{? TEXAS Application Report
INSTRUMENTS SPRAG26 - March 2000

Multichannel Assembly Code Processing
on C5000 O DSP Family Devices

Servanne Dauphin Wireless Communications

ABSTRACT

This document describes the multichannel processing methodology used in multichannel
algorithm implementations available for wireless applications where the optimization level is
very high. This efficient and reliable processing methodology can also be used in any domain
where itis necessary to run several instances of the same algorithm. With little overhead, this
processing methodology adds value to fully optimized assembly algorithms, and takes
advantage of some C50000 DSP architecture features that allow you to write multichannel
assembly code with almost no impact on code size or performance in comparison with
single-channel code versions.

This document describes how to use the methodology to write multichannel assembly code,
provides examples of multichannel processing implementation on the TMS320C54x[] DSP,
and describes how to avoid some common problems related to writing multichannel code.

Contents
1 Multichannel Code ProCeSSING ...ttt e e e e 2
1.1 DP-Referenced Direct Addressing DescCriptiont 2
1.2 Partitioning Of Datattt e 3
1.3 Multichannel Processing Implementation 4
1.4 Impact of Multichannel Processing on Code Performance i, 5
2 Implementation of a Multichannel Application 6..
2.1 Calling a Multichannel Application i e e 6
2.2 Writing the Initialization RoOUtINE 7
2.3 Using Pointersinthe Assembly Code i e e e 7
2.4 Using Indirect Addressing on Data Page Variables 8
2.5 Common Problems When Writing Multichannel Code 9
3 Converting a Single-Channel Application to a Multichannel Application ~ 10...
3.1 Analyzing the Data in MemOIY e 10
3.2 Implementing the Changes e 10
3.2.1 Valuesin DataPage Variables i 11
3.2.2 Values in MEMOTY AITAYS . . . oottt e e e e e e e e e e e e 11
4 CONCIUSION . 12

C5000 and TMS320C54x are trademarks of Texas Instruments.

{'? TEXAS

SPRA626 INSTRUMENTS

g b~ wWwNPRE

11

List of Figures

DP-Related Direct Addressing MechaniSm et ettt 3
Multichannel Memory Organization and Initialization. 5

List of Tables

Performance Comparison—Single-Channel and Multichannel Modes 5
Conversion Between Single-Channel and Multichannel Versions 11

List of Examples

INItIAliZatioN PrOCESS 6
Macro Defined for Initialization 7
LDPTR Macro Loading the Array Address in an Auxiliary Register 7
LDPTA Macro Loading the Array Address in an Accumulator coiiinn... 8
DefiNiNg @ POINtEr 9

Multichannel Code Processing

With increased digital signal processor (DSP) performance, new applications have emerged
that require processing the same algorithm for several instances on the same device. This
multichannel processing ability is particularly necessary for base station applications, or
modem pools, where each instance of the algorithm does the processing for one
communication channel. Using this multichannel processing saves program memory
because it allows you to run several instances of the same algorithm using the same code.
With its low power consumption and powerful architecture, the Texas Instruments (TI)
C50000 DSP family is well-suited for these telecommunication applications.

The purpose of multichannel code processing is to assign to each instance of the assembly
code (that is, each channel) a unigue memory space containing all the data related to this
instance. Multichannel code processing can easily be implemented on TI C500000 DSPs by
using a specific addressing mode called direct addressing. When using this addressing mode,
the generated address depends on a register value, either the Data Page pointer (DP) or the
Stack Pointer (SP). DP-related addressing is the most convenient method for assembly code;
thus, it is the only mode discussed in this document.

It is possible to assign a unique data page number to each instance of the assembly code to link
it with the corresponding data page. Unfortunately, the size of each data page is limited to 128
words, which is too small for most applications. But, it is possible to overcome this limitation by
using pointers to address large data arrays, which can be located anywhere in memory.

DP-Referenced Direct Addressing Description

When direct addressing is used, only the 7 lower bits of the 16-bit data memory address (DMA)
are encoded in the opcode. When the instruction is executed, the 7 bits are concatenated with
the 9-bit DP (Data Page Pointer), to produce a full 16-bit address, as shown in Figure 1. This
addressing mode divides the memory space in 512 data pages, of 128 words each.

