
Application Report
SPRA646 - March 2000

1

Porting a SPOX–KNL V2.2 Application to DSP/BIOS II
Robert Tivy and Arnie Reynoso Software Development System/Semiconductor

ABSTRACT

DSP/BIOS II supports a single set of programming APIs for both BIOS and SPOX–KNL that is
as scalable as possible. In cases where similar APIs exist in both BIOS and SPOX, the BIOS
APIs are used. This may present some incompatibilities between the current BIOS kernel APIs
and their counterparts in SPOX v2.2. This document describes the major incompatibilities and
provides instructions for porting a SPOX–KNL v2.2 application to DSP/BIOS II. For complete de-
tails, please refer to the DSP/BIOS User’s Guide.

Contents

1 Overview 2.

2 System Startup 2.
2.1 SPOX v2.2 2.
2.2 DSP/BIOS II 3.
2.3 DSP/BIOS II Functions that Cannot be Called from Function main() 4.
2.4 Hooking into the Initialization Backplane 4.

3 System Stack 4.

4 Software Interrupts (SWI) 4.

5 Hardware Interrupts (HWI) 5.

6 Memory 6.

7 Streaming I/O and User-Defined Device Drivers (SIO and DEV) 6.
7.1 Required Device Driver Changes 6.
7.2 Streaming I/O Interface Changes 7.

8 HOST I/O (HST) 7.

9 Configuration Tool (CDB file) configuration and conversion 7.
9.1 Manually Recreating CBD Files 7.

10 References 8.

SPRA646

2 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

1 Overview

Incompatibilities in the following areas exist between SPOX–KNL v2.2 APIs and DSP/BIOS II
APIs:

• System startup

• Stacks

• Software Interrupts (SWI module)

• Hardware ISRs (HWI module)

• Memory (MEM module)

• Streaming I/O and User Defined Device Drivers (SIO and DEV modules)

• Host I/O

• Configuration Tool (CDB file) configuration and conversion

The incompatibilities and instructions for porting a SPOX–KNL v2.2 application to DSP/BIOS II
are described in the following sections.

2 System Startup

The major difference in the system startup is the way in which the function main() is called.

2.1 SPOX v2.2

In SPOX v2.2, main() is simply a task in the system like any other task and is statically created
in the configuration file. It is special because:

• it is the first task that is created,

• it is created with the maximum task priority, and

• it will be the first task to run regardless of the priorities of other user tasks in the system.

The following pseudo-code illustrates the complete startup sequence:

SPRA646

3 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

boot.s62 calls startup() (in startup.c)

 startup() {

 SPOX_init(SYS); /* initialize SYS backplane */

 KNL_exit(); /* schedule first SPOX task */

 }

 ...

 ... /* spox() is the function
 * entry point of the first

 * Spox task
 */

 spox() { /* (in startup.c) */

 SPOX_start() /* start all SPOX modules */

 SYS_start(); /* initialize APP backplane */

 main(argc, argv, envp);

 }

 ...

 ...

 main(argc, argv, envp) { /* user’s main() */

 ...

 ...

 }

2.2 DSP/BIOS II

In DSP/BIOS II, main() becomes a special function, not a SPOX task. The DSP/BIOS II system
doesn’t start scheduling threads until the function main() returns; therefore, only a limited set of
the DSP/BIOS II APIs can be called from the main() .

In direct contrast to the SPOX-KNL v2.2 processing, while main() is running and the DSP/BIOS
II system not yet started,

• hardware interrupts are globally disabled

• the SWI and TSK schedulers are disabled

The recommended way to port an SPOX-KNL v2.2 application that contain a main() function
that creates tasks, semaphores, etc., and possibly implements application run-time functionality
is to rename main() to another name (for example, smain()). Then, using the GUI-based
DSP/BIOS II configuration tool, you should statically create a TSK task with a maximum priority
of 15 whose function is smain() , and also create an empty main() function in your C source file.

The following pseudo-code illustrates the complete startup sequence:

boot.s62

 BIOS_init();

 main(argc, argv, envp)

 BIOS_start()

Until BIOS_start() is called, execution threads will not run.

SPRA646

4 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

2.3 DSP/BIOS II Functions that Cannot be Called from Function main()

No blocking functions, and only single-threaded functions, may be called by main() . The
following blocking functions cannot be called by main() :

• SEM_pend()

• MBX_pend() and MBX_post()

• SIO_get() and SIO_put()

• SIO_select()

• TSK_sleep()

2.4 Hooking into the Initialization Backplane

DSP/BIOS II allows users to insert their own functions into the initialization backplane using the
GUI-based configuration tool. Previously, this was accomplished in SPOX by using the
text–based configuration tool syntax.

Using the configuration tool, check the box labeled, “Call user init function” under the “Global
Settings Properties.” Then enter the name of the user initialization function. This function will be
called by the GBL_init macro, which is the first macro executed in the BIOS_init() function. In
addition to calling the user function, GBL_init performs chip-level initialization, such as setting
up various possible caches and initializing system buffers.

