd Partial

WD Delete expression from watch window GEL_WatchDel Partial

WR Clear/close watch window GEL_WatchReset Partial

Note: Partials since the GEL commands do not support multiple windows.

Table 4. Memory Commands

TI Command Description GEL Command Mapping

FILL Fill memory with a value GEL_MemoryFill Full

MA Add memory block to map GEL_MapAdd Partial

MAP Enable/disable memory mapping GEL_MapOn,
GEL_MapOff

Full

MD Delete memory block from map GEL_MapDelete Full

SPRA601

8 Code Composer Studio’s Command Window

MR Reset memory map GEL_MapReset Full

MS Save memory block to a file GEL_MemorySave Full

PATCH Modify program code GEL_PatchAssembly Full

Table 5. Take File Commands

TI Command Description GEL Command Mapping

ECHO Echo a string to display area GEL_TextOut Full

IF / ELSE
ENDIF

Conditionally execute debugger commands If / else Full

LOOP
ENDLOOP

Loop through debugger commands While Full

Table 6. Miscellaneous Commands

TI Command Description GEL Command Mapping

QUIT Exit debugger GEL_Exit Full

SYSTEM Run a DOS command GEL_System Partial

SPRA601

9 Code Composer Studio’s Command Window

The following table shows the differences between the TI Debugger commands and the Code
Composer Studio commands listed above as being “Partial”.

Table 7. Descriptions of the Partial Mappings

TI Command GEL Command Difference

MA GEL_MapAdd If the GEL_MapAdd command defines a “range” that overlaps an
existing range the attributes of the new range take precedence in
the memory map. The TI Debugger would ignore the new range.

RUN GEL_Run The GEL_Run command doesn’t support executing “count”
instructions. Run allows an optional “expression” parameter,
whereas GEL_RUN only allows an optional “condition”
parameter.

SYSTEM GEL_System Both allow you to send a command to the Operating System,
however the optional parameters of each are quite different. The
GEL_System command allows you to pass additional parameters
with the OS command (actually a formatted string) via format
specifiers. If you use the TI “system” command with no
parameters, the debugger opens an interactive system shell and
displays an OS prompt. Also, if you supply an OS command to
the TI “system” command, you can also supply an optional “flag”
parameter to tell the debugger whether or not it should hesitate
after displaying the result of the OS command.

WA
WD
WR

GEL_WatchAdd
GEL_WatchDel
GEL_WatchReset

The GEL watch commands do not allow you to open named
watch windows. The TI Debugger watch commands allow an
optional “window name” parameter.

WR GEL_WatchReset the WR command deletes all items from a watch window and
closes the window, whereas the GEL_WatchReset command
only clears all expressions from the watch window.

3 Command Window

The following sections provide information about the use, features and valid commands that are
available in the Code Composer Studio Command Window plug-in.

Figure 3. Command Window Plug-in Window

SPRA601

10 Code Composer Studio’s Command Window

4 Command Window Features

4.1 Starting the Command Window

The Command Window plug-in is started by selecting Tools–>Command Window from the Code
Composer Studio menu.

To Enter a Command:

You must first give the Command Window focus by clicking anywhere on the Command Window
except the Execute button. This will place the cursor in the command field for entering the
command. Previous commands can be recalled by using the up/down arrow keys.

When entering a command, right-click in the Command field to open the context menu. The
editing functions Undo, Cut, Copy, Paste, Delete, and Select All are available.

Any output generated by the debugger appears in the output section of the Command Window
directly above the Command field.

To Execute/Halt a Debugging Command:

Click the Execute button to execute a debugging command such as “run”. Notice that the label
on the button changes to Halt when your program is running.

Click the Halt button to stop the execution of your program.

5 On-line Help

The on-line help file can be accessed in one of several ways:

• Press F1 while the Command Window has focus.

• Enter HELP in the command field to display general help information.

• Enter HELP <cmd> in the command field to display help about a single command.

• Select Help–>Tools–>Command Window from the menu.

5.1 Supported Commands

The commands listed in the following table are TI Debugger commands supported in the Code
Composer Studio Command Window plug-in. Some of these commands have slight differences
from the TI Debugger implementation, see Table 10 ‘Command Differences’ for details.

