{? TEXAS Application Report
INSTRUMENTS SPRAG655 - April 2000

Efficient Implementation of Real-Valued FIR Filters
on the TMS320C55x DSP

David M. Alter DSP Applications — Semiconductor Group

ABSTRACT

Real-valued digital finite impulse response (FIR) filters form the basis for numerous digital
signal processing (DSP) applications. Efficient implementation of these filters on the
TMS320C55xx0 DSP family requires specialized algorithm structuring that can take
advantage of the dual on-chip hardware multiplier units. This application report presents
implementations best suited for block FIR and single-sample FIR filters. Example assembly
code is also provided.

Contents
INErOdUCHION .. 2
Block FIR Filter Implementation e 2
Single-Sample FIR Filter Implementation 3.

A WODN P

Example Code DeSCriPliONS ...ttt e e e e e 5

4.1 General Information About Both Programs i e 5
4.2 Block-FIR Filter Program Information e 6
4.3 Single-Sample FIR Filter Program Information i, 6

D CONCIUSION et 7

Appendix A Block FIR Filter Program (Algebraic Syntax) 8..
Appendix B Block FIR Filter Program Mnemonic Syntax —c.iiiiieninann.. 11.
Appendix C Single-Sample FIR Filter Program (Algebraic Syntax) — 14 .
Appendix D Single-Sample FIR Filter Program (Mnemonic Syntax) 19.
Appendix E Include File Containing Example Input Data , 24.
Appendix F Output From Block FIR Filter Program e 25.
Appendix G Output From Single-Sample FIR Filter Program 26.

List of Figures

Figure 1. Computation Groupings for a Block FIR (4-tap filter shown) 3

Figure 2. Computation Groupings for a Single-Sample FIR with an Even Number of TAPS
(4-tap filter SNOWN) o 4

Figure 3. Computation Groupings for a Single-Sample FIR with an Odd Number of TAPS
(5-tap filter SNOWN) o 5

TMS320C55xx is a trademark of Texas Instruments.

{'? TEXAS

SPRA655 INSTRUMENTS

1

Introduction

Real-valued digital finite impulse response filters form the basis for numerous digital signal
processing applications. The basic operation needed to implement a FIR filter is the multiply-
and-accumulate (MAC) operation, an operation to which DSPs have traditionally excelled.
Equation 1 shows a mathematical expression for the FIR filter.

N
Wk = > a;xtk—1i) (1)
i=0

where K is the time step, y(K) is the filter output at time k, x(k—i) is the sampled input at time k—i,
a; is filter coefficient i, and N is the order of the filter (i.e., the number of taps minus 1). For example,
a four-tap (i.e., third-order) FIR filter can be explicitly written as

V(K) = ay x(k) + a, x(k — 1) + a, x(k — 2) + a5 x(k — 3) (2)

Since the C55xx[] DSP has two MAC units, one would expect the ability to perform two MAC
computations per DSP clock cycle. A brute-force approach to the four-tap filter in Equation 2
would compute ag*x(k) and a1*x(k—1) on the first cycle, and ay*x(k—2) and az*x(k—3) on the
second cycle. With this approach, the computations require accessing four independent data
values each processor cycle. However, the C55xx DSP has only three 16-bit-wide data buses,
and therefore, one cannot just implement the algorithm in the brute-force manner suggested. It
is possible, however, to specially structure the filter implementation so that two MAC operations
can still be performed on a C55xx every clock cycle, thereby maximizing DSP performance. This
application report presents the special FIR filter implementations necessary to maximize
performance on the C55xx DSP family.

Implementation of a FIR filter may be classified into two types: single-sample and block. In the
single-sample version, one input value arrives each sample period, with the FIR algorithm
generating a single output value each sample period. The single-sample FIR must therefore run in
realtime. In the block FIR filter, all input data is available a priori. Therefore, the block FIR need not
run in realtime, but rather can process all input values as quickly (or as slowly as the case may be)
as desired. Each of these two filter types requires different structuring for efficient implementation on
the C55xx DSP. The simpler case is the block FIR, which will be discussed first.

Block FIR Filter Implementation

The efficient implementation for block FIR filters involves computing two sequential filter
iterations in parallel so that only a single coefficient, g;, is utilized by both MAC units. Figure 1
depicts the computation grouping for a four-tap filter. Outputs y(k) and y(k—1) are computed in
parallel. For the first term in each of these two rows, one MAC unit computes agx(k), while the
second MAC unit computes agx(k—1). These two computations combined require only three
different values from memory, i.e., ag, X(k), and x(k—1). Proceeding to the second term in each
row, a1 x(k—1) and a1x(k—2) are computed similarly, and so on with the remaining terms. After
fully computing the outputs y(k) and y(k—1), the next two outputs are computed, i.e., y(k—2)

and y(k=3) in parallel, again beginning with the first two terms in each of these rows. In this way,
DSP performance is maintained at two MAC operations per clock cycle.

C55x is a trademark of Texas Instruments.

2

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS SPRA655

Note that filters with either an even or odd number of taps are equally handled by this method.
Further, not all the input data need be available in advance. Rather, only two new input samples
are required for each iteration through the algorithm, thereby producing two new output values.
For example, suppose data values are arriving at regular (or irregular) intervals via the DSP
serial port. After two such values arrive, the DSP could process them through the filter and then
send the two output samples on their way, for example transmit them out via the serial port. This
gives a quasi real-time process, where the DSP essentially processes two input values every
other time a value arrives, and is free to perform other tasks when not processing input data.

y(K) [apx(k) + [apx(k=1) \¢ [apx(k-2) \¢ |agx(k-3)
\ aox(k—1)|§ alx(k—2)§\ § agx(k=4) |

y(k-1) | aox(k=3)|

y(k=2) = [agx(k-2) \| asx(k=3) \| asx(k—4) \ agx(k=5)
y(k=3) = \ agx(k=3) |\ ax(ka) |\ ax(k—5)] +\ agx(k—6)]

Figure 1. Computation Groupings for a Block FIR (4-tap filter shown)

3 Single-Sample FIR Filter Implementation

Single-sample FIR filtering requires real-time calculation. That is, one input value is received
every sample period, which in turn is used to compute one output value every sample period.
The FIR implementation utilized for the block FIR will not work in a real-time applications, since
at best, two output values are computed every other sample period. This is not realtime. The
single-sample FIR implementation presented here interlaces the calculations for the current
sample period with those of the next sample period in order to achieve a net performance of two
MAC operations per cycle. Figure 2 shows the needed computation groupings for a four-tap

FIR filter. At any given time step, one multiplies and accumulates every other partial product in
the corresponding row, beginning with the first partial product in the row. In addition, one also
multiplies and accumulates every other term in the next row (i.e., the row above the current row)
in advance of that time step, beginning with the second partial product in the next row. In this
way, each row is fully computed over the course of two sample periods.

