
Application Report
SPRA661A - November 2000

1

Implementing a Software UART on the TMS320C54x with
the McBSP and DMA

Robert J. DeNardo DSP Applications – Semiconductor Group

ABSTRACT

This report discusses the implementation of a universal asynchronous receiver and
transmitter (UART) on a TMS320C54x DSP using the McBSP and DMA and provides a
software UART implementation in C-callable assembly code. In order to implement an
asynchronous interface such as a UART using a serial device, software must be written to
detect and generate the appropriate framing bits. The initialization of the McBSP and DMA
and the timing at which each is enabled is critical to the correct operation of the UART. A
thorough examination of these issues is given in this report as well as an explanation of the
code.

Contents
1 Introduction 3.
2 UART Functionality 3.
3 Implementation 5.
4 McBSP 6.
5 DMA 12.
6 Transmit Process 16.

6.1 Procedure at Start of Transmission 17.
6.2 Procedure at End of Transmission 19.

7 Receive Process 20.
7.1 Procedure When Packet Received 20.
7.2 Procedure To Read Received Packet 22.

8 Overview of Code 22.
9 Equates 22.

9.1 MCBSP_CHOICE 22.
9.2 DMA_RX_CHOICE 23.
9.3 DMA_TX_CHOICE 23.
9.4 INTOSEL 23.
9.5 PARITY 23.
9.6 HSTOPBITS 23.
9.7 DATABITS 23.
9.8 BAUDRATE 23.
9.9 INTERRUPT_BASED 23.
9.10 DMA_PTR_MOD 23.
9.11 DMA_ABU_FIX 23.

10 Public Variables 23.

TMS320C54x is a trademark of Texas Instruments.

SPRA661A

2 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

10.1 _UARTLSR 23.

11 Private Variables 24.
11.1 rxchar 24.
11.2 rxbufhalf 24.
11.3 txbufhalf 24.
11.4 numTxPkts 25.
11.5 TxBuffer[2*TxPKTBITS] 25.
11.6 RxBuffer[2*RxPKTBITS] 25.
11.7 decoderMask 25.
11.8 mask1011b 25.
11.9 mask0100b 25.
11.10 one 25.

12 Public Routines 25.
12.1 _UARTInit(inputs: none; outputs: none) 25.
12.2 _UARTStart(inputs: A<0:start Rx, A==0:start Rx & Tx, A>0:start Tx; outputs: none) 25. . . .
12.3 _UARTStop(inputs: A<0(stop Rx), A==0(stop Rx & Tx), A>0(stop Tx); outputs: none) 26. .
12.4 _UARTSetBaudRate(inputs: A=clock divisor; outputs: none) 26.
12.5 _UARTSetBreak(inputs: A!=0:send break, A==0:end break; outputs: none) 26.
12.6 _UARTTxChar(inputs: A=char to transmit; outputs: none) 26.
12.7 _UARTRxChar(inputs: none; outputs: A=last received char) 26.
12.8 _UARTDMATxISR(inputs: none; outputs: none) 26.
12.9 _UARTDMARxISR(inputs: none; outputs: none) 26.
12.10 _UARTRBFint(inputs: none; outputs: none) 27.
12.11 _UARTTBEint(inputs: none; outputs: none) 27.
12.12 _UARTLSIint(inputs: none; outputs: none) 27.

13 Private Routines 27.
13.1 ParityCalc(inputs: A=received char (data & parity bits only);

outputs: TC=0 (even parity), TC=1(odd parity)) 27.
13.2 ParityCheck(inputs: A=received char (data & parity bits only);

outputs: AL=received char (data bits only)) 27.

14 Usage of UART Code 27.

15 Performance 28.
15.1 Memory 28.
15.2 Cycle Count 28.

16 Verification 30.

17 RS232 Connections 30.

18 References 31.

Appendix A Flowcharts for Routines 32.
Appendix B UART Code (uart.asm) 35.
Appendix C Include File (UARTSetup.inc) 56.
Appendix D Command File (uart.cmd) 57.
Appendix E Example Use C Code (ExampleC.c) 58.
Appendix F Example Use ASM Code (ExampleASM.asm) 62.
Appendix G Example Interrupt Vectors Table (vectors.asm) 67.

SPRA661A

3 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

List of Figures

Figure 1. UART Data Packet 4.
Figure 2. McBSP Receive Frame Structure 7.
Figure 3. Timing of Signal Perfectly Synchronized to Serial Port Clock 8.
Figure 4. Timing of Signal with Offset and Rate Skew 8.
Figure 5. McBSP Frame Restrictions 9.
Figure 6. DMA Circular Buffers 13.
Figure 7. UART Initialization 16.
Figure 8. Procedure at Start of Transmission 18.
Figure 9. Procedure at End of Transmission 19.
Figure 10. Procedure When Packet Received 21.
Figure 11. Procedure to Read Received Packet 22.
Figure 12. UART Status Register 24.
Figure 13. RS232 Interface Circuit 31.
Figure A–1. Procedure to Start UART 32.
Figure A–2. Procedure to Stop UART 33.
Figure A–3. Procedure to Change Baud Rate 34.
Figure A–4. Procedure to Send a Break 34.

List of Tables

Table 1. Divisor Limits for Given Baud Rate and Clock Rate 10.
Table 2. McBSP Initialization 11.
Table 3. DMA Initialization 15.
Table 4. UART Memory Consumption 28.
Table 5. UART Routine Cycle Counts 29.
Table 6. Performance of Software UART 29.

1 Introduction

The TMS320C54x DSP provides a flexible synchronous serial interface through the McBSPs.
However, interfacing the DSP to an asynchronous device, such as a UART, requires more than
just correct initialization of the McBSP. Synchronous communication relies on three separate
signals to transmit and receive data: data, frame sync and clock. Asynchronous communication,
however, transmits the data on a single line without any clocking. For the receiver to know when
the data begins and ends, start and stop bits must frame the data. The purpose of this report is
to explain in detail how to hook up an asynchronous device to the McBSP of the DSP and how
to correctly process this data using the DMA and software.

2 UART Functionality

A UART (universal asynchronous receiver and transmitter) is nothing more than a serial
asynchronous interface. It is responsible for correctly formatting the data for transmission and
decoding it on reception.

The data received or transmitted by the UART requires a start bit (logic low) at the front of the
packet and a stop bit (logic high) at the end. The data packet is sent from least significant bit to
most significant bit. For error checking purposes, a parity bit may also be added. The signal on
the line is always high unless data is present. An example of such a packet is shown in Figure 1.

SPRA661A

4 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

Idle Start LSB MSB Parity Stop Idle

Data Word

1 bit

Packet

Figure 1. UART Data Packet

Typically, a UART has the following capabilities:

• Variable length data

The character to be sent can be of length 5, 6, 7, or 8 bits.

• Variable number of stop bits

There can be 1, 1.5, or 2 stop bits.

• Programmable baud rate

A register is provided for a divisor that divides down the master clock to generate the
intended baud rate.

• Autobaud detect

This feature allows the UART to automatically detect the baud rate of the transmitter.

• Parity generation

When sending a character, the UART has the ability to send a parity bit for error checking
purposes. The parity settings are none, even, odd, space, or mark. If no parity is generated,
the parity bit is omitted from the packet. Even parity ensures that the number of 1’s in the
transmitted word is even. Odd parity ensures that the number of 1’s in the transmitted word
is odd. Space parity always sets the parity bit to 0. Mark parity always sets the parity bit to 1.

• Parity detection

When a character is received, the UART will check the parity bit and make sure it matches
the parity setting of the connection. If the parity bit does not match, an error is set inside a
status register.

• Set Break

This will send a stream of 0s which is longer than the packet length (start bit + data bits +
parity bit + stop bits). It provides a means of indicating a special event to the receiver (such
as change in baud rate).

SPRA661A

5 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

• Break indicator

The UART has the ability to detect a break condition (when a stream of 0s longer than the
packet length is received). This indicates a special condition to the UART and is reported in
a status register.

• Framing Error detection

Signals if an invalid stop bit was detected and reports it in a status register.

• Overrun detection

Signals that another word was received before the prior word was read out. Reports the
error in a status register.

• Interrupt-based or polling-based operation

The UART can be serviced either when it generates an interrupt to the DSP for a receive,
transmit, or error event, or it can be serviced by polling the status bits to determine when an
event occurs.

• Character FIFO

A FIFO is used to buffer the receive and transmit characters, relieving the host from
servicing the UART for each new character.

• Modem Functionality

This is provided through four inputs (CTS_, DSR_, DCD_, and RI_) and four outputs (DTR_,
RTS_, OUT1_, and OUT2_). These signals allow the UART to setup hardware flow control
with a device emulating a modem.

This implementation of a software UART provides all of these features except for Autobaud
detect, FIFO mode, and Modem Functionality. It is modeled after the TL16C450 ACE(1). The
number of data and stop bits and the parity is selectable at compile time. If desired,
INTERRUPT_BASED mode allows the user to handle receive, transmit, and error events within
an ISR.

3 Implementation
In order to emulate this asynchronous interface, a way to generate and detect the framing bits
must be devised. Because the serial port is not synchronized to the UART signals, we cannot
guarantee the serial port clock will align perfectly with the edge of the start bit. This creates an
offset between the asynchronous signal and the synchronous serial port. Also, the DSP serial
port clock frequency will in almost all cases not be exactly matched to the baud rate of the
asynchronous signal, causing rate skew in the signal. The best way to reduce the offset and rate
skew is to oversample the bit stream. In this implementation an oversampling of 16 will be used,
as this is optimum for a 16 bit DSP in terms of data storage and manipulation as well as for
providing robustness to the process. The oversampling also gives the UART the ability to run at
slower speeds.

For the receive process, the McBSP will oversample the data bits and the DMA will store them in
a memory buffer for later handling. When a complete packet is read in, the DMA will interrupt the
DSP so it can interpret the packet. The procedure is opposite for the transmit process; the DSP
fills a buffer with the oversampled bit stream and then enables the DMA to begin transferring this
data out the serial port.

SPRA661A

6 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

A number of issues arise with this implementation which must be dealt with:

• How to interface the McBSP to the asynchronous data line

• How to initialize the DMA for receiving and transmitting the packets

• How to create and transmit a packet

• How to receive and decode a packet

4 McBSP

A serial port typically has three signals it either creates or receives for each direction of data:
data, frame sync, clock. The asynchronous signal, however, is present on only one line, on
which it has its own framing signals. To properly communicate between these interfaces, these
signals must be properly mapped and interpreted.