Multichannel Assembly Code Processing

{f’ TEXAS

INSTRUMENTS SPRA626

9 Bits 7 Bits
DP DMA

Select the Select the

Page Offset in

the Page

A\ 4
<
Page 0 Page 1 eoo Page 511

1.2

Figure 1. DP-Related Direct Addressing Mechanism

The generated address can be considered as two parts: the data page number and the offset
value of the variable inside the data page. When the DP value changes, the data page number
changes, but the offset value stays the same. Thus, by changing only the DP value, it is possible
to address a different memory space.

Partitioning of Data

Because the DMA field of the generated address is 7 bits long, the range of memory that can be
addressed in one data page is 128 words long. For most applications, the data does not fit into
this 128-word page. Thus, it is necessary to limit the use of direct addressing for some data, and
to use a different method for other data. This can be done by dividing data into two different
types:

e Variables

Variables are usually addressed individually. They are 1 word long (2 words long for 32-bit
data) and are located in a data page. They are usually addressed using DP-related direct
addressing.

e Arrays

Arrays are usually addressed sequentially. They are usually several words long and are
located in data memory space. They are addressed using indirect addressing.

Multichannel Assembly Code Processing 3

SPRA626

{'f TEXAS
INSTRUMENTS

1.3

In addition to the variable and array data, it is necessary to create pointers that will be used to
keep the start address of the arrays.

Pointers

Pointers are always addressed individually. They are 1 word long and are located in a data
page. They are always addressed using direct addressing. One pointer is associated with
each array. The pointer contains the immediate address of the corresponding array in
memory. Each pointer is initialized at the start of each channel with an address that depends
on the channel number.

Multichannel Processing Implementation

Using the features described in the partitioning of data, it is now possible to implement
multichannel processing for an application using the following rules:

Separate variables and arrays, using the description detailed in Section 1.2, Partitioning of
Data.

Allocate data for the reference channel by performing the following:
— Set the DP to a specific value, DPref.

— Allocate variables in a data page. This data page is called DPref and is used as the
reference data page for this application. All other data pages are generated from this
data page.

— Allocate arrays in memory. These arrays are the reference arrays and are located at
address (start_address_arrays)ref.

— Initialize pointers for the reference channel: (pointer_arrayi)ref = (address_arrayi)ref.

This allocation is performed at link time and associates each data label to a physical address
in memory. At run time, the reference channel does not necessarily need to be activated.
This channel is used to generate the data for all the other channels.

Allocate data for a new channel by performing the following:
— Set the DP to a new value DPn.
— Reserve space in the new data page for variables. Initialize variables if necessary.

— Reserve space in memory for the arrays, located at an offset OFFn from the reference
channel arrays: (start_address_arrays)n = (start_address_arrays)ref + OFFn.

— Initialize pointers for this channel: (pointer_arrayi)n = (address_arrayi)ref + OFFn.

This part can be repeated several times, depending on the number of channels to run.

Figure 2 illustrates the data pages and the memory organization used to implement the
multichannel code processing method. It shows the reference channel data page and arrays,
and how they are used to initialize the pointers of any other channel.

Multichannel Assembly Code Processing

{f’ TEXAS

INSTRUMENTS SPRA626
Data Pages Data Memory
Reference Channel
DP = DPref
) R (start_address_arrays) ref
Pointers] Reference
e » Channel OFFn
Arrays
+ offset
(OFFR)
Channel #n
DP = DP;, (start_address_arrays) p
Channel # n
7 7 »> Arrays
» Pointers — S

1.4

Figure 2. Multichannel Memory Organization and Initialization

Impact of Multichannel Processing on Code Performance

Implementation of multichannel code processing in an application has a very low impact on the
performance of the total code because it uses DP-related addressing, a built-in feature of the
DSP. Implementing the multichannel processing generates the following changes:

* A small increase in code size, mainly due to the initialization of pointers
* Avery small increase in the number of cycles, due to loading pointers with an offset value
* A small increase in data memory size (limited to 128 words per channel) for the pointers

A DSP algorithm performance is usually measured by the number of cycles and by the code
size. An analysis has been performed of the GSM enhanced full rate (EFR) speech codec
implementation on the TMS320C54x[0 DSP generation device. The code size, data memory
size, and number of cycles were measured for the single-channel case and for the multichannel
case. The results are shown in Table 1.