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 3

{'.f TEXAS

SPRA655 INSTRUMENTS

y(k+2) = + apx(k+1)| + @ + |agx(k-1)

y(k+1) = agx(k+1) | + [agx(k) | + |axx(k-1)| + |agx(k-2)

yk) = agx(k) | + [apx(k=1)| + |ax(k=2)| + [azx(k-3)

y(k-1) = apx(k-1)| + [ax(k=2)| + [axx(k=3)| + [agx(k—4)

y(k-2) = agx(k-2)| + @ + [apx(k-4)| +

Figure 2. Computation Groupings for a Single-Sample FIR with an Even Number of TAPS

(4-tap filter shown)

For example, at time step K, it is desired to compute y(k). The first term in the y(k) row is agx(k),
which is computed using one of the two MAC units. In addition, the second MAC unit is used to
pre-compute the second term in the y(k+1) row, a;x(k), in advance of time step k+1. These two
computations combined require only three different values from memory: ag, a1, and x(k). The
second term in the y(k) row is a;x(k+1). However, this would have been already computed during
the first computation at time step k—1 (similar to how a;x(k) was just pre-computed for time step
k+1) , so it can be skipped here. The third term in the y(k) row, apx(k—2), is computed next, and at
the same time, the term agx(k—2) is pre-calculated in the y(k+1) row in advance of time step k+1.
Notice that two separate running sums are maintained, one with partial products for the current
time step, the other with pre-calculated terms for the next time step. At the next time step, the
pre-calculated running sum becomes the current running sum, and a new pre-calculated running
sum is started from zero. At the end of each sample period, the current running sum contains the
current filter output, which can be dispatched as required by the application.

The above approach is not limited to the four-tap filter illustrated in Figure 2. Any other filter with
an even number of taps is a straightforward extension. For filters with an odd number of taps,
the computation groupings become problematic, in that the last grouping in each row is missing
the pre-calculation term in the row above it.

Figure 3 depicts this for a five-tap filter. To overcome this problem, one should pad the filter to
the next higher even number of taps by using a zero coefficient for the additional term. For
example, augment the five-tap filter to

VK) = ag x(k) + a; x(k — 1) + a, x(k — 2) + az x(k — 3) + a, x(k — 4) + 0 - x(k — 5) 3)

In this way, any odd-tap-number filter can be implemented as an even-tap-number filter but
retain the frequency response of the original odd-tap-number filter.

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS SPRA655

X / incomplete
groupings
y(k+2) = + ax(k+1) [+| apx(k) |+ agx(k-1) a4x(k—2)| /

y(k+1) = agx(k+1) [+|agx(k) | +|axx(k-1)| +|agx(k-2) [+|asx(k-3) / l
yk) = agx(k) | +[aix(k=1) | +|amx(k-2) [+ | azx(k-3) | +| asx(k—4)
y(k-3) = agx(k=1) | +| agx(k=2) | + | apxx(k-3) | + | agx(k—4) | + | a4x(k=5)

. agx(k—2) +|alx(k—3) + | apx(k—4) +|a3x(k—5) + [agx(k—6)

Figure 3. Computation Groupings for a Single-Sample FIR with an Odd Number of TAPS
(5-tap filter shown)

4 Example Code Descriptions

Assembly code programs are given in Appendices A through D for the block FIR filter and the
single-sample FIR filter. Both algebraic and mnemonic assembly syntaxes are provided. Each
program runs stand-alone, and implements an identical 16-tap FIR low-pass filter. These
programs are intended to provide a general idea of how to efficiently implement both types of
FIR filters at the assembly code level. The user should tailor the basic code to meet his or her
individual program requirements. Information about the programs follows.

4.1 General Information About Both Programs

* The coefficients used for the 16-tap filter give a low-pass frequency response with unity
D.C. gain, and a —3 dB cutoff frequency of 0.27wg, where wg is the sampling frequency.

* The coefficients shown are for a symmetric FIR filter (i.e., coefficient a0 is the same as al5,
al is the same as al4, and so forth). A symmetric filter is in no way a requirement for these
FIR algorithms. Symmetric coefficients just happen to have been used in these examples.
Note that a symmetrical FIR filter could be effectively implemented using a brute-force
dual-MAC approach, since only three operands need to be fetched to compute two filter
taps. Note also that the C55xx processor has the firs() algebraic instruction (FIRSADD
mnemonic instruction) that is specially designed to implement symmetrical FIR filters. The
firs() instruction will not result in a lower kernel cycle count. The minimum number of
kernel cycles is N_TAPS/2, which is achieved using any of the three methods: firs() ,a
brute-force dual-MAC approach, or the approach presented in this report. However, firs()
may result in fewer overhead cycles (i.e., pointer setup, context save and restore, etc.),
especially in the single-sample filter case. Additionally, firs() may result in lower power
consumption since it performs one multiplication and two additions for every two taps,
whereas the other two methods perform two multiplications and one addition.

* Both programs are designed for Q15 fraction input data, output data, and coefficients.

* Both programs utilize the input data in the file DUALSINE.DAT (see Appendix E). The 199
values are Q15 fractions that represent the linear superposition of two distinct sine waves. One

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 5

SPRA655

Q’ TEXAS
INSTRUMENTS

4.2

4.3

6

sine wave has a frequency of 0.0125wg, and the second has a higher frequency of 0.25cw,
where wyg is the sampling frequency. The implemented 16-tap filter will essentially remove the
higher frequency sine wave, leaving only the lower frequency sine wave in the output data.

Both programs have been assembled, linked, and simulated using C5000 Code Composer
Studio v1.19 (TMS320C55xx COFF Assembler v1.10 and TMS320C55xx COFF Linker v1.10).

Block-FIR Filter Program Information

The block FIR filter routine is a self-contained program. As structured, it takes an array of
input values located at data memory address x and processes them as a block into an
output array that is located at address .

An incomplete table of interrupt vectors is provided. This table contains only the first three
vectors (e.g., reset, nmi, and int2), of which only the reset vector is needed to run this
program stand-alone. Users should construct a complete interrupt vector table as required
by their particular application.

The filter kernel requires that three operands be fetched from memory each clock cycle: one
from the coefficient array, and two from the input data array. In order to avoid memory
access conflicts, these arrays should be linked in memory to allow such access. One way to
do this is to link the section "input_data” to an on-chip dual-access RAM (DARAM) block,
and the section "coefficients” to a different memory block, for example, an on-chip
single-access RAM (SARAM) block or a different DARAM block.

The program is terminated with an endless loop trap. This would typically be replaced with a
return instruction when incorporating the routine into an actual application as a callable
function.

The output data array y is listed in Appendix F and can be used to verify proper code
operation.