3 System Stack
On the C6x, DSP/BIOS II contains a system stack that is used while handling ISRs. This relieves
the TSK task stacks from having to support ISR stack usage, allowing task stacks to be smaller.
However, in addition to the space needed by the task’s function call dynamics, the task stack
needs to contain enough extra space for a single preemption context. A preemption context is
the CPU state that gets saved when a task is interrupted and preempted by a higher priority
task. The CPU state includes all the general purpose registers in addition to certain special
purpose registers and system variables.

4 Software Interrupts (SWI)
SWIs in DSP/BIOS II are traditional BIOS SWIs (previously called SIG in BIOS). They therefore
conform to the BIOS priority-based scheduling model. SPOX SWIs were scheduled in FIFO
ordering.

The run-time APIs of SPOX SWIs have been superceded by similar APIs in DSP/BIOS II. These
new APIs consist of all the APIs that were present in BIOS, plus some additional ones to support
dynamic creation and deletion. These additional APIs, SWI_create() and SWI_delete() , were
available in SPOX but not BIOS, and their calling model (function parameters) have changed to
more closely reflect the DSP/BIOS II environment.

The method in which the kernel calls DSP/BIOS II software interrupts now conforms to the
traditional BIOS model. This has little impact on the actual SWI function itself, but there is one
area of possible concern: when and how SWIs are called. In SPOX, SWIs were called from
inside the kernel scheduler, KNL_exit() . They are now handled by the BIOS scheduler
(SWI_exec()). In fact, the kernel scheduler KNL_exit() is itself an SWI.

SPRA646

5 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

In SPOX, the kernel scheduler calls an SWI once per separate posting. If an SWI is posted more
than once, the kernel scheduler removes the SWI from a list, calls the SWI function, and if there
are further postings to process, the kernel enqueues the SWI on the tail of the SWI list. It is then
processed again after all other SWIs that are in front of this SWI in the list have been processed.

The BIOS scheduler only calls the SWI once, even if it has been posted multiple times before
running. The following excerpt from the DSP/BIOS II documentation (SWI_inc reference page)
explains how to simulate this SPOX calling model:

If a software interrupt is posted several times before it has a chance to begin executing, –
because HWIs and higher priority software interrupts are running – the software interrupt only
runs one time. If this situation occurs, you can use SWI_inc to post the software interrupt.
Within the software interrupt’s function, you could then use SWI_getmbox to find out how
many times this software interrupt has been posted since the last time it was executed.

To process the multiple postings, the SWI can either loop again for each posting, or post itself
again with SWI_post (not SWI_inc), depending on the processing order desired. When an SWI
posts itself, it is placed on the tail of its priority queue, thereby allowing other SWIs of equal
priority an opportunity to run before running again. By reposting itself, an SWI is called in the
same manner as SPOX v2.2 SWIs when multiple postings are pending.

Note: TSK_setpri() can no longer be called by SWIs. It can only be called from TSK level.

5 Hardware Interrupts (HWI)

The SPOX v2.2 ISR assembly macros (C62_enter/C62_exit) have been replaced with the
generic ISR interface macros HWI_enter/HWI_exit . The parameters to the HWI macros are
identical to the SPOX–KNL C62 macros, retaining the C62 prefix.

Aside from the name change, the main difference is in the HWI_exit macro. In SPOX, the
C62_exit macro would potentially call the SPOX KNL scheduler, whereas in DSP/BIOS, the
SWI scheduler is potentially called. The KNL scheduler is then called by the SWI scheduler.

ISRs in both SPOX and BIOS shared a common model. For the C6x, the main difference
between ISRs in SPOX/BIOS and DSP/BIOS II is the addition of an HWI dispatcher. A given
user ISR can now be configured to be handled (dispatched) by the HWI dispatcher. The user still
has the option of handling the ISR in the traditional SPOX/BIOS method, but significant code
savings can be achieved when the dispatcher is used. The C54x does not contain the
dispatcher, so the traditional methods of handling ISRs still apply.

Two HWI objects are preconfigured by DSP/BIOS II, one used by the CLK module and another
used by the RTDX module (which is hidden from the configuration tool). Both of these are
hard-configured to use the HWI dispatcher, but the CLK module’s dispatcher parameters
(interrupt enable mask and cache control mask) are configurable by the user.

The interrupt enabling/disabling macros from SPOX v2.2 have been renamed to more closely
match their counterparts in BIOS. The following translations apply:

SPRA646

6 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

Table 1. SPOX v2.2 Enabling/Disabling Macros

SPOX v2.2 DSP/BIOS II
C62_enable C62_enableIER
C62_disable C62_disableIER
C62_enableGIE HWI_restore
C62_disableGIE HWI_disable

There is no backward compatibility for the SPOX C62 APIs, so it is necessary to modify those
source files that contain them.

6 Memory

The MEM module has been enhanced to provide finer granularity of control over static memory
section configuration and usage. Please refer to the DSP/BIOS User’s Guide and the DSP/BIOS
II Configuration Tool Online Help for further information.