Table 1. Performance Comparison—Single-Channel and Multichannel Modes

Single-Channel Multichannel Increase %

Number of cycles measured |[2850019 2852103 0.07 %
on 10 frames

Code size (in words) 9348 9858 55 %

Data memory (in words) 4191 4262 1.7%

These results show that the overhead due to the implementation of the multichannel code
processing is small. More important, the increase in the number of cycles is near zero.

Multichannel Assembly Code Processing 5

{'f TEXAS
SPRA626 INSTRUMENTS

2 Implementation of a Multichannel Application

The different pieces of assembly code that must be used to write a multichannel application
following the methodology described in Section 1 describe some macros that are useful for a
multichannel implementation and provide some tips to avoid common non multichannel
problems.

A compilation flag, multichannel, can be defined to enable the switch between a single-channel
and a multichannel implementation of the same application. For example, a GSM speech coding
algorithm can be compiled in the single-channel mode if it is used in a mobile station or in the
multichannel mode if it is used in a base station.

The following convention can also be used to define arrays and pointers:
* a_table is an array called table.

* p_table is the pointer in the data page that contains the a_table array address for the current
channel.

2.1 Calling a Multichannel Application

Calling a multichannel application is easy. The only difference between a regular application and
a multichannel application is that you must specify the channel number before calling an
instance of the multichannel application. The channel number corresponds to the DP value for
the channel.

Before calling the application itself, you must run a routine to initialize the pointers with the
correct values. This initialization routine must be provided with the application and requires two
input parameters—the DP number (that is, the channel number) and the offset value between
the arrays of the reference channel and the arrays of the current channel (OFFn).

Example 1 illustrates the initialization process for a TI C54x DSP.
Example 1. Initialization Process

; first channel initialization

LD #pgO, DP ; DP = page number of reference channel
LD #0,B ; BL = offset for reference channel = 0
CALL init_application ; call the initialization routine

: second channel initialization

LD #pgl, DP ; DP = page number of current channel
LD #offl, B ; BL = offset for current channel
CALL init_application ; call the initialization routine

; run application for first channel

LD #pgO, DP ; DP = page number of reference channel
CALL application

; run application for second channel

LD #pgl, DP ; DP = page number of current channel
CALL application

Cb4x is a trademark of Texas Instruments.

6 Multichannel Assembly Code Processing

{9 TEXAS
INSTRUMENTS SPRA626

2.2 Writing the Initialization Routine

In addition to the initialization of the static variables related to the algorithm, this routine must
include the initialization of the pointers used to access the arrays in memory that correspond to
the current channel.

A macro can be defined to facilitate this initialization. Depending on the mode (single-channel or
multichannel), the macro initializes the pointer value using the array address directly or by using
the reference array value and the offset value that corresponds to the current channel.

Example 2 shows a macro defined for initialization on a TI C54xx[] DSP.
Example 2. Macro Defined for Initialization

INITPTR .macro array
f - multi_channel

LD #a :array:;, A ; AL = address of a_array for
; the reference channel
ADD B, A ; AL = AL + OFFn (stored in BL
; when calling init)
STL A, @p_:array: ; p_array = AL
.else
ST #a_:array:;, @p_:array: ;p_array =a_array address
.endif
.endm

Example of usage : INITPTR table

2.3 Using Pointers in the Assembly Code

When an array address is needed in the application code, it is collected using the corresponding
pointer located in the data page that corresponds to the current channel. This can be done with
macros, which load the array address for the current channel in a register or an accumulator,
and eventually add a fixed offset value to access a specific element of the array.

Example 3 shows the LDPTR macro loading the array address in an auxiliary register
(ARO, .. ARY).

Example 3. LDPTR Macro Loading the Array Address in an Auxiliary Register

LDPTR .macro ARRAY, AR, OFFSET
.nolist
if $symlen(OFFSET) =0
.eval 0, OFFSET
.endif
Jist
if - multi_channel
MVDK @p_:ARRAY:, :AR: ; ARx = address of array for
; the current channel

Cb54xx is a trademark of Texas Instruments.