Single-Sample FIR Filter Program Information

The single-sample FIR routine is a self-contained program consisting of two parts: a main
routine, and an interrupt service routine (ISR). The filter itself is implemented in the ISR,
which represents expected real-world usage of an interrupt-driven single-sample filter. The
main routine performs stack-and-delay chain initialization, and then enters a loop wherein it
reads the next input value from the input array, writes it to the simulated ADC memaory
location, and then simulates a sample-period interrupt using an intr() instruction. The
intr() instruction causes execution of the FIR filter ISR, which reads the ADC, processes
the single-sample input, writes the resulting output to the simulated DAC memory location,
and returns to the main routine. The main routine then reads the DAC and writes the new
output value to the output array in memory. The main routine loop then repeats.

An incomplete table of interrupt vectors is provided. This table contains only the first three
vectors (e.g., reset, nmi, and int2), of which only the reset and int2 vectors are needed to run
this program stand-alone. Users should construct a complete interrupt vector table as
required by their particular application.

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS SPRA655

* The filter kernel requires that three operands be fetched from memory each clock cycle: two
from the coefficient array, and one from the delay chain. In order to avoid memory access
conflicts, these arrays should be linked in memory to allow such access. One way to do this
is to link the section "coefficients” to an on-chip DARAM block, and the section "delay_chain”
to a different memory block, for example, a SARAM block or a different DARAM block.

* The section "delay_chain” must be aligned on a 32-bit memory boundary. The requirement
for "delay_chain” is due to the double-store method used to initialize it in the main routine,
and also double accesses made to it in the filter ISR. Memory alignment can be achieved
using the align option in the SECTIONS portion of the linker command file. See the
TMS320C55xx Assembly Language Tools User’s Guide (Literature Number SPRU280) for
additional information.

* The output data array y is given in Appendix G and can be used to verify proper code
operation. It is in fact mostly the same output data as given in Appendix F for the block FIR
program. The only difference is that the single-sample filter produces 16 additional outputs at
the beginning due to the zero initial conditions present in the delay chain. Therefore, one can
observe that that 16th value in Appendix G is identical to the 1st value in Appendix F, the
17th value in Appendix G is identical to the 2nd value in Appendix F, and so on.

* All necessary context saving and restoration has been performed in the ISR.

5 Conclusion

Efficient implementations of block FIR and single-sample FIR filters on a TI TMS320C55xx DSP
have been presented. These filters achieve their high performance by making use of the dual
on-chip multiply-and-accumulate units. Example code for each algorithm has been provided and
implementation details discussed.

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 7

{'.f TEXAS

SPRA655 INSTRUMENTS

8

Appendix A Block FIR Filter Program (Algebraic Syntax)

kkkkkkkkkkkkkkkkkkhkkkhkkkhhkkhkkkkkkhkhkkkhhkkhkkhkkkkhhkkhkkkkkkhkhkkhhkkkhkkkkkkkkkk

* FILE: BFIR_ALG.ASM *

* DESCRIPTION: Algebraic C55xx DSP program for block FIR filter. *

* AUTHOR: David M. Alter, Texas Instruments, Inc. *

* DATE: February 23, 2000 *

* RESTRICTIONS: *

* (1) N_SAMP-N_TAP+1 (the number of output values) must be even. *

* (2) Overflow is not checked. *

* (3) Data and coefficients are assumed to be signed Q15 fractions. *

* (4) The section "output_data” must be 32-bit aligned in memory. *
.def blockfir

N_SAMP .set 199 ;# of input samples

N_TAP .set 16 ;# of filter taps

Q15 .set 32768 ;Q15 fraction scale value

;Coefficients in Q15 fractional format
.sect "coefficients”

a0 .int Q15*1/32768 ;a0
int Q15*15/32768 ;al
int Q15*105/32768 ;a2
int Q15*455/32768 ;a3
int Q15*1365/32768 ;ad
.int Q15*3003/32768 ;ab
.int Q15*5005/32768 ;a6
int Q15*6435/32768 ;a7
int Q15*6435/32768 ;a8
int Q15*5005/32768 ;a9
int Q15*3003/32768 ;al0
int Q15*1365/32768 ;all
int Q15*455/32768 ;al2
int Q15*105/32768 ;al3
.int Q15*15/32768 ;ald
.int Q15*1/32768 ;alb

;Input data in Q15 fractional format
.sect "input_data”
X .copy dualsine.dat ;label at oldest input

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS SPRA655

;Output array in Q15 fractional format
y .usect "output_data”, N_SAMP-N_TAP+1, ,1
;label at oldest output

;7\-********* INTERRUPT VECTORS kkkkkhkhkkkk

;This is an incomplete vector table for illustration purposes only
.sect "vectors”

rset: .ivec blockfir, USE_RETA ;reset vector and stack mode

nmi: .ivec nmi ;trap spurious NMI's

int2: .ivec int2 ;trap spurious int2’s

rerxkiixk EILTER INITIALIZATION #rsssiorrs
text
blockfir:

;Configure ST1: set SXMD, FRCT
@ST1_L = @ST1_L | #0000000101000000b || mmap()

;Configure ST1: clear SATD, C54CM
@ST1 L=@ST1 L �b || mmap()

.c54cm_off

;Configure ST2: clear ARMS. AR1, AR2, and CDP set to linear mode
@ST2_L=@ST2_L �b || mmap()

.arms_off

;Pointer setup

XCDP = #a0 ;pointer to coefficient array
XARO =#(x + N_TAP —1) ;pointer to input vector
XAR1 = #(x + N_TAP) ;2nd pointer to input vector
XAR2 = #y ;pointer to output array

;Other setup
BRCO = #((N_SAMP — N_TAP + 1)/2 — 1) ;init local repeat counter
TO =#(—(N_TAP - 1)) ;CDP rewind increment
T1=#(N_TAP + 1) ;ARX rewind increment

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

SPRA655

{'f TEXAS
INSTRUMENTS

skkkkkkkkkk FILTER KERNEL *kkkkkkkkk
[|localrepeat { ;start the outer loop

;First tap is multiply only (no accumulate)
ACO = *ARO- * coef(*CDP+),
AC1 = *AR1- * coef(*CDP+)

;Taps 2 through (N_TAPS —1)

|[repeat(#(N_TAP-3)) ;single repeat for inner loop

ACO = ACO + (*ARO- * coef(*CDP+)),
AC1 = AC1 + (*AR1- * coef(*CDP+))

;Last tap has different pointer increments
ACO = ACO + (*(ARO+T1) * coef(*(CDP+T0))),
AC1 = AC1 + (*(AR1+T1) * coef(*(CDP+T0)))
*AR2+ = pair(HI(ACO0)) ;write both results

} ;end of outer loop

~kkkkkkkkkk FILTER TERMINATION *kkkkkkkkk
end: goto end ;trap end of program

;End of block FIR algebraic program

10 Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS

SPRA655

Appendix B Block FIR Filter Program (Mnemonic Syntax)

kkkkkkkkkkkkkkkhkkkkkkkkkkhkhkkkhkkkkhkkkkkhhkkkhkkkkkkhkhkkkhkkkkhkkkhkkkhkkkkhkkkkhkkkkkkrk

* FILE: BFIR_MNE.ASM *

* DESCRIPTION: Mnemonic C55xx DSP program for block FIR filter.