Table 8. Supported Commands

Command Command Description

?, EVAL, E Evaluate an expression

ALIAS, UNALIAS Define custom command string

BA, BD, BL, BR Breakpoint control (add, delete, list, reset)

CD, CHDIR Change directory

SPRA601

11 Code Composer Studio’s Command Window

Table 8. Supported Commands

Command Command Description

CLS Clear output section of Command Window

DIR List directory contents

DISP Display a C structure

DLOG Create a log file

EL, ECR, ECS, EE, ED, EB, ER C6x analysis event commands

ECHO Display a string to Command Window output section

FILE Display a text file

FILL Fill memory

GO Run to specified address

HALT Halt the target system

HELP Display command information

IF, ELSE, ENDIF TAKE file condition commands

LINE Display specified line in file

LOAD Load an executable program

LOOP, ENDLOOP TAKE file looping commands

MA, MD, MR, ML, MAP Memory map commands (add, delete, reset, list, enable)

MC, MI Connect simulated I/O port to a file

MS Save memory block to a file

NEXT, CNEXT Single step the program

PATCH Change an assembly instruction

PAUSE Stop TAKE file execution

PINC, PIND, PINL Connect an input file to an interrupt pin

PROMPT Change Command Window prompt

QUIT Exit debugger

REALTIME Update debugger in realtime

RELOAD Reload program

RESET Reset target system

RESTART, REST Reset PC to program entry point

RETURN, RET Return to function’s caller

RUN Run the program

SPRA601

12 Code Composer Studio’s Command Window

Table 8. Supported Commands

Command Command Description

RUNB Run the program counting cycles

RUNF Disconnect from target system

SCONFIG Load workspace

SLOAD Load symbol table

SOUND Enable error beeping

SSAVE Save workspace

STEP, CSTEP Single step to program

STEPCYCLE Step one cycle at a time

STOPMODE Update the debugger after halting

SYSTEM Execute OS command

TAKE Execute a batch file

UPDATE Rate to refresh in realtime mode

USE Add directories to search

VERSION Display current debugger information

WA, WD, WR Watch commands (add, delete, reset)

5.2 New Commands

The commands listed in the following table have been added. Their use and description can be
found in the on-line help file for the Command Window plug-in.

Table 9. New Commands

Command Command Description

ABORT Terminates the processing of the current TAKE file.

ABORTALL Terminates the processing of all TAKE files.

FILES Displays a list of all the currently opened source files.

OUTPUTLINES Set the maximum number of lines to display in the command output window.

STEPON Enables single-stepping of the script file.

STEPOFF Disables single-stepping of the script file.

TIME Displays the current time and date.

IFPROC Compares the target processors’ device number to the parameter.

FC / FCX Compare two files line by line and report any differences.

SPRA601

13 Code Composer Studio’s Command Window

5.3 Command Differences

The commands listed in the following table behave in a different manner than their original TI
Debugger counterpart. The differences have been minimized, but they should be considered
during the porting of existing script files to the Code Composer Studio environment.

For commands that list a difference of ‘Logical Expression’, refer to the section called ‘Logical
Expression Issue’ for details.

Table 10. Command Differences

Command Difference from TI Debugger Command

CNEXT Steps through assembly code depending upon Code Composer Studio’s mode.

CSTEP Logical Expression. Will step through assembly code depending upon Code
Composer Studio’s mode.

DISP Acts like the WA command does not accept filenames.

LOOP Logical Expression.

MS The default extension is .out instead of .obj, dumps COFF format only for .obj
files; hex for all other extensions.

NEXT Logical Expression.

RELOAD Will also reload the symbols.

RUN Logical Expression.

SCONFIG Loads a Code Composer Studio workspace defaulting to ’init.wks.’ Disabled
within TAKE files.

SSAVE Saves a Code Composer Studio workspace defaulting to ’init.wks.’

STEP Logical Expression.

SYSTEM ’flag’ is not used, output of command goes to a Code Composer Studio window.

WA Ignores the window parameter.

WD Ignores the window parameter, the index parameter must be changed to be the
expression specified in the ’wa’ command.

WR Ignores the window parameter.

5.4 Unsupported Commands

The commands listed in the following table are not supported in the Code Composer Studio
Command Window plug-in. Some of these commands may be implemented in the future but
many are no longer useful within the Code Composer Studio GUI environment.

SPRA601

14 Code Composer Studio’s Command Window

Table 11. Unsupported Commands

Command Types TI Debugger Commands

Window Control BORDER, COLOR, MOVE, SCOLOR, SIZE, WIN, ZOOM

Profile PF, PQ, PR, PROFILE, SA, SD, SL, SR, VAA, VAC, VR

Window Display ADDR, CALLS, DASM, FUNC, MEM

Mode Changing ASM, C, MIX

Miscellaneous SETF, WHATIS

6 Moving TI Debugger Scripts to Code Composer Studio

6.1 Translating to Code Composer Studio Command Window

Translating old TI Debugger command scripts to Code Composer Studio’s Command Window
scripts requires some modifications. While the changes have been kept to a minimum, some
are required in most cases. The following steps should be followed:

1. Make a copy of all the script files.

2. Convert all register names to uppercase. This may be the largest change required. Note
that in Code Composer Studio all register names are uppercase . This is true for GEL
commands, watch expressions, etc.