7 Streaming I/O and User-Defined Device Drivers (SIO and DEV)

Beginning with SPOX-KNL v2.1, the SIO_ISSUERECLAIM model was added to the SIO
interface. With this change, two new functions were added to the DEV_Fxns table: DXX_issue
and DXX_reclaim .

In DSP/BIOS II, SIO_get() and SIO_put() now use the device driver’s issue and reclaim
functions, making the DEV device driver interface more efficient and easier to write. The device
drivers’ input and output functions were removed making device drivers smaller. All device
drivers are affected by this change, however updating the assorted device drivers is not difficult.

7.1 Required Device Driver Changes

• The functions DEV_Fxn.input and DEV_Fxn.output have been removed. All device drivers’
input and output functions should be removed.

• The DEV_Fxns table has been alphabetized. The user must alphabetize the functions of the
device drivers (and delete input and output).

• DEV_Obj.model has been removed. The ‘device—>model’ field has been moved to the
SIO_Obj structure. All device drivers must be modified to remove any references to the
DEV_Obj.model . Device drivers should behave as if they were opened in the
SIO_ISSUERECLAIM model. All I/O should be done with calls to DXX_issue() and
DXX_reclaim() .

• The timeout parameter to SIO_reclaim() has been deleted, and a DEV_Obj.timeout field
has been added. This field is initialized by SIO_create (or the static SIO create process) to
contain the timeout to wait for SIO_reclaim().

• Device drivers are now initialized by DEV_init() before main(). SIO_startup() initializes the
static streams after main().

SPRA646

7 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

7.2 Streaming I/O Interface Changes

The two changes to the SIO interface are:

• A device-specific timeout is now specified when the stream is created (see above). SIO_re-
claim() ’s timeout parameter has been removed.

• SIO_staticbuf() API has been added. This is used to get statically created buffers from the
stream when the SIO stream is configured using the gconf Configuration Tool.

8 HOST I/O (HST)

In SPOX, host I/O was achieved using the File I/O (FIO module). An FIO object was configured
using the configuration tool and subsequently used to retrieve a Streaming I/O (SIO module)
stream object and buffer. The SIO object and buffer were then used in the traditional method. In
DSP/BIOS II, FIO has been removed and equivalent functionality can be achieved using an HST
object, DHL device instance, and the SIO module. Alternatively, host I/O can be achieved using
an HST object in conjunction with the PIP module. Please refer to the DSP/BIOS User’s Guide
for further details.

9 Configuration Tool (CDB file) configuration and conversion

SPOX-KNL v2.2 CDB files are not compatible with DSP/BIOS II, and there is no automated
method for converting SPOX-KNL v2.2 CDB files to DSP/BIOS II CDB files. The user must
manually recreate the CDB from from a DSP/BIOS II template.

9.1 Manually Recreating CBD Files

Code Composer Studio allows multiple configuration (CDB) files to be opened simultaneously.
This will allow the user to easily copy objects from a SPOX v2.2 CDB file to a DSP/BIOS II CDB
file. A step by step method to perform this task is described below:

• Use Code Composer Studio to open the SPOX-KNL configuration file (*.cdb). Select
File→Open. In the Open dialog box, select the configuration file and click Open. Select NO
when prompted to update the file.

• Create a DSP/BIOS configuration file within Code Composer Studio. Select
File→New→DSP/BIOS Configuration. In the New dialog box, select the appropriate config-
uration template for your DSP chip and board and click OK. At his point, two configuration
files are opened within Code Composer Studio.

• The user must manually recreate the following objects module in the new DSP/BIOS II CDB
file:
MEM, TSK, HWI, SIO and DGN (Note: SIOs cannot be created until device drivers are
defined).

• The remaining user created objects (CLK, IDL, LCK, LOG, MBX, QUE, SEM, STS, DPI, and
User-Defined Devices) from the SPOX_KNL CDB file to the DSP/BIOS II CDB file can be
transferred using the cut (Ctrl+C) and paste (Ctrl+V) features as follows:

– Highlight the object to be copied and press Ctrl+C to copy the selected object.

– Move to the new configuration file and select the associated object manager and press
Ctrl+V to paste the object into the new configuration file.

SPRA646

8 Porting a SPOX–KNL V2.2 Application to DSP/BIOS II

Repeat the above two steps for all remaining objects to be transferred.

Software Interrupts (SWI) and Host File Manager (FIO) have changed from SPOX_KNL v2.2 to
DSP/BIOS II. See pertinent sections in this document for further information.

Additional functionality/flexibility has been added to the following object modules: Global setting
(GBL), Memory Section Manager (MEM), Hardware Interrupts (HWI).

Be sure that the appropriate selections are made in the new configuration file. Refer to the
DSP/BIOS User’s Guide for further details.

10 References
1. TMS320C5400 DSP/BIOS User’s Guide (SPRU326)

2. TMS320C6000 DSP/BIOS User’s Guide (SPRS303)

3. Code Composer Studio (v1.2) DSP/BIOS online help

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