* AUTHOR: David M. Alter, Texas Instruments, Inc. *

* DATE: February 24, 2000 *

* RESTRICTIONS: *

* (1) N_SAMP-N_TAP+1 (the number of output values) must be even.

* (2) Overflow is not checked. *

* (3) Data and coefficients are assumed to be signed Q15 fractions. *
* (4) The section "output_data” must be 32-bit aligned in memory. *

*% *% *kkkkk *% *kkkkk *% *kkkkk *% *kkkkk *kkkkk *% *%

.def Dblockfir, rset

N_SAMP .set 199 ;# of input samples
N_TAP .set 16 ;# of filter taps
Q15 .set 32768 ;Q15 fraction scale value

;Coefficients in Q15 fractional format
.sect "coefficients”

a0 .int Q15*1/32768 ;a0
int Q15*15/32768 ;al
int Q15*105/32768 ;a2
int Q15*455/32768 ;a3
int Q15*1365/32768 ;a4
int Q15*3003/32768 ;ab
int Q15*5005/32768 ;a6
int Q15*6435/32768 ;a7
int Q15*6435/32768 ;a8
int Q15*5005/32768 ;a9
int Q15*3003/32768 ;al0
int Q15*1365/32768 ;all
int Q15*455/32768 ;al2
int Q15*105/32768 ;al3
int Q15*15/32768 ;ald
int Q15*1/32768 ;alb

;Input data in Q15 fractional format
.sect "input_data”
X .copy dualsine.dat ;label at oldest input

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 11

SPRA655

{'f TEXAS
INSTRUMENTS

12

;Output array in Q15 fractional format

y .usectoutput_data”, N SAMP-N_TAP+1, ,1

;label at oldest output

;********** INTERRUPT VECTORS *kkkkkkhkhkk

;This is an incomplete vector table for illustration purposes only
.sect "vectors”

rset: .ivec blockfir, USE_RETA ;reset vector and stack mode

nmi: .ivec nmi ;trap spurious NMI's

int2: .ivec int2 ;trap spurious int2’s

gerskriiixk EILTER INITIALIZATION #tsisrssk
text
blockfir:

;Configure ST1: set SXMD, FRCT
OR #0000000101000000b, mmap(@ST1_55)

;Configure ST1: clear SATD, C54CM
AND #1111110111011111b, mmap(ST1_55)

.c54cm_off

;Configure ST2: clear ARMS. AR1, AR2, and CDP set to linear mode
AND #0111111011111001b, mmap(ST2_55)

.arms_off

;Pointer setup
AMOQV #a0, XCDP ;pointer to coefficient array
AMOV #(x + N_TAP — 1), XARO ;pointer to input vector
AMOV #(x + N_TAP), XAR1 ;2nd pointer to input vector
AMOV #y, XAR2 ;pointer to output array

;Other setup
MOV #((N_SAMP — N_TAP + 1)/2 — 1), BRCO ;init local repeat counter
MOV #(—(N_TAP — 1)), TO ;CDP rewind increment
MOV #(N_TAP + 1), T1 ;ARX rewind increment

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS

SPRA655

;********** FILTER KERNEL *kkkkkkkkk

[|[RPTBLOCAL end_outer ;start the outer loop
;First tap is multiply only (no accumulate)

MPY *ARO-, *CDP+, ACO

:MPY *AR1-, *CDP+, AC1

;Taps 2 through (N_TAPS — 1)
[IRPT #(N_TAP-3) ;single repeat for inner loop

MAC *ARO-, *CDP+, ACO
:MAC *AR1-, *CDP+, AC1

;Last tap has different pointer increments
MAC *(ARO+T1), *(CDP+T0), ACO
:MAC *(AR1+T1), *(CDP+T0), AC1

end_outer:
MOV pair(HI(ACO0)), dbl(*AR2+) ;write both results

;end of outer loop

;********** PROGRAM TERMINATION kkkkkkkkkk

end: B end ;trap end of program

;End of block FIR mnemonic program

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 13

{'f TEXAS
SPRA655 INSTRUMENTS

Appendix C Single-Sample FIR Filter Program (Algebraic Syntax)

*kkkkkkhhhhhhhhhkkkkkhkkhkhkhkhhhhhhhrrhrrkhhkkhhhkhhhhhhrrrrrrkkkrkrkhkhhhhhhhrrrrrrix

* FILE: SSFIR_ALG.ASM *

* DESCRIPTION: Algebraic C55xx DSP program for single—sample FIR *
* filter. *

* AUTHOR: David M. Alter, Texas Instruments, Inc. *

* DATE: February 24, 2000 *

* RESTRICTIONS: *

* (1) N_TAP (the number of taps) must be even. *

*(2) N_TAP (the number of taps) must be a minimum of 6. *

* (3) Overflow is not checked. *

* (4) Data and coefficients are assumed to be signed Q15 fractions. *
* (5) The section "delay_chain” must be 32-bit aligned in memory. *
* COMMENTS: *

* (1) A dummy main routine is used to call the FIR function in *

* order to simulate A—to—D and D—to—A conversion hardware. *

*kkkkkkhhhhhhhhhhkkkkkkkhkhkhkhhhhhhhrrhrrkhkhkkrkhkhkhhhhhhhrhrrrkrkkkhkhkhhhhhhhhbrrrrix

.def ssfir, rset

N_SAMP .set 199 # of input samples
N_TAP .set 16 ;# of filter taps
Q15 .set 32768 ;Q15 fraction scale value

;********** INTERRUPT VECTORS *kkkkkkkhkk
;This is an incomplete vector table for illustration purposes only
.sect "vectors”

rset: .ivec start, USE_RETA ;reset vector and stack mode
nmi: .ivec nmi ;trap spurious NMI's
int2: .ivec ssfir ;vector to ssfir ISR

* *% * *% *% * *% *% * *% *% * *% * *% *% *

* *kkkkk *% *kkkkk *% MA'N ROU | INE *kkkkk *% *kkkkk *% *%

* *% * *% *% * *% *% * *% *% * *% *kkkkk *% *%

;Coefficients in Q15 fractional format
.sect "coefficients”

a0 .int Q15*1/32768 ;a0
.int Q15*15/32768 ;al
.int Q15*105/32768 ;a2
.int Q15*455/32768 ;a3
int Q15*1365/32768 ;a4
.int Q15*3003/32768 ;ad
.int Q15*5005/32768 ;a6
.int Q15*6435/32768 arl

14 Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{f’ TEXAS

INSTRUMENTS SPRAG655
int Q15*6435/32768 ;a8
int Q15*5005/32768 ;a9
int Q15*3003/32768 ;al0
int Q15*1365/32768 -all
int Q15*455/32768 .al2
.int Q15*105/32768 ;al3
int Q15*15/32768 .ald
int Q15*1/32768 ;alb