Multichannel Assembly Code Processing 7

{'? TEXAS

SPRA626 INSTRUMENTS

if OFFSET!=0

MAR *+:AR:(OFFSET) : ARX = ARx + OFFSET

.endif

.else

STM #a_:ARRAY:+.OFFSET:, :AR: ; ARx = address of
; reference array + OFFSET

.endif

.endm

In multichannel mode, LDPTR table, AR2, 10 is coded as:
MVDK @p_table, AR2
MAR *+AR2(10)

In single-channel mode, LDPTR table, AR2, 10 is coded as:
STM #a_table+10, AR2

The input parameters to the LDPTR macro are:

e The array name (for example, table)

* The auxiliary register name (for example, AR2)
e An optional offset value (for example, 10)

Example 4 shows the LDPTA macro loading the array address in an accumulator (A, B).

Example 4. LDPTA Macro Loading the Array Address in an Accumulator

2.4

LDPTA .macro array, Acc
Jif multi_codec
LD @p_:array:, :Acc: ; Acc = @p_array
.else
LD #a_:array:, :Acc: ; Acc = #a_array
.endif
.endm

The input parameters to the LDPTA macro are:
e The array name (for example, table)
e The accumulator name (for example, A)

These macros are very useful for writing multichannel code because they allow you the flexibility
to compile the code in single-channel mode and improve the readability of the code.

Using Indirect Addressing on Data Page Variables

Variables located in the data page of each channel should be addressed via DP-related
addressing most of the time. In some cycle-consuming loops, it may be more efficient to
temporarily use indirect addressing on these variables, allowing Xmem/Ymem dual addressing.
This means that the full 16-bit address of the variable (which depends on the DP value) must be
stored in one of the auxiliary registers.

An efficient way to do indirect addressing is to define a pointer that keeps the start address of
the temporary variables in the data page. This pointer is called p_tempyv, and it is initialized in
the initialization routine using a specific piece of code like that shown in Example 5.

Multichannel Assembly Code Processing

{9 TEXAS
INSTRUMENTS SPRA626

Example 5. Defining a Pointer

2.5

f - multi_channel

LDM STO, A

AND #1FFh, A ;A=DP

STL A, @tempv ; tempv =DP

LD #tempv, A ; A= address of tempv for the reference
; channel
AND #7Fh, A ; A = offset of tempv in the Data Page

ADD @tempv, 7, A ; A=DP<<7 + offset

STL A, @p_tempv ; p_tempv = address of tempv for the current
; channel

.else

ST #tempv, @p_tempv ; p_tempv = address of tempv for the

; reference channel

.endif

The temporary variable, tempv, can be used to store the data that needs to be

addressed via indirect dual addressing :

MVDK @p_tempv, AR2 ; AR2 = address of tempv for the current
; channel

ST #0x8000, *AR2 ; tempv = 0x8000

MAC *AR2, *AR3, A ; Use AR2 to do dual addressing with tempv

Declaring the p_tempv pointer on a temporary variable allows you to save cycles in some critical
loops by using indirect addressing on a data page variable. Otherwise, it would be necessary for
you to declare the temporary variable as an array of 1 word, with the associated pointer, thus
making inefficient use of the data page memory. Furthermore, defining a pointer on a temporary
variable located in the data page allows you to mix DMA addressing and indirect dual
addressing on the same variable, without transferring the value.

For example:

* The piece of code shown in Example 5 could also be written as:

ST #0x8000, @tempv ; tempv = 0x8000

MVDK @p_tempv, AR2 ; AR2 = address of tempv for the current
; channel

MAC *AR2,*AR3, A ; Use AR2 to do dual addressing with tempv

* Without the p_tempv pointer, the same piece of code would be:

ST #0x8000, @tempv ; tempv = 0x8000
LDPTR temp_array, AR2 ; AR2 = address of temp_array of 1 word

LD @tempyv, A ; Transfer the tempv value to temp_array
STL A, *AR2 ; temp_array[0] = tempv
MAC *AR2,*AR3, A ; Use AR2 to do dual addressing with

; temp_array

Common Problems When Writing Multichannel Code

This section lists common problems that you may encounter when writing multichannel
assembly code. Although not exhaustive, this list gives an overview of the most common
situations.