The biggest challenge in interfacing a synchronous device to an asynchronous signal is not in
the transmission but rather in the reception. Transmission is a simple process in terms of the
timings of the signals; the serial port can transmit according to its clock and the receiver will
correctly decode the signal, as long as the start and stop bits are appropriately placed and the
sampling rate is appropriate. The receiver timings are more complicated. The asynchronous
signal, by nature, can be received at any time, and most likely will not be aligned with the serial
port clock. Also, there can be slight differences in the baud rate compared to the sample rate of
the serial port, causing the received data to “slide”. Because of these issues, the serial port
receive channel and software must be setup appropriately to recognize these constraints and to
work around them.

The length of the packets (PKTBITS) are #start bits + #data bits + #parity bits + #stop bits.
There is 1 start bit and 1, 1.5, or 2 stop bits. If parity generation and detection are enabled, an
extra parity bit is added. The number of data bits can be 1-15 without parity, or 1-14 with parity.
Each of these bits will be oversampled and represented by 16 bits on the DSP.

For transmission, the UART must be able to send half stop bits. Therefore, the McBSP transmit
port is set for dual phase frames, with the first phase having 16 bit words and the second phase
having 8 bit words. The length of the first phase is (#start bits + #data bits + #parity bits) words
and the length of the second phase is (2*#stop bits) words. The total length of the transmit frame
(TxPKTBITS) in words is the sum of these phases. The data transmit (DX) pin of the DSP is tied
to the transmit data line of the interface. The transmit frame sync (FSX) and clock (CLKX) pins
are not used.

From Figure 1 we can see that the asynchronous signal line is always high unless a data packet
has been sent across. When a packet is sent, the start bit is sent first, so the signal will go low.
This is similar to an active-low frame sync. The McBSP gives us the flexibility to choose the
polarity of the frame sync signal as active-low. By tying the receive data line to the data receive
(DR) and frame sync (FSR) pins of the McBSP receive channel, we can trigger the McBSP to
start receiving the packet whenever the line goes low. To prevent the McBSP from re-triggering,
it is set to ignore all frame syncs during the receive packet.

SPRA661A

7 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

During decoding, the center of each oversampled bit is checked. Only the first half of the stop bit
is received and checked, which gives more flexibility in the sampling rate, as will be seen below.
The total number of bits the McBSP receives in a frame will be RxPKTBITS=(#start bits + #data
bits + #parity bits + 0.5). Therefore, the McBSP receive port is set to have dual phase frames
with the first phase of length (#start bits + #data bits + #parity bits) words and the second phase
of length 1 word. The word size of the first phase is 16 and the second phase is 8. Since the
start bit is part of the data packet, ideally there will be a 0-bit delay between the received frame
sync and the data. However, on the 5410 errors are generated on receive (missed frame syncs)
unless the delay is set to 1 bit. See Figure 2 for an example of how the McBSP receive frame
aligns with the data packet.

Idle Start LSb MSb Parity

Half Stop Bits

Idle

Data Word

16 bits/
word

McBSP Receive Frame = RxPKTBITS*16 samples

Only the
first half

stop bit is
checked

8 bits/
word

Total bits in packet = PKTBITS

Figure 2. McBSP Receive Frame Structure

The sampling rate of the McBSP is critical to the correct operation of the software UART. The
McBSP will ignore all subsequent frame syncs during the reception of the frame we have
defined above. To get the maximum data rate, it must be able to detect the next start bit, which
could immediately follow the stop bit. The frames syncs and receive data are latched on the
falling edges of the serial port clock. For a frame sync to be detected, the signal must be high for
at least one clock cycle before it goes low again. This resets the frame sync logic. Therefore, the
McBSP must be finished reading in the first data packet before the transition from the stop bit to
the next start bit occurs.

In an ideal case, the clock edges of the serial port line up with the bit edges of the data packet,
there are exactly 16 clock periods for each bit in the packet, and the offset between the
beginning of the start bit and the falling edge of the serial port clock is minimal. See Figure 3 for
an example of this timing.

SPRA661A

8 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

Stop Start LSB

1 bit = 16 clocks

Figure 3. Timing of Signal Perfectly Synchronized to Serial Port Clock

In the practical case, an offset between the beginning of the start bit and the clock’s falling edge
exists. The serial port must also be set for a data delay of 1, causing another clock period of
offset. This offset is the same no matter how many bits are in the packet. The serial port clock
will not generate exactly 16 periods per data bit because the divisor used to create the clock rate
has limited resolution (integer) and cannot produce a clock of exactly the baud rate times 16.
Therefore, the serial port clock may be slower or faster than 16 times the baud rate. This rate
skew causes a timing error that is added for each bit in the packet. If the clock is too slow, there
are less than 16 samples per data bit, causing the McBSP to possibly sample past the end of
the stop bit and into the next start bit. Because the McBSP was ignoring frame syncs during this
time, it misses the transition to the next start bit. The next frame sync is generated whenever
another high to low transition is encountered, most likely in the middle of the next data word.
See Figure 4 for an example of this more practical signal timing.

Start bit

1 bit = 16 clocks

offset

Frame sync generated on
falling edge of clock after
signal goes low

Total
offset

Due to rate
skew.
Added for
each bit in
packet.

Note that the serial port clock is a little slower than the
speed needed to oversample the data bits by 16

1 bit delay

Total error
for start bit

Total
offset

Figure 4. Timing of Signal with Offset and Rate Skew

SPRA661A

9 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

To prevent start bits from being missed, the McBSP must run fast enough such that the last
sample in the frame is confined to the stop bit. See Figure 5 for an example of the minimum
speed of the McBSP.

#samples=RxPKTBITS*16

Need 4–15
samples in stop bit

McBSP Frame

Stop bitStart bit Data + parity bits

McBSP Frame MUST end
at least 1 cycle before end
of first stop bit to prevent
edge of start bit from being
missed

delay +
offset

Figure 5. McBSP Frame Restrictions

The minimum speed of the serial port should account for the maximum offset between the
beginning of the start bit and the frame sync, the delay between the frame sync and first data
sample, and the minimum time between the end of the frame and the next start bit. Given 16
samples per data bit, the equation is:

FrameLength � PacketLength � offset � delay � extraFrameSyncSample

The units of measure are in seconds. This can be rearranged, as follows, with the delays and
offsets now measured in number of serial port samples.

�16
samples

bit
� RxPKTBITS � offset � delay � extraFrameSyncSample�� samplelength � PKBITS

baudrate

The maximum offset is 1 sample, as is the delay. The extra frame sync sample in the left part of
the equation is for the frame sync to reset before the next start bit edge, and is one sample in
length. The sample length is the number of seconds per serial port sample, which is
DIV/DSPCLK. We need to solve for the divisor (DIV).

DIV � PKTBITS � DSPCLK

baudrate�16 samples
bit � RxPKTBITS � 3�

To get the most stringent limit, the most number of bits should be assumed to be in a packet with
1 stop bit. For example, given a baud rate of 19200, a DSPCLK of 75MHz and 17 packet bits (1
start, 14 data, 1 parity, 1 stop: PKTBITS=17, RxPKTBITS=16.5), we get:

DIV � 248.71

Which can only be encoded as an integer, so

DIV � 248

(1)

(2)

(3)

(4)

(5)

SPRA661A

10 Implementing a Software UART on the TMS320C54x with the McBSP and DMA

The decoding scheme will check the middle 4 bits of the received words, except for the � stop
bit, which has its last 4 samples, tested. The maximum speed must ensure that the last 4
samples of the frame lie within the stop bit. This is the same as saying that the McBSP frame
minus those 4 samples must fit within the packet bits prior to the stop bit. The limiting case
would have an offset of 0 (still a delay of 1, though), so the equation is:

�16
samples

bit
� RxPKTBITS � 4 � delay�� DIV

DSPCLK
�

(PKTBITS � STOPBITS)
baudrate

or

DIV �
(PKTBITS � STOPBITS) � DSPCLK

baudrate � �16 samples
bit � RXPKTBITS � 3�

For the most stringent limit, assume the maximum number of bits in a packet (1 start, 14 data, 1
parity, 2 stop bits: PKTBITS=18, STOPBITS=2, RxPKTBITS=16.5). Or for the example above,

DIV � 239.46

Which must be an integer

DIV � 240

Note that increasing the number of stop bits will increase the length of time between the end of
the McBSP frame and the beginning of another start bit. This will raise the maximum DIV value
because RxPKTBITS (only checks first half stop bit) remains the same, but PKTBITS increases.
The maximum and minimum DIV values for common baud rates are listed in Table 1, as well as
what the divisor should be to get the exact baud rate with 16 samples per bit. It is important to
use a divisor as close to the exact baud rate as possible so that the UART transmits properly.

Table 1. Divisor Limits for Given Baud Rate and Clock Rate

75-MHz DSP Clock 100-MHz DSP Clock

Baud Rate

Divisor
Minimum

Exact
Divisor

Divisor
Maximum

Divisor
Minimum

Exact
Divisor

Divisor
Maximum

19200 240 244.14 248 320† 325.52† 331†

38400 120 122.07 124 160 162.76 165

57600 80 81.38 82 107 108.51 110

115200 40 40.69 41 54 54.25 55

† This divisor is too large to be used on the 54xx McBSP (max is 256)

In order to setup the McBSP, the transmit and receive channels, as well as the frame sync
generator and clock generator, must be in reset when registers associated with that portion are
written to. It is important to wait for at least 2 CLKG periods after putting that portion in reset or
taking it out of reset. This allows time for internal synchronization of the McBSP. The McBSP
registers are initialized to the settings in Table 2. See the TMS320C54x DSP Enhanced
Peripherals guide for detailed information on the McBSP.