;Input data in Q15 fractional format
.sect "input_data”
X .copy DUALSINE.DAT ;label at oldest input

;Output array in Q15 fractional format
y .usect "output_data”, N_SAMP ;label at oldest output

;Simulate A/D and D/A converters using memory
.bss ADC,1 ;simulated A/D converter

.bss DAC,1 :simulated D/A converter

;Filter delay chain has the following structure:

; word 0 = PRECALC[31:16]

; word 1 = PRECALC[15:0]

; word 2 = PRECALC[39:32]

; word 3 = CDPSAVE

; word 4 = start of delay chain

; word N_TAP+3 = end of delay chain

dchain .usect "delay_chain”, N_TAP+4, 1 ;delay chain structure
d0 .set dchain+4 ;label at chain start

skkkkkkkkkk DSP |N|T|ALIZATION *kkkkkkkhkk
text

start:
bit(ST1, #ST1_C54CM) = #0 ;C54x compatibility off
.c54cm_off

bit(ST2, #ST2_ARMS) = #0 ;compiler mode off
.arms_off

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 15

SPRA655

{'f TEXAS
INSTRUMENTS

;Setup the stack

SP_stack _len .set 100
SSP_stack len .set 100
SP_stack
SSP_stack

.usect "stack”, SP_stack len
.usect "stack”, SSP_stack_len

XSP = #(SP_stack + SP_stack len)
SSP = #(SSP_stack + SSP_stack_len)

;Initialize the filter delay chain to zero

XARO = #dchain

ACO = #0

;pointer to delay chain

;.clear ACO

|[repeat(#((N_TAP+4)/2 — 1)) ;repeat single

dbl(*ARO+) = ACO

;Pointer setup
XAR3 = #x
XAR4 = #y

;Start the main routine loop
TO = #N_SAMP

loop:
TO=TO-#1
ACO = *AR3+
*#ADC) = ACO
intr(#2)
ACO = *(#DAC)
*AR4+ = ACO
if (TO > #0) goto loop

end: goto end

;clear the delay chain

;pointer to input array
;pointer to output array

;initialize loop counter

;decrement the loop counter

;read new input value
;put new value into ADC

;simulate an ADC interrupt

;read FIR output from DAC
;write it to the output array
;loop test

;trap the end of the program

~kkk *kkkkk *% *kkkkk *%

*kkkkk *% *kkkkk *% *kkkkk *% *

prrerssmcssmecss SINGLE-SAMPLE FIR FILTER ISR #txssscxsi:

skkkkkkkkkkkkkkkkkkkhhkhhhhhkkhkkkkkkhkhkhhhhhhhhhhhhhkkkkkhhkhkhhhhhhhrhhhkikxxxrrxx
1

text
ssfir:

16 Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS

SPRA655

;********** CONTEXT SAVE *kkkkhkhkkkk

;ST1, STO (except DP fields), RETA and CFCT registers are saved automatically.

push(@RPTC_L) || mmap() ;save RPTC
push(@BKC_L) || mmap() ;save BKC
push(@BSAC L) || mmap() ;save BSAC
push(@ST2_L) ||mmap() ;save ST2

;Setup ST1 and ST2 early to avoid pipeline conflicts later

:Set FRCT=1, SXMD=1, all other bits cleared
@ST1_L =#0000000101000000b || mmap()

:Set CDP to circular mode, all other ARX’s in linear mode
@ST2_L =#0000000100000000b || mmap()

;Resume context saving

push(TO0) ;save TO

pshboth(XARO) ;save XARO
pshboth(XAR1) ;save XAR1
pshboth(XCDP) ;save XCDP

push(dbl(@ACO_L)) || mmap() ;save ACO_L and ACO_H
push(dbl(@ACO_G)) || mmap() ;save ACO_G and AC1_L
push(dbl(@AC1_H)) || mmap() ;save AC1_Hand AC1_G

o EILTER INITIALIZATION *reecccces

TO =#2 ;TO is pointer index

XARO = #dchain ;ARO points to PRECALCI[31:16]
ACO = dbl(*ARO+) ;ACO = PRECALC[31:0]
AC1 = *ARO+ :AC1 = PRECALC[39:32]
@ACO0_G = AC1 || mmap() ;ACO = PRECALCJ[39:0]
XCDP = XARO ;setup CDPH

CDP =*ARO ;CDP = CDPSAVE

BKC = #(N_TAP) ;delay chain length

BSAC = #d0 ;delay chain start address
XARO = #a0 ;ARO points to a0

XAR1 =#(a0 + 1) ;AR1 points to al

AC1 = *(#ADC) ;read new input from ADC
*CDP = AC1 ;put it into the delay chain

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 17

SPRA655

{'f TEXAS
INSTRUMENTS

;********** FILTER KERNEL *kkkkkkkkk
;First dual-MAC is MAC||MPY

ACO = ACO + (*(ARO+TO0) * coef(*(CDP+T0))),
AC1 = *(AR1+TO0) * coef(*(CDP+T0))
|[repeat(#(N_TAP/2 —3))

;Middle dual-MACs are all MAC||MAC

ACO = ACO + (*(ARO+TO) * coef(*(CDP+T0))),
AC1 = AC1 + (*(AR1+T0) * coef(*(CDP+T0)))

;Final dual-MAC has different pointer adjustments

ACO = ACO + (*ARO * coef(*CDP+)),
AC1 = AC1 + (*ARL1 * coef(*CDP+))

;********** F I LTE R TE R M I NAT I O N *kkkkhkhkhkk

XARO = #dchain ;AR1 points to CDPSAVE
dbl(*ARO+) = AC1 ;save PRECALC[31:0]
*ARO+ = HI(AC1<<#(-16)) ;save PRECALC[39:32]
*ARO = CDP ;save CDP

*#DAC) = HI(ACO) ;send result to the DAC

; Kkkkkkkkkkk CO NT EXT R ESTO R E *kkkkkkkkk

dbl(@AC1_H) = pop() || mmap() ;restore AC1_G and AC1_H
dbl(@ACO_G) = pop() || mmap() ;restore AC1_L and ACO_G
dbl(@ACO_L) = pop() || mmap() ;restore ACO_H and ACO_L

XCDP = popboth() ;restore XCDP
XAR1 = popboth() ;restore XAR1
XARO = popboth() ;restore XARO
TO = pop() ;restore TO

@ST2_L =pop() || mmap() ;restore ST2
@BSAC_L =pop() || mmap() ;restore BSAC
@BKC_L =pop() || mmap() ;restore BKC
@RPTC_L =pop() || mmap() ;restore RPTC

return_int ;return from interrupt

;End of single—sample FIR algebraic program

18 Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS SPRA655

Appendix D Single-Sample FIR Filter Program (Mnemonic Syntax)

kkkkkkkkkkkkkkkhkkkkkkkkkkhkhkkkhkkkkhkkkkkhhkkkhkkkkkkhkhkkkhkkkkhkkkhkkkhkkkkhkkkkhkkkkkkrk