* When writing the code using the proposed syntax, several obvious non-multicodec
associations must be avoided:

Multichannel Assembly Code Processing 9

SPRA626

{'f TEXAS
INSTRUMENTS

3.1

3.2

10

— #a_array: address of a_array for the reference channel only. This can be used only in the
initialization routine (INITPTR).

— #var: address of a variable for the reference channel only. This can be used only in the
initialization routine (for example, init of p_tempv).

— @ARX: This will address the ARX register only if DP = 0.

Never use Dmad addressing (16-bit immediate addressing) with variables or pointers of the
data page. Be careful when using MVDK, MVKD, MVDM, MVMD instructions.

If you must modify the DP value, save it first, and then restore it afterward. Do not use
DP-related addressing in between these tasks.

Do not use the scratch pad (DP = 0) for channel-dependent variables.

The maximum number of variables per data page is 128 words.

— To avoid overflow, declare a memory section of this size at the link and store all the
variable and pointer sections in it.

— The linker provides an error message if the number of variables is too large.

— If the number of variables is too large, try to overlap the variables that allow it in order to
save space. The pointers can be overlapped in the same way as the corresponding
arrays.

Converting a Single-Channel Application to a Multichannel Application

When you convert a single-channel application to a multichannel one, the assembly code is not
the only change. The memory mapping must also be changed to differentiate the variables from
the arrays. This is usually not an easy task because it was not planned from the beginning when
the original code was written. This section describes the different steps to follow for the
conversion, and gives some examples of changes to implement.

Analyzing the Data in Memory

To analyze the data in memory, do the following:

For each data, check which addressing (immediate, direct, indirect addressing, ...) is used in
the program.

Determine if the data should be moved to a Data Page structure (variables) or stay in the
RAM space (arrays). This determination depends on the length of the data and of the
addressing used with it.

Determine the constraints and changes on the memory map (alignments, groups, unions, for
example).

Implementing the Changes

After preparing the changes, you must follow the methodology described here to ensure that
nothing is overlooked.

Multichannel Assembly Code Processing

{9 TEXAS
INSTRUMENTS

SPRA626

3.2.1

322

Values in Data Page Variables

To change values in data page variables, do the following:

Change the section name.

Check that the data is always addressed with DP-related addressing. Make changes if

necessary.

Leave a hole in the original memory to keep the alignment constraints. Optimization can be
performed later with care (for example, using UNION statements in the linker command file
for variables that are not needed at the same time).

Values in Memory Arrays

To change values in data memory arrays, do the following:

Table 2 shows the conversion between single-channel and multichannel processing.

Change the array name (add a_).

Add the pointer declaration.

Replace the instructions, as described in Table 2.

Add the pointer initialization into the initialization routine.

Table 2. Conversion Between Single-Channel and Multichannel Versions

Replace:

With:

STM #aname, ARX

LDPTR aname, ARX

STM #aname+k, ARx

LDPTR aname, ARX, k

MVDM #data, ARX

MVDK @data, ARxX

MVMD AR, #data

MVDK ARx, @data

RPT #n
MVDK *ARx+, #data

PSHM ARy ; if needed
LDPTR data, ARy

RPT #n

MVDD *ARx+, *ARy+
POPM ARy ;if needed

ST #k, *(data)

ST #k, @data

LD *(data), Acc

LD @data, Acc

ADD #array, Acc

.if multi_channel
ADD @p_array, Acc
.else

ADD #a_array, Acc
.endif

Inpage 0: ST #K, T

STM #K, T

Multichannel Assembly Code Processing 11

{'? TEXAS

SPRA626 INSTRUMENTS

4

12

Conclusion

The methodology described in this document is being used in multichannel algorithm
implementations in a variety of products on the market. Multichannel assembly code processing
is efficient and reliable in wireless applications where the optimization level is very high due to
power consumption and cost requirements. This methodology can also be used in any domain
that must run several instances of the same algorithm. With a small overhead, multichannel
assembly code processing adds value to fully-optimized assembly algorithms and makes
optimum use of the C50000C1 DSP family of devices.

Multichannel Assembly Code Processing

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 2000, Texas Instruments Incorporated