(6)

(7)

(8)

(9)

SPRA661A

11

Table 2. McBSP Initialization

Register Bit Field Value Comment

SRGR1 FWID 0 unused

CLKGDV DIV-1 Generate clock period according to above Equations

SRGR2 GSYNC 0 Sample rate clock free running

CLKSP 0 Unused

CLKSM 1 Sample rate clock derived from CPU clock

FSGM 0 Transmit frame sync due to DXR-to-XSR copy

FPER 0 unused

SPCR1 DLB 0 No loopback

RJUST 00 Right justify data

CLKSTP 00 Clock stop mode disabled

DXENA 0 DX enabler off

ABIS 0 A-bis mode disabled

RINTM 00 RINT driven by RRDY

RRST_ 0 Receiver disabled

SPCR2 FREE 0 FREE mode disabled

SOFT 1 SOFT mode enabled

FRST_ 0 Frame sync generator in reset

GRST_ 0 Clock generator in reset

XINTM 00 XINT driven by XRDY

XRST_ 0 Transmitter disabled

PCR XIOEN 0 No Tx pins used for GPIO

RIOEN 0 No Rx pins used for GPIO

FSXM 1 Transmit frame sync determined by FSGM

FSRM 0 Receive frame sync generated by external device

CLKXM 1 CLKX is output driven by sample rate generator

CLKRM 1 CLKR is output driven by sample rate generator

FSXP 1 FSX is active low

FSRP 1 FSR is active low

CLKXP 0 Transmit data sampled on rising edge of CLKX

CLKRP 0 Receive data sampled on falling edge of CLKR

RCR1 RFRLEN1 RxPKTBITS-
RxHSTOPBITS-1

Phase 1 of receive frame includes start bit, data bits, and parity bit (not
half stop bit) (RxHSTOPBITS=1)

RWDLEN1 010 Words in phase 1 are 16 bits

SPRA661A

12

Table 2. McBSP Initialization (Continued)

Register CommentValueBit Field

RCR2 RPHASE 1 Dual phase frames

RFRLEN2 RxHSTOPBITS-1 Phase 2 of receive frame includes 1 half stop bit

RWDLEN2 000 Words in phase 2 are 8 bits

RCOMPAND 00 No companding

RFIG 1 Ignore receive frame syncs during receive frame

RDATDLY 01 1-bit delay between FSR and data

XCR1 XFRLEN1 TxPKTBITS-
TxHSTOPBITS-1

Phase 1 of transmit frame includes start bit, data bits, and parity bit (not
half stop bits)

XWDLEN1 010 Words in phase 1 are 16 bits

XCR2 XPHASE 1 Dual phase frames

XFRLEN2 TxHSTOPBITS-1 Phase 2 of receive frame includes half stop bits

XWDLEN2 000 Words in phase 2 are 8 bits

XCOMPAND 00 No companding

XFIG 1 Ignore transmit frame syncs during transmit frame

XDATDLY 00 0-bit delay between FSX and data

5 DMA

The DMA is needed to shuttle data between memory and the McBSP without CPU intervention.
Each time a complete packet is read in, the DMA will interrupt the DSP so it can process the
received packet. Each time a packet is transmitted, the DMA will interrupt the DSP so it knows
another packet may be sent out.

A new packet is received when the DMA has transferred RxPKTBITS words to a buffer from the
McBSP DRR register, and a packet has been transmitted when the DMA moves TxPKTBITS
words to the McBSP DXR register. The DMA can be set to transfer data from/to the McBSP
when the RRDY/XRDY signal becomes active. Interrupts can be generated by the DMA either
by setting the DMA to interrupt at the end of a block transfer (use autoinit or manually re-init the
DMA) or by using ABU mode. We use ABU mode to preserve the autoinit registers for other
uses. Each half of the receive and transmit buffers will hold one packet, and the DMA will
interrupt when its pointer passes into each half.

SPRA661A

13

There is one caveat to using ABU mode. On the 5410, if the pointer into the buffer is
post-incremented, the interrupts will NOT occur on the half buffer points. Instead, when the
pointer moves into the second half of the buffer the interrupt is not generated until it reaches the
second word of that half. This is unlike the other TMS320C54xx processors, where the interrupt
occurs when the pointer gets to the first word in each half. However, if the pointer is
post-decremented, the interrupts do occur in the correct location. So, our buffers will be filled
and emptied from back to front. See Figure 6 for a depiction of the buffer orientation. For the
transmitter, HSTOPBITS (number of half-stop bits) is set by the user. For the receiver
HSTOPBITS is always 1. Note that in autobuffering mode, the DMA buffers must be aligned on
power-of-2 boundaries greater than the buffer size (i.e. buffer size of 16-31 must be on a 32
word boundary).

First half

Second half

Start bit

Start bitStop bit(s)

Stop bit(s) Parity and Data bits

Parity and Data bits

HSTOPBITS
words

PARITY + DATABITS words 1 word

Interrupt generated when DMA
pointer decrements to start bits

Pointer decrements
through data

Figure 6. DMA Circular Buffers

Another issue arises due to the DMA triggering on XRDY and RRDY events. The DMA only
recognizes the event if the DMA channel is enabled when that event occurs. If a DMA channel is
disabled when the event occurs, and the DMA channel is subsequently enabled, it will not
recognize that the event has occurred and it will need to be “kickstarted”. The DMA receive
channel is never disabled, so it will never need to be kickstarted. Kickstarting the DMA for
transmit consists of manually writing a word to the McBSP and then enabling the DMA channel.
When the McBSP writes out that word, it will generate the XRDY event again, this time with the
DMA enabled. Note that the McBSP generates the XRDY and RRDY events when it is brought
out of reset. Therefore, when the UART is started, the DMA should be enabled before the
McBSP is brought out of reset.

On the receive side, the McBSP is constantly running and always has the DMA enabled. The
DMA interrupts the DSP when a packet is read in and the DSP then decodes the oversampled
packet and performs error checking. Note that the receive DMA channel only moves data into
the buffer when the McBSP gets new frame syncs, which only occurs when a new packet is
received. Because the DMA buffer has 2 halves, the receive data is double buffered.

The transmit side is a little more complicated. When the McBSP is out of reset, it is constantly
clocking out data sent to it. If the DMA is enabled, it will continuously move data to the McBSP
when XEVT (XRDY) occurs. Because a packet should only be transmitted when it is valid, either
the DMA or the McBSP must be stopped until valid data is in the buffer.

SPRA661A

14

Though stopping the McBSP seems like the best choice (i.e. no point in running the McBSP
when not using it), latency issues in starting and stopping as well as issues with ensuring the
entire data packet has been transmitted make it less desirable. For instance, when taking the
McBSP transmitter out of reset, 2 serial port bit clocks must go by before it is running properly.
The same is true when it is halted. If these times are not adhered to, the XRDY event is not
properly generated, which causes the DMA to fail. Depending on the baud rate, 4 bit clocks
between reset and running can be a very long time (i.e. almost 1000 DSP cycles for 19200
baud).

Also, a DMA transmit channel interrupt means the DMA has moved TxPKTBITS words to the
McBSP. It does not mean the McBSP is finished transmitting all of the bits. When the DMA
pointer moves into the next half of the buffer (generating the interrupt), it has just moved the last
bit of the packet into the McBSP DXR (note the last 2 bits in the packet are always two 8 sample
long stop bits). That means the second to last word in the packet has just moved into the XSR
register. Therefore, there are 16 samples to transmit before the McBSP is done. We must wait
until the McBSP DXR and XSR registers are empty before halting the McBSP, or these bits will
be corrupted. That is 4000 cycles at a 19200 baud rate. These delays make this approach less
desirable.

The approach we use is to halt the DMA transmit channel when there is no valid data. When the
DMA transmit channel interrupts the DSP, it has just moved the last bit in the packet to the
McBSP, and is therefore done with the packet. By halting the DMA now, the McBSP can still
clock out the remaining bits without making the DSP wait. The only issue with this method is
when to restart the DMA.

The DMA transmit buffer has 2 halves, allowing double buffering of the transmit data. As long as
there is an empty half, more transmit data can be written into the buffer. If the DMA transmit
channel generates an interrupt but there is still another word in the buffer to transmit, the DMA
need not be disabled. However, if the DMA has just transmitted the last valid word in the buffer,
the DMA must be halted and then restarted when a new transmission is desired.

If the DMA has been halted and a new packet is to be transmitted, we must restart the DMA,
making sure it correctly catches the XRDY events. To sync the DMA to the XRDY event, the
DMA must be kickstarted by manually writing the first data bit to the McBSP and then enabling
the DMA. Because it is possible that the last packet still has a bit in the DXR register, we cannot
write to DXR until we are sure it is empty. This is done by waiting until XRDY=1.

It may be possible to speed this process up by only kickstarting the DMA if XRDY=1 when we
want to transmit (i.e. the DMA has missed the XRDY event). But, there is always the possibility
that XRDY may toggle between our read of it and the enabling of the DMA, so it is safer to
always kickstart it. For example, if XRDY=0, we may figure enabling the DMA now will ensure
that it catches the XRDY event. However, if XRDY goes from 0 to 1 right after we check it and
before we enable the DMA, we can miss the event anyway.

The DMA is initialized as in Table 3. See the TMS320C54x DSP Enhanced Peripherals guide for
detailed information on the DMA.

SPRA661A

15

Table 3. DMA Initialization

Register Bit Field Value Comment

DMSRC (Rx) DMSRC McBSPDRR1 Get data from McBSP DRR register

DMDST (Rx) DMDST RxBuffer+RxPKTBITS-1 Start pointer at end of first half of buffer

DMCTR (Rx) DMCTR 2*RxPKTBITS Buffer length is twice the packet length

DMSFC (Rx) DSYN REVT Sync on RRDY for the McBSP (depends on which McBSP
using)

DBLW 0 16 bit words

Frame Count 00000000 Unused

DMMCR (Rx) AUTOINIT 0 Autoinit disabled

DINM 1 Interrupt generated based on IMOD bit

IMOD 1 Interrupt at buffer full and half-full

CTMOD 1 ABU mode

SIND 000 Source address not modified

DMS 01 Source address in data space

DIND 010 Destination address post-decremented

DMD 01 Destination address in data space

DMSRC (Tx) DMSRC TxBuffer+TxPKTBITS-1 Start pointer at end of first half of buffer

DMDST (Tx) DMDST McBSPDXR1 Put data into McBSP DXR register

DMCTR (Tx) DMCTR 2*TxPKTBITS Buffer length is twice the packet length

DMSFC (Tx) DSYN XEVT Sync on XRDY for the McBSP (depends on which McBSP
using)

DBLW 0 16 bit words

Frame Count 00000000 unused

DMMCR (Tx) AUTOINIT 0 Autoinit disabled

DINM 1 Interrupt generated based on IMOD bit

IMOD 1 Interrupt at buffer full and half-full

CTMOD 1 ABU mode

SIND 010 Source address post-decremented

DMS 01 Source address in data space

DIND 000 Destination address not modified

DMD 01 Destination address in data space

SPRA661A

16

When the UART is started, the McBSP and DMA are initialized as in Table 2 and Table 3. To
start the UART, the DMA must have the receive channel enabled and make sure the correct
interrupts are selected from the multiplexed interrupts. This is done in the DMPREC register.
Depending upon which DMA channel is used for reception, its enable bit must be set and the
proper interrupt selection must be made so that the DMA receive and transmit channels have
their interrupts generated. For example, DMA channel 4 can be used for receive and DMA
channel 5 for transmit, which means DPREC must be set to 0x0010 to enable the receive
channel and INTOSEL set to 00 (selects DMA channels 4 and 5 to have interrupts). The
interrupt vector table must of course be appropriately setup to handle these interrupts.