* FILE: SSFIR_MNE.ASM *

* DESCRIPTION: Mnemonic C55xx DSP program for single—sample FIR *
* filter. *

* AUTHOR: David M. Alter, Texas Instruments, Inc. *

* DATE: February 24, 2000 *

* RESTRICTIONS: *

* (1) N_TAP (the number of taps) must be even. *

*(2) N_TAP (the number of taps) must be a minimum of 6. *

* (3) Overflow is not checked. *

* (4) Data and coefficients are assumed to be signed Q15 fractions. *
* (5) The section "delay_chain” must be 32—bit aligned in memory. *
* COMMENTS: *

* (1) A dummy main routine is used to call the FIR function in *

* order to simulate A—to—D and D—to—A conversion hardware. *

*% *% *kkkkk *% *kkkkk *% *kkkkk *kkkkkkkkkk *kkkkkkkkkk *%

.def ssfir, rset

N_SAMP .set 199 ;# of input samples
N_TAP .set 16 ;# of filter taps
Q15 .set 32768 Q15 fraction scale value

;********** INTERRUPT VECTORS *kkkkkhkkkkk
;This is an incomplete vector table for illustration purposes only
.sect "vectors”

rset: .ivec start, USE_RETA ;reset vector and stack mode
nmi: .ivec nmi ;trap spurious NMI's
int2: .ivec ssfir ;vector to ssfir ISR

* *% * * *% * *% *% * *% *% * *% *% * *% *%

Hdkkkkk ko MAIN ROUTINE #biooooos
B e e e s e e s e e s e e e e e e s e e e e e e e e e e e e e e R e e e T e e e e e T e e e T e s e e s e e e s e e
;Coefficients in Q15 fractional format

.sect "coefficients”

a0 .int Q15*1/32768 ;a0
int Q15*15/32768 ;al
.int Q15*105/32768 ;a2
int Q15*455/32768 ;a3
int Q15*1365/32768 ;a4
int Q15*3003/32768 ;ab

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 19

SPRA655

{'f TEXAS
INSTRUMENTS

20

.int
.int
.int
.int
.int
.int
.int
.int
.int
.int

Q15*5005/32768
Q15*6435/32768
Q15*6435/32768
Q15*5005/32768
Q15*3003/32768
Q15*1365/32768
Q15*455/32768
Q15*105/32768
Q15*15/32768
Q15*1/32768

;al0
;all
;al2
;al3
;ald
;alb

;Input data in Q15 fractional format

X

.sect

"input_data”
.copy DUALSINE.DAT

;label at oldest input

;Output array in Q15 fractional format
.usect "output_data”, N_SAMP ;label at oldest output

y

;Simulate A/D and D/A converters using memory

.bss
.bss

ADC,1
DAC,1

:simulated A/D converter
:simulated D/A converter

;Filter delay chain has the following structure:
= PRECALCJ31:16]

= PRECALCJ15:0]

= PRECALCJ[39:32]

dchain .usect "delay_chain”, N_TAP+4, 1 ;delay chain structure

do

word 0
word 1
word 2
word 3
word 4

= CDPSAVE

= start of delay chain

word N_TAP+3 = end of delay chain

.set

dchain+4

:label at chain start

wkkkkkkkkkk DS P IN ITIALIZATI ON K*kkkkkkkkk

text

start:

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

BCLR C54CM
.cb4cm_off

;C54x compatibility off

{9 TEXAS
INSTRUMENTS SPRA655

BCLR ARMS ;compiler mode off

.arms_off

;Setup the stack

SP_stack len .set 100

SSP_stack len .set 100

SP_stack .usect "stack”, SP_stack_len

SSP_stack .usect "stack”, SSP_stack len

AMOV #(SP_stack + SP_stack_len), XSP
MOV #(SSP_stack + SSP_stack_len), SSP

;Initialize the filter delay chain to zero

AMOV #dchain, XARO ;pointer to delay chain
MOV #0, ACO ;clear ACO

[IRPT #((N_TAP+4)/2 - 1) ;repeat single
MOV ACO, dbl(*ARO+) ;clear the delay chain

;Pointer setup
AMOV #x, XAR3 ;pointer to input array
AMOV #y, XAR4 ;pointer to output array

;Start the main routine loop

MOV #N_SAMP, TO ;initialize loop counter
loop:
SUB #1, TO, TO ;decrement the loop counter
MOV *AR3+, ACO ;read new input value
MOV ACO, *(#ADC) ;put new value into ADC
INTR #2 ;simulate an ADC interrupt
MOV *(#DAC), ACO ;read FIR output from DAC
MOV ACO, *AR4+ ;write it to the output array
BCC loop, TO > #0 ;loop test
end: B end ;trap the end of the program

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 21

{'f TEXAS
SPRA655 INSTRUMENTS

shkkkkkkkkkkkkkkkkhkhhkhhhhhhhhhrkkhkkkhkhkhkhhhhhhhhhrrrkrkkrkhkhhhhhhhhhhrrrikrrxirrkikx
1

skkkkkkkkkkkkkkkkkkkkkhkk S I N G LE_SAM P L E FI R FI LTE R IS R kkkkkkkkkkkkkkkkkkkhkhkkkk

“kkk *% * *% *% * *% *kkkkk *% *kkkkk *% *kkkkk *% *
1

text
ssfir:

;********** CONTEXT SAVE *kkkkkkkhkk
;ST1, STO (except DP fields), RETA and CFCT registers are saved automatically.

PSH mmap(@RPTC) :save RPTC
PSH mmap(@BKC) ;save BKC
PSH mmap(@BSAC) ;save BSAC
PSH mmap(@ST2_55) :save ST2

;Setup ST1 and ST2 early to avoid pipeline conflicts later

:Set FRCT=1, SXMD=1, all other bits cleared
MOV #0000000101000000b, mmap(@ST1_55)

:Set CDP to circular mode, all other ARX’s in linear mode
MOV #0000000100000000b, mmap(@ST2_55)

;Resume context saving

PSH TO ;save TO

PSHBOTH XARO ;save XARO

PSHBOTH XAR1 ;save XAR1

PSHBOTH XCDP ;save XCDP

PSH dbl(mmap(@ACOL)) ;save ACOL and ACOH

PSH dbl(mmap(@ACO0G)) ;save ACOG and AC1L
PSH dbl(mmap(@AC1H)) ;save AC1H and AC1G

s EILTER INITIALIZATION #reseseees

MOV #2, TO ;TO is pointer index

AMOV #dchain, XARO ;ARO points to PRECALCJ[31:16]
MOV dbl(*ARO+), ACO ;ACO = PRECALCJ31:0]
MOV *ARO+, AC1 ;AC1 = PRECALCI[39:32]
MOV AC1, mmap(@ACO0G) ;ACO = PRECALCI[39:0]
MOV XARO, XCDP ;setup CDPH