3. Remove all unsupported commands as listed in the table “Unsupported Commands.” This
step is optional, when the Command Window detects one of these commands it will
display a warning, but will not halt processing.

4. Look at all the commands listed in the table “Command Differences” for possible changes
that may be required. In some cases you may need to change the method of doing
something whereas in other cases no change will be required.

5. Test the modified script files. For regression tests it is very important that you validate that
the changed script still performs as expected.

The following table illustrates the conversion process. The script on the left is from the old TI
Debugger and its converted equivalent is on the right. All the elements that needed to be
changed have been highlighted.

Table 12. Converting TAKE Files

Old TI Debugger Script New Command Window Script

RESET
MR
MA 0,1000,RAM
LOAD sample.out
BA trans
BA exit
BL
WA a1,x,,WINDOW1
LOOP (pc != exit)
 RUN
 ?pc
ENDLOOP

RESET
MR
MA 0,1000,RAM
LOAD sample.out
BA trans
BA exit

WA A1,x
LOOP (PC != exit)
 RUN
 ?PC
ENDLOOP

SPRA601

15 Code Composer Studio’s Command Window

6.2 Logical Expression Issue

Several of the TI Debugger commands allow you to enter a parameter that will be used as a
’count’ or a ’condition’ when executing the command. For example, the STEP command allows
an optional parameter of this type. Below are the possible interpretations of the parameter.

STEP Step the target once
STEP 100 Step the target 100 times
STEP PC!=MAIN Step the target until we get to ’main’

To determine a logical TRUE expression, the expression result must evaluate to ‘1’ AND a
logical operator must be used in the expression. The logical operators are “!”, “==”, “!=”, “<”, “>”,
“>=”, “<=”, “&&”, and “||”.

STEP 1 Count value of one.
STEP 1==1 Logical expression that is always TRUE.
STEP 1+1 Count value of two.
STEP 1+(1==0) Intention is a count value of one, but will be interpreted

as a logical expression since the two rules are true.

This typically is not a problem, yet you should be aware of the potential.

6.3 Other Porting Issues

• If the Command Window is saved as part of a Code Composer Studio workspace it will be
reloaded when the workspace is loaded. The Command Window will then try to execute the
init.cmd or siminit.cmd script file. The init.cmd file will execute prior to any GEL StartUp()
functions that may also have been loaded.

• DLOG created files contain the same information as the old TI Debuggers, but the formatting
may be slightly different. For example, spacing may be different or the directory-listing
format may be different. This becomes an issue if you use a file compare utility to verify
correctness of regression tests. Either have the file compare ignore spaces or re-verify the
log file and use that as your new ’golden’ file.

• GEL commands may be executed from the command window by using the ’?’ command and
enclosing the entire GEL command within double quotes: ?”GEL_Run(”PC!=main”)”

• The following command for a C6x target returns FALSE ’?B0==0x80000000’ even if B0 is
0x80000000. The problem is correctly processed as ’?(unsigned)B0==0x80000000’. This is
due to a difference in expression analysis used between Code Composer Studio and the TI
Debugger.

• The concept of Modes (C, ASM, MIX) doesn’t exist in Code Composer Studio. The TI
Debugger commands that switched modes have been removed. In addition, the TI
Debugger commands that acted differently depending upon the current mode of the TI
Debugger will now act according to Code Composer Studio’s standard. For example, the
STEP command would either step assembly code or C code based upon the mode of C or
ASM, now its based upon Code Composer Studio’s mode set in the View/Mixed Source
menu.

SPRA601

16 Code Composer Studio’s Command Window

• The D_OPTIONS environment variable is not supported.

• The D_DIR environment variable is used. Therefore, during startup of the Command
Window all the directories in the D_DIR environment variable will be searched if necessary
to locate the ‘init.cmd’ file. Be aware that other TI Debuggers may have already defined it.

7 Conclusion

Moving to Code Composer Studio from the TI Debugger requires some changes to both
command entry and script execution. While the Command Window eases some of these
required changes, it does not eliminate them.

For command line entry the user has three options; use the Command Window, use the GEL
command line, use GUI input. Your choice will depend upon what you are most efficient in
using.

For script files the user has three basic options; convert the script files to GEL scripts, convert
the script files to Command Window scripts, or a combination of the two. Users with many
legacy script files may prefer to use the Command Window approach to ease conversion and
relearning.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  1999, Texas Instruments Incorporated