The DMA channels should be disabled before they are setup. See Figure 7 for a depiction of the
overall initialization process.

_UARTInit

Init UART variables

Init DMA registers

Disable McBSP Rx ch, Tx ch, frame sync
generator, & clock generator

RRST_=XRST_=FRST_=GRST_=0

Set DMA Rx ch & Tx ch priorities
low in DMPREC

Set multiplexed interrupt selection
(INTOSEL in DMPREC)

Disable DMA Rx ch & Tx ch in DMPREC

Wait 2 CLKG periods for synchronization

Init McBSP registers

return

Figure 7. UART Initialization

6 Transmit Process

There are two portions to the transmit process: how to place a new packet in the transmit buffer,
and what to do when a packet has just been transmitted. The first case is taken care of
whenever the user calls the routine to perform a transmit (_UARTTxChar). The second occurs in
the DMA transmit channel ISR (_UARTDMATxISR).

SPRA661A

17

6.1 Procedure at Start of Transmission

The flow to create a new packet for transmission is depicted in Figure 8.

The transmission routine should not be entered into unless there is space in the transmit buffer,
verified by polling THRE (Transmit Holding Register Empty) for a 1. Entering the routine with
THRE equal to 0 will disrupt the transmission process, causing the DMA pointer to be aligned
improperly.

To put a new packet in the buffer, the next available half of the buffer is first checked from a flag
(txbufhalf).

If parity is to be generated, a routine that calculates the parity bit is called. The parity bit is
generated based on a successive approximation scheme. This method is detailed in the Texas
Instruments Application Brief, Parity Generation on the TMS320C54x by David Nerge. The parity
bit is added above the data bits.

Next, each bit in the packet is encoded and placed in the transmit buffer. The encoding of the
bits is a simple process; 0xFFFF replaces a 1, and 0x0000 replaces a 0. The start bit is written
to the end of the DMA buffer half, followed by the data bits and the parity bit (if used). Finally, the
stop bits (in 8 bit words) are added. So a packet of 1 start bit, 8 data bits, and 1 stop bit will
require 11 words in the buffer half (stop bit has two 8 bit halves).

If there is another packet in the buffer which has not yet been fully transmitted (i.e. with the
addition of the new packet, there are now 2 packets), then the DMA transmit ISR has not
disabled the DMA. In this case, nothing else needs to be done. The DMA will continue to output
the new packet when it has finished outputting the old packet. Because there are 2 packets in
the buffer, the THRE flag is cleared to indicate that it is full. This flag should be consulted before
every call to the transmit routine to ensure space exists in the buffer.

If there is not another older packet to transmit in the buffer, then the DMA transmit ISR has shut
down the DMA, and it will need to be kickstarted by writing to DXR. The DXR register cannot be
written to until all bits of the previous packet still in the DXR register are shifted out. This can be
checked by waiting until XRDY=1. When that occurs, the start bit is written to DXR, the DMA
pointer is decremented to the first data bit, and the transmit DMA channel is enabled.

Note that the DMA transmit interrupt was disabled during this routine to prevent it from occurring
between the increment of the number of packets in the transmit buffer and the check of the
number of packets. If the number of packets was incremented to 2 (full buffer) and then a DMA
transmit interrupt occurred, the ISR would decrement the number of packets but would not
disable the DMA because it still sees another packet in the buffer. When the ISR returns, the
transmit routine sees only 1 packet in the buffer, so it thinks it needs to restart the DMA, even
though it was never disabled. This will cause a problem because the DMA will start moving the
new packet to the McBSP, but the kickstart of the DMA would overwrite the data. Disabling the
DMA transmit interrupt prevents this from happening.

SPRA661A

18

If PARITY enabledCalculate parity bit

Disable DMA Tx int

Tx
buffer full?

Increment # pkts in

_UARTxChar

Yes

No

Return

All bits

Yes

No

startTx

Set txptr to start of
available half of Tx buffer,

specified in txbufhalf

Toggle txbufhalf

Encode start, data, parity,
and stop bits into DMA

Tx buffer

Tx buffer

Assume buffer full (2 pkts):
set THRE=0

clocked out of
McBSP XSR
(XRDY=1)

?

Write start bit from Tx buffer
to McBSP and adjust DMA SRC ptr

DXR1=*DMATxSRCptr--

Enable DMA Tx ch in DMPREC

Signal Tx buffer not full: set THRE=1

Enable DMA Tx int

Figure 8. Procedure at Start of Transmission

SPRA661A

19

6.2 Procedure at End of Transmission

The second transmission case occurs when a packet has been completely read out of the DMA
transmit buffer, freeing up space for another transmission. When this occurs, the DMA transmit
channel ISR is entered. See Figure 9 for a depiction of the flow of this routine.

When the DMA transmit channel interrupts the DSP, a packet has been completely read out by
the DMA. The interrupt service routine that is subsequently entered must check if any more
packets are ready for transmission, and if not, disable the DMA.

First, the number of transmit packets in the DMA buffer is decremented.

Then, the status of the transmitter is always set to THRE equals 1, as there must be an available
space in the transmit buffer now that a packet has been removed.

If the number of transmit packets is now 0, there is no more data to transmit, so the DMA is
disabled in DMPREC.

Finally, if the INTERRUPT_BASED mode is enabled, the _UARTTBEint routine is called,
allowing the user to process a transmit event during the ISR.

If INTERRUPT_BASED enabled

Save context

Decrement # pkts

_UARTDMATxISR

Yes

No

Return

Another

in Tx buffer

pkt to transmit
in buffer?

Signal Tx buffer not full:
set THRE=1

Call _UARTTBEint

Restore context

Disable DMA Tx ch
in DMPREC

Figure 9. Procedure at End of Transmission

SPRA661A

20

7 Receive Process

As with the transmit process, there are two cases for reception: what to do when a new packet
has just been received, and how to read out a packet from the buffer. The first case is taken care
of by the DMA receive channel interrupt service routine whenever a new packet is received
(_UARTDMARxISR). The second case takes place whenever the user calls a routine to read a
packet from the buffer (_UARTRxChar).

7.1 Procedure When Packet Received

When the DMA has moved an entire packet of data into its receive buffer, it interrupts the DSP.
The ISR associated with this must decode the received packet from the oversampled version
into one word of data and perform any necessary error checking. This is depicted in Figure 10.

First, the buffer half with the newly received packet is determined by checking rxbufhalf.

Next, the bits are decoded. Only the lower (last) 4 samples of the half stop bit are checked to
decode it. The other bits in the packet have their middle 4 samples checked.

The decoding routine must account for the rate skew in the signal. A 16-bit word may contain
only a portion of a data bit, so the decoder needs to manage this shifting of the samples. The
word is decoded to a 1 if the middle four samples are 1100b, 1110b, 1111b, or 0111b. This
accounts for the shifting of the data. Also, to simplify the decoder 1101b and 1011b are decoded
to a 1. These patterns should not occur, as there should be approximately 16 samples in a row
with the same value. Unless noise on the line corrupts a sample, 1101b and 1011b will never be
received. Any other pattern is decoded as a 0.

The decoded bits are compiled into a decoded word and are stored in the rxchar variable. The
data bits are in the lowest part of the word, followed by the parity bit and stop bit.

Next, error checking is performed. The different conditions checked are framing errors, break
indications, parity errors and overrun.

A framing error is detected if the stop bit was not present (i.e. not decoded as a 1). The framing
error (FE) flag is set if this is the case.

A break is detected if all of the bits in the packet are zero. This includes the data, parity and stop
bits. The start bit is not checked, as it must be zero for the word to be received. The break
indicator (BI) flag is set when a break is detected.

A parity error is detected if the parity of the received word does not match the parity setting of
the UART. If there is a parity error (PE), a flag is set in the status register.

Overrun occurs if the last packet received has not been read out and another packet is received
and decoded. If an overrun error occurs (OE), a flag is set in the status register.

The data ready flag (DR) is set to note that there is a new packet ready that has not been read
by the user yet.

Finally, If the INTERRUPT_BASED mode is enabled, the _UARTRBFint routine is called,
allowing the user to process a receive event during an ISR. If any of the status bits were set
during reception (OE|FE|PE|BI), the _UARTLSIint routine is called so that the user can perform
any error handling routines in the receive ISR. None of the status bits are cleared (except DR
and THRE) by the code. It is the user’s responsibility to handle these error conditions.

SPRA661A

21

Save context to stack

Set rxptr to end Rx with newest
pkt, specified in rxbufhalf

Toggle rxbufhalf

Decode stop, parity, and data bits. Check lower 4 bits
of half-stop bit, middle 4 bits of others. Decode to 1 if

1011, 1100, 1101, 1110, 1111, 0111; else 0.

_UARTDMARxISR

If PARITY enabled

No

YesAll
decoded bits

= 0?
Break detected: set BI=1

No

YesDecoded
stop bit

= 0?
Frame error: set FE=1

Remove stop bit from decoded word

Call Parity Check:
reports parity error (PE) & returns
rxchar=decoded pkt w/o parity bit

If INTERRUPT_BASED enabled

No

YesNew pkt
rx before old read

out (DR=1)?
Overrun error: set OE=1

Signal new pkt received: set DR=1

_UARTRBFint

No

YesAny errors
(BI | FE | PE |

OE = 1)?
_UARTLSint

Restore context

Return

Figure 10. Procedure When Packet Received

SPRA661A

22

7.2 Procedure To Read Received Packet

The receive routine simply reads the character from rxchar and resets the DR flag. This routine
should only be entered if DR is a 1. See Figure 11 for a graphical depiction.

Disable DMA Rx int

Signal newest rx pkt read out:

_UARTRxChar

Return

set DR=0

Enable DMA Rx int

Get rxchar for return

Figure 11. Procedure to Read Received Packet

The DMA receive interrupt is disabled during the receive routine to prevent this interrupt from
occurring between the clearing of DR and the return of the character. If a new receive interrupt
did occur at that point, the receive data would be overwritten but an overrun error would not be
noted because DR was 0. Since the DR flag would be set by the ISR, the same data would then
be read out a second time once this routine returned.

8 Overview of Code
The code supporting this report implements the UART in the manner described by the
document, except for a couple exceptions.

Though this report details the case where the DMA pointers are post-decremented, the code
provides a way to use the DMA with post-incremented pointers, if desired. This is selected with
the DMA_PTR_MOD equate in the UARTsetup.inc file. Note that if the 5410 is used, the pointers
must be post-decremented in order for the UART to work properly.