MOV *ARO, CDP ;CDP = CDPSAVE

MOV #(N_TAP), BKC ;delay chain length

MOV #d0, BSAC ;delay chain start address
AMOV #a0, XARO ;ARO points to a0

AMOV #(a0 + 1), XAR1 :AR1 points to al

22 Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

{9 TEXAS
INSTRUMENTS

SPRA655

MOV *#ADC), AC1 ;read new input from ADC
MOV AC1, *CDP ;put it into the delay chain

skkkkkkkkkk FILTER KERN EL *kkkkkkkkk
;First dual-MAC is MAC||MPY
MAC *(ARO+TO0), *(CDP+T0), ACO
::MPY *(AR1+TO0), *(CDP+T0), AC1
[IRPT #(N_TAP/2 — 3)

;Middle dual-MACs are all MAC||MAC
MAC *(ARO+TO0), *(CDP+T0), ACO
:MAC *(AR1+TO0), *(CDP+T0), AC1

;Final dual-MAC has different pointer adjustments
MAC *ARO, *CDP+, ACO
:MAC *AR1, *CDP+, AC1

;********** FI LTER TERM I NATI ON kkkkkkkkkk

AMOV #dchain, XARO ;AR1 points to CDPSAVE
MOV AC1, dbl(*ARO+) ;save PRECALCI31:0]
MOV HI(AC1l<<#(-16)), *ARO+ ;save PRECALC[39:32]
MOV CDP, *ARO ;save CDP

MOV HI(ACO0), *(#DAC) ;send result to the DAC

;********** CO NTEXT R ESTO R E *kkkkkkkkk

POP dbl(mmap(@AC1H)) ;restore AC1G and AC1H
POP dbl(mmap(@ACO0G)) ;restore AC1L and ACOG
POP dbl(mmap(@ACOL)) ;restore ACOH and ACOL
POPBOTH XCDP ;restore XCDP

POPBOTH XAR1 ;restore XAR1

POPBOTH XARO ;restore XARO

POP TO ;restore TO

POP mmap(@ST2_55) ;restore ST2

POP mmap(@BSAC) ;restore BSAC

POP mmap(@BKC) ;restore BKC

POP mmap(@RPTC) ;restore RPTC

RETI ;return from interrupt

;End of single—sample FIR mnemonic program

Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP 23

{'f TEXAS
SPRA655 INSTRUMENTS

Appendix E Include File Containing Example Input Data

*kkkkkkhhkhhhhhhkkkkkhkkhkhkhkhhhhhhhrrhrrkkhkkrkhhkhhhhhhrrrrrrkrkkkrkhkhhhhhhhhrrrrrxix

* FILE: DUALSINE.DAT *

* DESCRIPTION: Include file for example FIR filter programs. *
* AUTHOR: David M. Alter, Texas Instruments, Inc. *

* DATE: February 23, 2000 *

kkkkkkkhhhhhhhhkkkkkkhkhkhhkhhhhhhhhrhhrkrkkkhkkhhhkhhhhhhrrhrrrkkkkrhkhhhhhhhrrrrrixxx

.int Oxee4d, 0xc000, 0x08bb, 0x3709, Oxdc9a, Oxae4d, 0xf7b2
.int 0x2600, Oxcca9, 0x9e5b, 0xe93f, 0x178c, 0xc010, 0x91c2
.int Oxded1, 0x0dle, Oxb80f, 0x89c2, 0xd971, 0x07bf, Oxb573
.int 0x8726, 0xd9a9, 0x07f7, Oxb87e, 0x8a30, 0xdf73, 0x0dcO
.int OxcOel, 0x9294, Oxea3a, 0x1888, Oxcdc8, 0x9f7a, Oxf8ed
.int 0x273b, Oxdde9, Oxaf9c, 0x0al6, 0x3864, Oxefac, Oxcl5e
.int 0x1c00, Ox4ade, 0x014a, O0xd2fd, 0x2ce2, Ox5b30, 0x1104
.int Oxe2b6, 0x3b0f, 0x695c, 0x1d49, Oxeefb, 0x451e, 0x736b
.int 0x24el, 0xf694, Ox4a0f, 0x785c, 0x270b, 0xf8bd, 0x4963
Int 0x77b1, 0x238f, Oxf541, 0x432d, 0x717a, Oxlac6, Oxec78
.int 0x380a, 0x6657, 0x0d90, 0xdf42, 0x2915, 0x5763, 0xfd3d
.int Oxceef, 0x17cc, 0x461a, Oxeb6c, Oxbd1f, 0x05e6, 0x3434
.int 0xd9e4, 0xab96, 0xf52c, 0x2379, Oxca62, 0x9c15, 0xe747
.int 0x1594, 0xbe73, 0x9025, 0xdd99, 0x0be7, 0xb745, 0x88f8
.int 0xd91a, 0x0767, 0xb591, 0x8743, Oxda3b, 0x0888, 0xb980
.int 0x8b32, Oxe0df, Ox0f2c, Oxc2ae, 0x9461, Oxec5d, Oxlaaa
.int 0xd032, Oxale5, 0xfb90, 0x29de, OxeOb4, 0xb266, 0xOcf6
.int 0x3b44, 0xf28f, Oxc441, Ox1led4, 0x4d21, 0x03fc, Oxd5af
.int 0x2f62, Ox5daf, 0x1341, Oxe4f3, 0x3cfb, Ox6b48, Oxled?
.int 0xf08a, 0x4645, 0x7492, 0x2599, 0xf74c, 0x4a53, 0x78al
.int 0x26da, 0xf88d, Ox48bf, 0x770c, 0x227a, 0xf42d, Ox41af
.int 0x6ffd, 0x18e9, Oxea9b, 0x35d9, 0x6427, 0x0Obla, Oxdccc
.int 0x266a, 0x54b7, Oxfa6d, Oxcclf, Ox14ea, 0x4337, 0xe88a
.int Oxba3c, 0x0316, 0x3164, 0xd738, Oxa8eb, Oxf2b6, 0x2103
.int 0xc831, 0x99e4, 0xe569, 0x13b6, Oxbcf4, Ox8eab, Oxdc83
.int 0x0adO0, 0xb69e, 0x8851, Oxd8e6, 0x0734, Oxb5d2, 0x8784
.int Oxdaef, 0x093c, Oxbaa2, 0x8c55, 0xe269, 0x10b6, 0xc496
.int 0x9648, Oxee96, Ox1ce3, Oxd2ae, 0xa461, Oxfe3f, 0x2c8d
.int Oxe385, 0xb537, Ox0fd7

24 Efficient IMplementation of Real-Valued FIR Filters on the TMS320c55xx DSP

{9 TEXAS
INSTRUMENTS SPRA655

Appendix F Output From Block FIR Filter Program

The first value, Oxe2a3, exists in data memory at address y. There is a total of 184 outputs.