Also, the DMA in ABU mode on the 5402 works differently than that of the 5410. It generates
early DMA interrupts if the DMA pointer is started in the second half of the DMA buffer. For this
reason, the code provides a selectable workaround, which ensures the DMA is only restarted
with the pointer in the first half of the buffer. This workaround is selected with the
DMA_ABU_FIX equate in the UARTsetup.inc file.

There are 11 equates, 1 public variable, 10 private variables, 12 public routines, and 2 private
routines in the code. The public routines are all C-callable. All routines are written in C54x
assembly code.

9 Equates

9.1 MCBSP_CHOICE

McBSP to use for UART (0-2, depending on 54xx choice).

SPRA661A

23

9.2 DMA_RX_CHOICE

DMA channel to use for receive (0-5).

9.3 DMA_TX_CHOICE

DMA channel to use for transmit (0-5). Must be different than DMA_RX_CHOICE.

9.4 INTOSEL

Selection of DMA/McBSP multiplexed interrupts (0-3). The choices are device dependent and
specified in the TMS320C54x DSP Enhanced Peripherals(2) guide.

9.5 PARITY

Specifies the type of parity checked and generated (0=no parity, 1=even, 2=odd, 3=mark,
4=space).

9.6 HSTOPBITS

Number of 1/2 stop bits (2,3 or 4) used in transmission. Gives either 1,1.5, or 2 stop bits.

9.7 DATABITS

Number of data bits (1-14 with parity, or 1-15 w/o parity) in each packet.

9.8 BAUDRATE

Baud rate divisor used to divide down CPU clock to get McBSP clock. Should be approximately
DSPCLK/(16*baudrate). See equations 3 and 7.

9.9 INTERRUPT_BASED

Gives the user the option to process the UART events within the DMA receive and transmit ISRs
(0=only use polling to check status of UART, 1=run ISR’s for the interrupt events on UART).

9.10 DMA_PTR_MOD

Direction for DMA pointer modification (0=post-decrement, 1=post-increment). 5410 can only
use post-decrement in order for each character to be properly processed.

9.11 DMA_ABU_FIX

Adds workaround for ABU difference in 5402 (0=no fix, 1=add fix). Difference occurs when DMA
ABU started with DMA pointer in second half of buffer. The workaround ensures the DMA
pointer is never started in the second half.

10 Public Variables

10.1 _UARTLSR

The software UART reports status to the DSP through the UART Line Status Register. This
register is organized as in Figure 12.

SPRA661A

24

_UARTLSR Reserved THRE BI FE PE OE DR

5 4 3 2 1 015 6

Figure 12. UART Status Register

The bit definitions are:

• DR - Data Ready

Set when a new packet is received and decoded by the UART. Cleared when the
_UARTRxChar routine is called. This bit should be polled prior to calling the _UARTRxChar
routine to determine if a new character is available.

• OE - Overrun Error

Set when another packet is received by the UART before the previous packet was read out.
This bit must be manually cleared.

• PE - Parity Error

Set when the parity of the received packet does not match the settings in the UART. This bit
must be manually cleared.

• FE - Framing Error

Set when an invalid stop bit is detected. This bit must be manually cleared.

• BI - Break Indicator

Set when a break is detected. This bit must be manually cleared.

• THRE - Transmit Holding Register Empty

Set when space is available in the transmit buffer for another packet. Cleared by the
_UARTTxChar routine if the transmit buffer is filled (2 packets). This bit should be polled
prior to calling the _UARTTxChar routine to determine if a new packet can be sent.

11 Private Variables

11.1 rxchar

Holds the last character received by the UART.

11.2 rxbufhalf

A flag signaling the valid half of the DMA receive buffer (the half with the newest packet). It is 0
for the first half and 1 for the second half. For post-decremented DMA pointers, the first half is
the half at the higher addresses. For post-incremented pointers, the first half is the half at the
lower addresses.

11.3 txbufhalf

A flag signaling the valid half of the DMA transmit buffer (the next half to write in). It is 0 for the
first half and1 for the second half. For post-decremented DMA pointers, the first half is the half at
the higher addresses. For post-incremented pointers, the first half is the half at the lower
addresses.

SPRA661A

25

11.4 numTxPkts

Holds the number of packets currently in the transmit buffer. The maximum number is 2. Used
by the transmit routine to determine when to disable the DMA transmit channel (when
numTxPkts decrements to 0) and when the buffer is full (when numTxPkts increments to 2).
THRE is cleared to 0 whenever numTxPkts becomes 2.

11.5 TxBuffer[2*TxPKTBITS]

The DMA transmit buffer. It has a size of 2*TxPKTBITS and must be aligned on a 2n word
boundary greater than 2*TxPKTBITS.

11.6 RxBuffer[2*RxPKTBITS]

The DMA receive buffer. It has a size of 2*RxPKTBITS and must be aligned on a 2n word
boundary greater than 2*RxPKTBITS.

11.7 decoderMask

Used in decoding routine to mask out center samples for testing. Saves cycles to use a variable
rather than an immediate value.

11.8 mask1011b

Used in the decoding routine to determine if bit is 1 or 0. Saves cycles to use a variable rather
than an immediate value.

11.9 mask0100b

Used in the decoding routine to determine if bit is 1 or 0. Saves cycles to use a variable rather
than an immediate value.

11.10 one

Used in the decoding routine to create decoded character. Saves cycles to use a variable rather
than an immediate value.

12 Public Routines

12.1 _UARTInit(inputs: none; outputs: none)

Initializes the software UART, specifically the McBSP, DMA, and decoder variables. Should be
run once prior to running _UARTStart for the first time. See Figure 7.

12.2 _UARTStart(inputs: A<0:start Rx, A==0:start Rx & Tx, A>0:start Tx; outputs: none)

Starts the software UART. Takes A as an input to determine if transmit (A>0), receive (A<0) or
both (A=0) should be started. Initializes the status register and enables global interrupts. For
transmit or receive, enables the McBSP clock generator, initializes the valid half of the DMA
buffer, sets the DMA pointer to the end of the first half of the buffer, enables the DMA
transmit/receive channel interrupt in the IMR register, and takes the McBSP transmit/receive
channels out of reset. For transmit, also zeros out the number of packets in the transmit buffer.
For receive, also enables the DMA Rx channel in DMPREC. This routine may be run whenever
the UART is to be restarted (i.e. after the _UARTStop or _UARTInit routines). See Figure A–1 in
Appendix A.

SPRA661A

26

12.3 _UARTStop(inputs: A<0(stop Rx), A==0(stop Rx & Tx), A>0(stop Tx); outputs:
none)

Stops the UART. Takes A as an input to determine if transmit (A>0), receive (A<0) or both (A=0)
should be stopped. For transmit, waits until all packets in the transmit buffer are transmitted. For
transmit or receive, disables the DMA transmit/receive interrupt and channel and puts the
McBSP transmit/receive ports in reset. If both receive and transmit are stopped, it disables the
McBSP clock generator. Use _UARTStart to restart the UART. This routine should not be called
from within an ISR, as it requires interrupts to be enabled in order to run properly. See
Figure A–2 in Appendix A.

12.4 _UARTSetBaudRate(inputs: A=clock divisor; outputs: none)

Sets a new baud rate for the UART. Divisor must be in accumulator A on entry and must
conform to equations 3 and 7. The UART (receive and transmit) must be stopped using
_UARTStop before this routine can be run. See Figure A–3 in Appendix A.

12.5 _UARTSetBreak(inputs: A!=0:send break, A==0:end break; outputs: none)

Sends a break to the receiver. With a non-zero input, sends a packet of all 0’s with the stop bit
set to 0. With an input of zero, sends a string of 1’s. To send a long break, loop over this routine
with a non-zero input for as many packet lengths as the break is desired to be, then call again
with an input of zero to end the break. It is necessary to end the break by sending a string of 1’s
so that the line goes high before a new character is sent. If the line didn’t go high, the next
character will be misinterpreted because its start bit will be missed. This routine should only be
called when THRE is 1, indicating space available for another transmit packet. See Figure A–4
in Appendix A.

12.6 _UARTTxChar(inputs: A=char to transmit; outputs: none)

Transmits a character given in accumulator A. Adds start, stop and parity bits and stores the
oversampled data in the valid half of the DMA transmit buffer. The DMA transmit channel is
appropriately enabled, as specified in Figure 8. This routine should only be called when THRE is
1, indicating space available for another transmit packet.

12.7 _UARTRxChar(inputs: none; outputs: A=last received char)

Receives the newest character. Returns the last character read and resets the DR flag. This
routine should only be called when DR is 1, indicating a new packet has been received. See
Figure 11 for a description of the process.

12.8 _UARTDMATxISR(inputs: none; outputs: none)

Must be branched to from the DMA channel interrupt vector used for the transmit channel.
Entered when the DMA sends a packet. Sets the THRE flag and disables the DMA transmit
channel if no more packets are in the transmit buffer. See Figure 9 for a description of the
process.

12.9 _UARTDMARxISR(inputs: none; outputs: none)

Must be branched to from the DMA channel interrupt vector used for the receive channel.
Entered when the DMA receives a new packet. Decodes the received bits, checks for error
conditions, stores the received character to rxchar, and sets the DR flag. See Figure 10 for a
description of the process.

SPRA661A

27

12.10 _UARTRBFint(inputs: none; outputs: none)

Called from _UARTDMARxISR if INTERRUPT_BASED mode is enabled, allowing receive event
processing within an ISR. _UARTRxChar may be called from within this routine to receive a new
character. Because it is run from within an ISR, the context must be saved and restored within
this routine.

12.11 _UARTTBEint(inputs: none; outputs: none)

Called from _UARTDMATxISR if INTERRUPT_BASED mode is enabled, allowing transmit event
processing within an ISR. _UARTTxChar or _UARTSetBreak may be called from within this
routine to send a new character. Because it is run from within an ISR, the context must be saved
and restored within this routine.

12.12 _UARTLSIint(inputs: none; outputs: none)

Called from _UARTDMARxISR if INTERRUPT_BASED mode is enabled, allowing error
condition processing within an ISR. Because it is run from within an ISR, the context must be
saved and restored within this routine.

13 Private Routines

13.1 ParityCalc(inputs: A=received char (data & parity bits only); outputs: TC=0 (even
parity), TC=1(odd parity))

Performs parity calculation using the successive approximation technique described in the Texas
Instruments Application Brief, Parity Generation on the TMS320C54x(3) by David Nerge. The TC
bit will equal 1 if the current parity is odd, and 0 if the current parity is even.

13.2 ParityCheck(inputs: A=received char (data & parity bits only); outputs:
AL=received char (data bits only))

Checks the parity of the received word against the parity setting of the UART and strips off the
parity bit. Invalid parity is reported in the PE status bit.

14 Usage of UART Code
The UART routines are contained in uart.asm, located in Appendix B. The routines are all C
callable.

There is an include file with the UART code (UARTsetup.inc in Appendix C) in which parameters
of the code must be set. These include choices of the McBSP to use, the DMA channels to use,
the type of parity to generate and detect (if any), the baud rate divisor, the number of stop and
data bits, and whether to use polling or interrupt mode.

An example of using the software UART is included in the files ExampleC.asm in Appendix D (C
code interface) and ExampleASM.asm in Appendix E (ASM code interface). An example
interrupt vector table is included in vectors.asm, in Appendix F. An example command file is
included in uart.cmd, in Appendix G. The example files perform a loopback of received data and
were tested by hooking up an RS232 interface to a PC running HyperTerminal (see the RS232
Connections section for more information on the hookup). If any error is received, the UART
generates a break back to the host.

SPRA661A

28

The PLL and processor are initialized before starting the UART. See the TMS320C54x DSP
CPU and Peripherals(4) guide for information on the PLL and interrupts. See the TMS320C54x
DSP Enhanced Peripherals(2) guide for detailed information on choosing which DMA channel
and McBSP is available for your particular device, as well as which interrupts are multiplexed
and how they are selected in INTOSEL.

Then, the _UARTInit routine is called. Once this is done, calling _UARTStart with A=0 will
enable the UART to start receiving and transmitting packets.

There are two types of examples in the code. One uses a polling method to transmit and receive
characters; the other uses an interrupt method.

For the polling method, to transmit a character, first check that the THRE bit in _UARTLSR
equals 1. If so, load the character to accumulator A and call _UARTTxChar.

To receive a new character, check that the DR bit in _UARTLSR equals 1 and then call
_UARTRxChar. The new character is returned in accumulator A.

For the INTERRUPT_BASED mode, to transmit a block of characters, the first two characters in
the buffer are manually written by calling the transmit routine twice (fills the transmit buffer). The
ISR writes a new character to the buffer whenever space opens up, keeping the UART at the
maximum transmit rate (consecutive characters). When the buffer is emptied, the ISR exits
without transmitting a new character. No more interrupts will occur after that, which is why the
first characters must be manually written.

The receive ISR writes the characters into a buffer automatically. A variable is used to check
how many characters are in the buffer and perform different routines based on this number.

To halt the UART, call _UARTStop with A=0.

15 Performance

15.1 Memory

The memory used by the UART code depends on the number of total bits in a packet and
especially whether parity generation and detection is enabled, as these are compile-time
options. The approximate size in words, assuming the DMA ABU Fix is not used, is given in
Table 4.

Table 4. UART Memory Consumption

Not Interrupt Based Interrupt Based

Memory Type No Parity Parity No Parity Parity

Program 414 439 422 447

Data 15+4D+4P+4S

D=#data bits, S=#stop bits, P=1 if parity enabled
Memory consumption is measured in words (1 word=2 bytes)

15.2 Cycle Count

The number of cycles each UART routine consumes, with no DMA ABU fix, is listed in Table 5.

SPRA661A

29

Table 5. UART Routine Cycle Counts

Not Interrupt Based

Routine Maximum Data Rate Individual Char Sent

_UARTInit 759 759

_UARTStart (rx & tx) 1096 1096

_UARTStop (rx & tx) 583 583

_UARTSetBaudRate 10 10

_UARTSetBreak 45+D+P+2S 72+D+P+2S*

_UARTTxChar 43+7D+28P+2S 71+7D+28P+2S*

_UARTRxChar 15 15

_UARTDMATxISR 22 22

_UARTDMARxISR 74+10D+42P 74+10D+42P

ParityCalc 14 14

ParityCheck 14 14

D=#data bits, S=#stop bits, P=1 if parity enabled
* Will take longer if bits of prev char still being transmitted by McBSP

In Table 5, the Maximum Data Rate is achieved when characters are transmitted consecutively,
with no idle time on the data lines. The extra savings in cycle count is achieved due to the fact
that the UART does not need to shut down and restart the DMA transmit channel.

From Table 5, it can be seen that to transmit consecutive packets with 8 data bits, 1 stop bit and
with parity enabled (total of 11 bits with start bit) will cost 129+22=151 cycles per packet, or
151/11=13.7 cycles/bit. At 19200 baud rate that is 13.7*19200=0.26 MIPS. At 115200 baud rate
that is 1.58 MIPS.

To receive a packet of 8 data bits, 1 stop bit and with parity enabled will cost 15+196=211 cycles
per packet, or 211/11=19.2 cycles/bit. At 19200 baud rate that is 18.7*19200=0.37 MIPS. At
115200 baud rate that is 2.21 MIPS.

The cycles and MIPS for the UART transmit and receive processes are displayed in Table 6.

Table 6. Performance of Software UART

MIPS

#Data Parity #Stop Cycles 19200 baud 115200 baud
#Data
Bits

Parity
Enabled

#Stop
Bits Transmit Receive Transmit Receive Transmit Receive

5 N 1 102 139 0.28 0.38 1.68 2.29

5 Y 1 130 181 0.31 0.43 1.87 2.61

8 N 1 123 169 0.24 0.32 1.42 1.95

8 Y 1 151 211 0.26 0.37 1.58 2.21

SPRA661A

30

These numbers do not reflect the cycles waited while polling the status bits or the cycles used in
ISR’s for an interrupt-based routine. Note that as the number of bits increase, the MIPS go down
due to the low overhead for additional bit processing.

The rates at which the UART can run are limited by the clock divider in the McBSP. The divider
ranges from 1-256, so given a DSP clock frequency of 75MHz, the McBSP can run between
293kHz and 37.5MHz (can’t go above 50 MHz). The oversampling of 16 leads to bit rates of
approximately 18.31kbps to 2344kbps. If the equations concerning the McBSP sampling rate (3
and 7) are not satisfied such that an integer value of the divisor results, then the UART will
misinterpret the asynchronous data, causing errors in the transfer.

16 Verification

This code has been verified at 19200bps and 115200bps running on a 5410 EVM and 5402 DSK
(at 75 MHz) using three different test environments. First, it was tested using HyperTerminal on
a PC attached over an RS232 cable to the EVM/DSK. Data was looped back by the UART to the
PC, where it was displayed and compared to the transmitted data. It was also tested by tying the
RS232 transmit line to the RS232 receive line and comparing the looped back data on the DSP.
Finally, it was tested by connecting to a TL16C550 UART running in non-FIFO mode.

17 RS232 Connections

The signal coming across the RS232 interface has a level of 10 volts for a 0 and –10 volts for a
1. When no signal is present, it is pulled to –10 volts. The DSP I/O level is 3.3 volts when no
signal is present or a 1 is sent, and 0 volts when a 0 is sent. In order to interface to the RS232
cable, a level shifter circuit was built as described in Figure 13. A Max232 RS232 Transceiver
chip was used for the interface.

SPRA661A

31

RS232 DB9
connector

DR

FSR

DR

DX

1–C1+
2-V+

3–C1–

4–C2+

5–C2–

6-V–

7-T2out

8-R2in

15-GND

10-T2in

9-R2out

16-Vcc

DX

+5 to +10v voltage
doubler

+5 to –10v voltage
inverter

54xx DSP

+5 V

0–5 V

0–3.3 V

–10–10V

.1µF

.1µF

.1µF

.1µF

10kΩ

20kΩ

Figure 13. RS232 Interface Circuit

18 References
1. TL16C450 Asynchronous Communications Element data sheet (SLLS037B).

2. TMS320C54x DSP Enhanced Peripherals Reference Set Volume 5 (SPRU302) .

3. Nerge, David. Parity Generation on the TMS320C54x, TMS320 DSP Designer’s Notebook,
Application Brief (SPRA266).

4. TMS320C54x DSP CPU and Peripherals Reference Set Volume 1 (SPRU131).

SPRA661A

32 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix A Flowcharts for Routines

_UARTStart

Yes

No

Return

Start
Tx only

?

Enable McBSP clock generator
GRST_=1

Clear DMA Rx int flag

Wait 2 CLKG periods for
synchronization

Init rx sttus flags
BI=FE=PE=OE=DR=0

Init to start in first half of Rx buffer
rxbufhalf=0 RxDMADSTptr=start

of first half of Rx buffer

Enable DMA Rx int

Enable DMA Rx ch in DMPREC

Enable McBSP Rx ch
RRST_=1

Yes

No Start
Rx only

?

Int tx status flag
THRE=1

Clear DMA Tx int flag

Init to start in first half of Tx buffer
rxbufhalf=0, numTxPkts=0

RxDMADSTptr=start of first half of Rx buffer

Enable DMA Tx int

Enable McBSP Tx ch
XRST_=1

Wait 2 CLKG periods for
synchronization

Enable global interrupts
INTM_=0

Figure A–1. Procedure to Start UART

SPRA661A

33 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

_UARTStop

No

Return

Start
Tx only

?

Disable McBSP clock generator
GRST_=0

Disable DMA Rx int

Disable DMA Rx ch in DMPREC

Disable McBSP Rx ch
RRST_=1

Yes

No Start
Rx only

?

Wait 2 CLKG periods for
synchronization

Clear data rx flag
DR=0

Yes

Yes

All words
from tx buffer
transmitted

(numTxPkts=0)
?

All bits
clocked out of
McBSP XSR
(XRDY=1)?

No

No

Disable DMA Tx int

Disable DMA Tx ch in DMPREC

Disable McBSP Tx ch
XRST_=0

Clear tx status flag
THRE=0

Yes

Figure A–2. Procedure to Stop UART

SPRA661A

34 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

_UARTSetBaudRate

Return

Store new divisor (input-1) to
McBSP SRGR1 reg

Figure A–3. Procedure to Change Baud Rate

_UARTSetBreak

Yes

startTx

End
of break

?