Oxe2a3, 0xde74, Oxdble, 0xd85f, 0xd53d, 0xd203, Oxcfb6, Oxcel2
Oxcclc, Oxcalc, 0xc916, Oxc8c4, 0xc827, 0xc788, Oxc7e7, 0xc8fb
0xc9c5, 0xca89, Oxcc46, Oxceb2, OxdOca, 0xd2d2, 0xd5c4, 0xd957
0xdc85, Oxdf8f, 0xe370, Oxe7db, Oxebca, Oxef7d, Oxf3ee, Oxf8ce
0xfd16, 0x0107, 0x0599, Ox0a7e, 0x0eb0, 0x126d, Ox16b0, Ox1b2b
Oxled7, 0x21f5, 0x257f, 0x292a, 0x2bf0, Ox2e13, 0x308f, 0x3319
0x34ae, 0x3593, 0x36¢4, 0x37fa, 0x3833, 0x37b5, 0x3781, 0x3751
0x3624, 0x3445, 0x32b4, 0x312e, 0x2eb6, 0x2b98, 0x28d6, 0x262e
0x22a7, 0x1e8c, Oxlae2, 0x176a, 0x1329, 0x0e6d, 0x0a3c, 0x0658
0x01c6, Oxfcd5, 0xf88c, Oxfdab, 0xf039, Oxeb85, 0xe793, Oxe426
0xe042, 0xdc35, 0xd904, 0xd66d, 0xd377, Oxd06b, Oxce4f, Oxccdf
Oxchld, Oxc955, 0xc886, Oxc86e, 0xc80b, Oxc7ab, 0xc83d, 0xc98b
Oxca8d, 0xcbh88, Oxcd7a, Oxd0la, Oxd263, 0xd499, Oxd7b8, Oxdb73
Oxdec6, Oxelf2, Oxe5fl, Oxea76, Oxee7b, 0xf23f, Oxfébc, Oxfbad
Oxfff1, Ox03el, Ox086e, 0x0d49, Ox116c, 0x1517, 0x1943, Ox1da2
0x212f, 0x242h, 0x278f, 0x2b10, 0x2da9, 0x2f9c, 0x31e6, 0x343c
0x359b, 0x3648, 0x3741, 0x383e, 0x383d, 0x3786, 0x3718, Ox36ae
0x354a, 0x3333, 0x316e, 0x2fb5, 0x2d0d, 0x29c1, 0x26d4, 0x2405
0x2059, 0x1cle, 0x1858, 0x14c7, 0x1072, 0xOba6, 0x076a, 0x037e
Oxfeea, 0xf9fc, Oxf5b9, Oxfle4, Oxed82, Oxe8e2, 0xe509, Oxelb8
Oxddf4, OxdaOb, Oxd701, 0xd495, Oxdlcc, Oxcefl, Oxcd07, Oxcbcb
Oxca4l, Oxc8b0, 0xc8la, 0xc83b, 0xc811, Oxc7e6, 0xc8b7, Oxca3d
0Oxch76, Oxcca7, Oxcecd, Oxd19f, 0xd418, Oxd67b, Oxd9c3, Oxddab

Efficient Implementation of Real Valued FIR Filters on the TMS320C55xx DSP 25

{'f TEXAS
SPRA655 INSTRUMENTS

Appendix G Output From Single-Sample FIR Filter Program

The first value, OXFFFF, exists in data memory at address y. There is a total of 199 outputs.
Values 16 to 199 are identical to block FIR output values 1 to 184 listed in Appendix D.

OXFFFF, OXFFFD, OXFFEA, OXFF8E, OXFEGD, OXFBFD, 0xF868, OXF515
0xF3B6, OxF42E, 0xF433, OXF1ES, OXEDF4, OXEA23, OXE6A4, OXE2A3
OxDE74, 0xDB1E, 0xD85F, 0xD53D, 0xD203, 0OxCFB6, 0xCE12, 0xCC1C
OxCA1C, 0xC916, OxC8C4, 0xC827, OxC788, OXC7E7, 0XC8FB, 0xC9C5
0xCAB89, 0xCC46, OxCEB2, 0OxDOCA, 0xD2D2, 0xD5C4, 0xD957, 0xDC85
OxDF8F, 0XxE370, OXE7DB, OXEBCA, OXEF7D, OXF3EE, OXF8CE, 0xFD16
0x0107, 0x0599, OXOATE, OXOEBO, 0x126D, 0x16B0, 0x1B2B, OXx1ED7
0x21F5, 0x257F, 0x292A, 0x2BFO0, 0x2E13, 0x308F, 0x3319, Ox34AE
0x3593, 0x36C4, 0x37FA, 0x3833, 0x37B5, 0x3781, 0x3751, 0x3624
0x3445, 0x32B4, 0x312E, 0x2EB6, 0x2B98, 0x28D6, 0x262E, 0x22A7
0x1E8C, 0x1AE2, Ox176A, 0x1329, OXOE6D, 0X0A3C, 0x0658, 0x01C6
OxFCD5, 0xF88C, 0xF4AB, 0xF039, 0XEB85, OXE793, 0XE426, OXE042
0xDC35, 0xD904, 0xD66D, 0xD377, 0xD06B, OXCE4F, 0XCCDF, OXxCB1D
0xC955, 0xC886, OXC86E, 0xC80B, OXxC7AS5, 0xC83D, 0xC98B, OXxCA8D
0xCB88, 0xCD7A, 0xDO1A, 0xD263, 0xD499, 0xD7B8, 0xDB73, OXDEC6
OxE1F2, OXES5F1, OXEA76, OXEE7B, OxF23F, OxF6BC, OXxFBA4, OXFFF1
O0x03E1, 0x086E, 0x0D49, 0x116C, 0x1517, 0x1943, Ox1DA2, 0x212F
0x242B, 0x278F, 0x2B10, 0x2DA9, 0x2F9C, 0x31E6, 0x343C, 0x359B
0x3648, 0x3741, 0x383E, 0x383D, 0x3786, 0x3718, OX36AE, 0x354A
0x3333, 0x316E, 0x2FB5, 0x2D0OD, 0x29C1, 0x26D4, 0x2405, 0x2059
0x1C1E, 0x1858, 0x14C7, 0x1072, OXxOBAG, 0Xx076A, 0X037E, OXFEEA
OxXF9FC, 0xF5B9, OxF1E4, OXED82, OXEBE2, OXE509, OXE1B8, OXDDF4
0xDAOB, 0xD701, 0xD495, 0xD1CC, OxCEF1, 0xCDO07, 0xCBCB, OxCA41
0xC8B0, 0xC81A, 0xC83B, 0xC811, OxC7E6, 0xC8B7, 0XCA3D, OXCB76
0xCCA7, OXCECD, 0xD19F, 0xD418, 0xD67B, 0xD9C3, OXDDAS

26 Efficient Implementation of Real-Valued FIR Filters on the TMS320C55x DSP

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

Tl warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright [0 2000, Texas Instruments Incorporated