Disable DMA Tx int

No

Set tsptr to end of available half of
Tx buffer, specified in txbufhalf

Toggle txbufhalf

End break (pull line high)
(fill Tx buffer half with FFFFs)

Send break
(fill Tx buffer half with 0000s)

Figure A–4. Procedure to Send a Break

SPRA661A

35 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix B UART Code (uart.asm)
**
* Filename: uart.asm *
* Function: Software UART *
* Author: Robert J. DeNardo *
* Texas Instruments, Inc *
* Revision History: *
* 11/12/99 Original Code Robert DeNardo *
* 12/21/99 Increased data bits to 1-15. Robert DeNardo *
* Disabled ints during RxChar & *
* TxChar. Break routine rewritten. *
* Removed numTxPkts check from TxChar *
* routine. Removed ’ssbx CPL’ in *
* RxISR. Added latency after McBSP *
* reset. Disabled DMA chs and McBSP *
* in Init. Moved INTOSEL init to Init. *
* Disable and enable GRST during McBSP *
* reg writes. Removed UART stop and *
* start from SetBaud routine. Fixed *
* break detect to check stop bit=0 too. *
* Check lower 4 bits of stop bit, not *
* upper. *
* 1/07/00 Added workaround for 5402 DMA ABU Robert DeNardo *
* Added (inc/dec)rement option for *
* DMA pointers. *
* 09/05/00 Fixed _UARTDMATxISR to conditionally Robert DeNardo *
* turn off DMA BEFORE calling *
* _UARTTBEint. Keeps DMA from turning *
* off too late or from turning off even *
* if new packet in buffer. *
* *
* Notes: *
* This code implements a software UART using a McBSP and 2 DMA *
* channels, with the following features: *
* *
* Generation of start and stop bits *
* Compile-time selectable data length (1-15 bits) *
* Compile-time selectable stop bit length (1, 1.5, 2 bits) *
* Compile-time selectable parity (none,even,odd,mark,space) *
* Compile- and Run-time selectable baud rate *
* Break detection and generation *
* Parity detection and generation *
* Overrun detection *
* Framing error detection *
* Double buffered receive and transmit signals *
* Routines to transmit and receive characters *
* Error condition ISR *
* *
* Parameters: *
* All parameters which the user can set are defined in the *
* UARTsetup.inc file. *
* *
* Public Routines: *
* All public routines are C callable. Routines which the *
* user may access include: *

SPRA661A

36 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

* _UARTDMARxISR - must be branched to from DMA Rx channel *
* interrupt vector. *
* _UARTDMATxISR - must be branched to from DMA Tx channel *
* interrupt vector. *
* _UARTTxChar - transmits a character *
* _UARTRxChar - reads last received character *
* _UARTStart - starts the UART *
* _UARTStop - stops the UART *
* _UARTInit - initializes the McBSP and DMA for the UART *
* _UARTSetBaudRate - changes the baud rate *
* _UARTSetBreak - sends a break *
* *
* If using INTERRUPT_BASED mode, user must define these funcs: *
* _UARTLSIint - handles error conditions *
* _UARTRBFint - handles received chars *
* _UARTTBEint - handles new transmission *
* *
* Public Registers: *
* _UARTLSR - contains status bits. See register definition in *
* UARTsetup.inc for bit information. *
* *
* *
* This code uses the DMA ABU mode. It was tested with an *
* interface to a PC COM port through an RS232 level shifter *
* on a 5410 EVM and 5402 DSK, and with an interface to a *
* HW UART. *
* *
* McBSP is selectable for the interface (default=0) *
* DMA Channel for Receive is selectable (default=4) *
* DMA Channel for Transmit is selectable (default=5) *
* *
* Hardware setup: *
* Data receive line must be tied to FSR and DR of the McBSP. *
* The data transmit line must be tied to the DX pin of the *
* McBSP. *
* *
* See the ’Implementing a Software UART on the *
* TMS320C54xx with the McBSP and DMA’ Application Note *
* for detailed information on how this code works and *
* how it can be used (SPRA661). *
**
 .version 548
 .mmregs

*********** public routines defined in this file ****************
 .def _UARTDMARxISR
 .def _UARTDMATxISR
 .def _UARTTxChar
 .def _UARTRxChar
 .def _UARTStart
 .def _UARTStop
 .def _UARTInit
 .def _UARTSetBaudRate
 .def _UARTSetBreak
*********** public variables defined in this file ***************
 .def _UARTLSR

SPRA661A

37 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

***************** Equates used in this file *********************
; parity choices
NO .set 0
EVEN .set 1
ODD .set 2
MARK .set 3
SPACE .set 4

; decoder equates
DECODER_MASK .set 0xF<<6 ; only test middle 4 bits of 16 bit word
MASK1011b .set 1011b<<6 ; used to test for a 1
MASK0100b .set 0100b<<6 ; used to test for a 1
ONE .set 1 ;
STOPBITSHFT .set 6 ; amount to left shift half stop bit before decoding
 ; puts lower 4 bits into center of 16 bit word

; McBSP register addresses
SPSA0 .set 38h ; address of McBSP0 subaddress register
DRR10 .set 21h ; address of McBSP0 DRR1 register
DXR10 .set 23h ; address of McBSP0 DXR1 register
SPSA1 .set 48h ; address of McBSP1 subaddress register
DRR11 .set 41h ; address of McBSP1 DRR1 register
DXR11 .set 43h ; address of McBSP1 DXR1 register
SPSA2 .set 34h ; address of McBSP2 subaddress register
DRR12 .set 31h ; address of McBSP2 DRR1 register
DXR12 .set 33h ; address of McBSP2 DXR1 register

; offsets for McBSP sub-addressed registers
SPCR1 .set 0 ; Serial Port Control Register 1
SPCR2 .set 1 ; Serial Port Control Register 2
RCR1 .set 2 ; Receive Control Register 1
RCR2 .set 3 ; Receive Control Register 2
XCR1 .set 4 ; Transmit Control Register 1
XCR2 .set 5 ; Transmit Control Register 2
SRGR1 .set 6 ; Sample Rate Generator Register 1
SRGR2 .set 7 ; Sample Rate Generator Register 2
PCR .set 14 ; Pin Control Register

; SPCR1 -- bit definitions
RRST .set 1<<0 ; RRST_ bit

; SPCR2 -- bit definitions
XRST .set 1<<0 ; XRST_ bit mask
XRDY .set 1<<1 ; XRDY bit mask
GRST .set 1<<6 ; GRST_ bit mask
FRST .set 1<<7 ; FRST_ bit mask

; Reset Latency -- amount of time needed after McBSP is put in or out of reset
RESET_LATENCY .set 2*256 ; max time is 2 bit clocks for max divisor (256)

; DMA register addresses
DMPREC .set 54h ; channel PRiority and Enable Control register
DMSA .set 55h ; Sub-Bank Access Register
DMSDI .set 56h ; Sub-Bank Access Register with Auto-Increment
DMSDN .set 57h ; Sub-Bank Access Register without Auto-Increment

; offsets for DMA sub-addressed registers

SPRA661A

38 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

DMSRC0 .set 0 ; Channel 0 Source Address Register (first reg for ch 0)
DMSRC1 .set 5 ; Channel 1 Source Address Register (first reg for ch 1)
DMSRC2 .set 10 ; Channel 2 Source Address Register (first reg for ch 2)
DMSRC3 .set 15 ; Channel 3 Source Address Register (first reg for ch 3)
DMSRC4 .set 20 ; Channel 4 Source Address Register (first reg for ch 4)
DMSRC5 .set 25 ; Channel 5 Source Address Register (first reg for ch 5)

; DMPREC:DE -- DMA channel enable definitions
DMAch0 .set 1<<0
DMAch1 .set 1<<1
DMAch2 .set 1<<2
DMAch3 .set 1<<3
DMAch4 .set 1<<4
DMAch5 .set 1<<5

; DMSFC:DSYN -- DMA sync event definitions
REVT0 .set 0001b ; McBSP0 receive event
XEVT0 .set 0010b ; McBSP0 transmit event
REVT2 .set 0011b ; McBSP2 receive event
XEVT2 .set 0100b ; McBSP2 transmit event
REVT1 .set 0101b ; McBSP1 receive event
XEVT1 .set 0110b ; McBSP1 transmit event

;IMR/IFR bit definitions
DMAC0int .set 1<<6
DMAC1int .set 1<<7
DMAC2int .set 1<<10
DMAC3int .set 1<<11
DMAC4int .set 1<<12
DMAC5int .set 1<<13

 .copy ”UARTsetup.inc” ; contains USER specifications for UART

***************** Config Error Checking *****************
 .if ((MCBSP_CHOICE>2)|(MCBSP_CHOICE<0))
 .emsg ”CONFIG ERROR: MCBSP_CHOICE limited to 0, 1, or 2”
 .endif
 .if ((DMA_RX_CHOICE>5)|(DMA_RX_CHOICE<0))
 .emsg ”CONFIG ERROR: DMA_RX_CHOICE limited to 0-5”
 .endif
 .if ((DMA_TX_CHOICE>5)|(DMA_TX_CHOICE<0))
 .emsg ”CONFIG ERROR: DMA_TX_CHOICE limited to 0-5”
 .endif
 .if (DMA_RX_CHOICE==DMA_TX_CHOICE)
 .emsg ”CONFIG ERROR: DMA_RX_CHOICE and DMA_TX_CHOICE must be different”
 .endif
 .if (INTOSEL<0)|(INTOSEL>3)
 .emsg ”CONFIG ERROR: INTOSEL limited to 0-3”
 .endif
 .if (PARITY<NO)|(PARITY>SPACE)
 .emsg ”CONFIG ERROR: PARITY limited to NO, EVEN, ODD, MARK or SPACE”
 .endif
 .if (PARITY!=NO)&((DATABITS>14)|(DATABITS<1))
 .emsg ”CONFIG ERROR: With PARITY, DATABITS limited to 1-14”
 .endif
 .if (PARITY==NO)&((DATABITS>15)|(DATABITS<1))
 .emsg ”CONFIG ERROR: Without PARITY, DATABITS limited to 1-15”

SPRA661A

39 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 .endif
 .if ((HSTOPBITS>4)|(HSTOPBITS<2))
 .emsg ”CONFIG ERROR: HSTOPBITS limited to 2, 3, or 4”
 .endif
 .if ((DMA_PTR_MOD<0)|(DMA_PTR_MOD>1))
 .emsg ”CONFIG ERROR: DMA_PTR_MOD limited to 0 or 1”
 .endif
 .if ((DMA_ABU_FIX<0)|(DMA_ABU_FIX>1))
 .emsg ”CONFIG ERROR: DMA_ABU_FIX limited to 0 or 1”
 .endif

**************** Config Determinations ******************
 .if PARITY==NO
PARITYBITS .set 0
 .else
PARITYBITS .set 1
 .endif

 .if PARITY!=NO ; set position of calculated parity bit for ParityCalc
routine
 .if DATABITS+PARITYBITS>16
PARITYCHECK .set 1<<31
 .elseif DATABITS+PARITYBITS>8
PARITYCHECK .set 1<<15
 .elseif DATABITS+PARITYBITS>4
PARITYCHECK .set 1<<7
 .elseif DATABITS+PARITYBITS>2
PARITYCHECK .set 1<<3
 .elseif DATABITS+PARITYBITS>1
PARITYCHECK .set 1<<1
 .endif
 .endif

STARTBITS .set 1 ; always 1 start bit
RxHSTOPBITS .set 1 ; Receiver only checks first 1/2 stop bit
TxHSTOPBITS .set HSTOPBITS ; Transmitter sends # half stop bits defined by user
STOPBIT .set 1<<DATABITS+PARITYBITS ; define the stop bit position
TxPKTBITS .set STARTBITS+DATABITS+PARITYBITS+TxHSTOPBITS ; total number of bits
 ; in each word
RxPKTBITS .set STARTBITS+DATABITS+PARITYBITS+RxHSTOPBITS ; total number of bits
 ; in each word

 .if MCBSP_CHOICE==0
SPSA .set SPSA0
DRR1reg .set DRR10 ; need to use ’reg’ because DRR1 already defined in .mmregs
DXR1reg .set DXR10 ; need to use ’reg’ because DXR1 already defined in .mmregs
REVT .set REVT0
XEVT .set XEVT0
 .elseif MCBSP_CHOICE==1
SPSA .set SPSA1
DRR1reg .set DRR11
DXR1reg .set DXR11
REVT .set REVT1
XEVT .set XEVT1
 .elseif MCBSP_CHOICE==2
SPSA .set SPSA2
DRR1reg .set DRR12

SPRA661A

40 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

DXR1reg .set DXR12
REVT .set REVT2
XEVT .set XEVT2
 .endif
McBSPDataReg .set SPSA+1 ; McBSP register to write/read data values

 .if DMA_RX_CHOICE==0
RxDMAptr .set DMSRC0 ; point to first DMA regsiter for this channel
RxDMACh .set DMAch0 ; define bit to enable this DMA channel in DPREC:DE
RxDMAInt .set DMAC0int ; define bit mask for this DMA channel interrupt in
 ; IMR/IFR

 .elseif DMA_RX_CHOICE==1
RxDMAptr .set DMSRC1
RxDMACh .set DMAch1
RxDMAInt .set DMAC1int
 .elseif DMA_RX_CHOICE==2
RxDMAptr .set DMSRC2
RxDMACh .set DMAch2
RxDMAInt .set DMAC2int
 .elseif DMA_RX_CHOICE==3
RxDMAptr .set DMSRC3
RxDMACh .set DMAch3
RxDMAInt .set DMAC3int
 .elseif DMA_RX_CHOICE==4
RxDMAptr .set DMSRC4
RxDMACh .set DMAch4
RxDMAInt .set DMAC4int
 .elseif DMA_RX_CHOICE==5
RxDMAptr .set DMSRC5
RxDMACh .set DMAch5
RxDMAInt .set DMAC5int
 .endif

 .if DMA_TX_CHOICE==0
TxDMAptr .set DMSRC0
TxDMACh .set DMAch0
TxDMAInt .set DMAC0int
 .elseif DMA_TX_CHOICE==1
TxDMAptr .set DMSRC1
TxDMACh .set DMAch1
TxDMAInt .set DMAC1int
 .elseif DMA_TX_CHOICE==2
TxDMAptr .set DMSRC2
TxDMACh .set DMAch2
TxDMAInt .set DMAC2int
 .elseif DMA_TX_CHOICE==3
TxDMAptr .set DMSRC3
TxDMACh .set DMAch3
TxDMAInt .set DMAC3int
 .elseif DMA_TX_CHOICE==4
TxDMAptr .set DMSRC4
TxDMACh .set DMAch4
TxDMAInt .set DMAC4int
 .elseif DMA_TX_CHOICE==5
TxDMAptr .set DMSRC5

SPRA661A

41 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

TxDMACh .set DMAch5
TxDMAInt .set DMAC5int
 .endif

********************** variable definitions *********************
UARTvars .usect ”UART_vars”,9,1 ; create a section for the UART vars. Keep in
 ; same data page
_UARTLSR .set UARTvars+0 ; Line Status Register (LSR) holds information on
 ; errors and ready status
rxchar .set UARTvars+1 ; holds last character received
rxbufhalf .set UARTvars+2 ; defines which half of raw receive buffer will
 ; have next character
txbufhalf .set UARTvars+3 ; defines which half of raw transmit buffer is
 ; open for write
numTxPkts .set UARTvars+4 ; holds # of pkts in tx buffer
mask1011b .set UARTvars+5 ; used in decoder
mask0100b .set UARTvars+6 ; used in decoder
decodeMask .set UARTvars+7 ; used in decoder
one .set UARTvars+8 ; used in decoder

; This section must be aligned on 2^n boundary greater than TxPKTBITS*2:
TxBuffer .usect ”UARTTxBuffer”,2*TxPKTBITS ; Holds coded bits for transmission.

; This section must be aligned on 2^n boundary greater than RxPKTBITS*2:
RxBuffer .usect ”UARTRxBuffer”,2*RxPKTBITS ; Holds coded bits upon reception.

******** Config Determinations Dependent on Variables ***********
; DMA ptr modification (5410 needs to decrement pointers, while 5402
; and others can increment)
 .if DMA_PTR_MOD==0 ; (decrement) on 5410 DMA buffers must fill from high to low
 ; (start bit at higher addr than stop bits)
 .asg ar2-,ar2fwd ; fills from high to low addr, so fwd is a
 ; decrement (fwd)
 .asg ar2+,ar2bwd ; backward direction is an increment (bwd)
Tx1stStart .set TxBuffer+2*TxPKTBITS-1 ; start of buffer halves are where start
 ; bits are
Tx2ndStart .set TxBuffer+TxPKTBITS-1
Rx1stEnd .set RxBuffer+RxPKTBITS ; end of buffer halves are where stop bits are
Rx2ndEnd .set RxBuffer
Rx1stStart .set RxBuffer+2*RxPKTBITS-1
DMAptrMod .set 010b ; post decrement the DMA pointers
 .else ; (DMA_PTR_MOD==1, increment) other 54xx DSPs can fill from low to high if
 ; desired
 .asg ar2+,ar2fwd ; fills from low to high addr, so fwd is an
 ; increment (fwd)
 .asg ar2-,ar2bwd ; backward direction is a decrement (bwd)
Tx1stStart .set TxBuffer ; start of buffer halves are where start bits are
Tx2ndStart .set TxBuffer+TxPKTBITS
Rx1stEnd .set RxBuffer+RxPKTBITS-1; end of buffer halves are where stop bits are
Rx2ndEnd .set RxBuffer+2*RxPKTBITS-1
Rx1stStart .set RxBuffer
DMAptrMod .set 001b ; post increment the DMA pointers
 .endif

 .sect ”uart”
**
* USER DEFINED INTERRUPT FUNCTIONS *

SPRA661A

42 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

* *
* These are run whenever an interrupt event occurs on *
* the UART. *
* If it is desired to perform processing during an *
* interrupt, these can be used, otherwise a polling *
* scheme will work as well. *
* To include these in the code, INTERRUPT_BASED must be 1. *
* These routines should be defined in your code and must *
* follow the information given in their headers. *
**
 .if INTERRUPT_BASED
 .ref _UARTLSIint
 .ref _UARTRBFint
 .ref _UARTTBEint
 .if 0 ; Copy these into your own code or create your own C functions

**
* Function: _UARTLSIint *
* Called By: _UARTDMARxISR *
* Purpose: Run when a Line Status Interrupt event occurs. *
* This is when a Parity Error, Overrun Error, *
* Break Interrupt Error, or Framing Error occurs. *
* The registers, ar2, a, b, st0, st1, brc, rsa, *
* rea are saved and restored by _UARTDMARXISR. *
* Any other registers used MUST be saved and *
* restored by this routine. *
* Inputs: none *
* Outputs: none *
* Modified: none *
**
_UARTLSIint:
 ret

**
* Function: _UARTRBFint *
* Called By: _UARTDMARxISR *
* Purpose: Run when a new char is received into rxchar. *
* The registers, ar2, a, b, st0, st1, brc, rsa, *
* rea are saved and restored by _UARTDMARXISR. *
* Any other registers used MUST be saved and *
* restored during this routine. *
* Inputs: CPL = 0 (data page rel. direct addressing) *
* Outputs: none *
* Modified: none *
**
_UARTRBFint:
 ret

**
* Function: _UARTTBEint *
* Called By: _UARTDMATxISR *
* Purpose: Run when a char has just been transmitted *
* and the UART is ready to transmit another. *
* The st0 register is saved and restored by *
* _UARTDMATxISR. Any other registers used MUST *
* be saved and restored during this routine. *

SPRA661A

43 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

* Inputs: none *
* Outputs: none *
* Modified: none *
**
_UARTTBEint:
 ret
 .endif
 .endif ; End INTERRUPT_BASED

**
* Function: _UARTDMARxISR *
* Purpose: ISR which runs whenever a new coded character *
* is received. This occurs when each half of *
* buffer is filled by the DMA Rx channel. *
* Reads raw character from Rx buffer and *
* decodes it from MSb to LSb. A majority rule *
* scheme decodes each bit. Start bits *
* are ignored. Parity and stop bits are *
* checked and stripped. Any error is reported *
* in _UARTLSR register. *
* Inputs: rxbufhalf - contains half of raw rx buffer *
* where data is located *
* Outputs: rxchar - holds value of last rx char *
* _UARTLSR - holds status of line and errors *
* Modified: none *
**
_UARTDMARxISR:
 pshm al ; save the registers used in ISR
 pshm ah ;
 pshm ag ;
 pshm bl ;
 pshm bh ;
 pshm bg ;
 pshm st0 ;
 pshm st1 ;
 pshm ar2 ;
 rsbx cpl ; set to data-page relative direct addressing
 pshm brc ;
 pshm rsa ;
 pshm rea ;
 ld #UARTvars,DP ; load the UART variable data page
 bitf @rxbufhalf,#1 ; check if in 2nd half
 xorm #1,@rxbufhalf ; update current half to receive into
 stm #Rx2ndEnd,ar2 ; assume in 2nd half of buffer and point to
 ; end of it
 xc 2,ntc ; if not,
 stm #Rx1stEnd,ar2 ; point ar2 to the end of first half of buffer
 stm #RxPKTBITS-STARTBITS-1,brc ; loop over the data+parity+stop bit
 ; (not start bit)
 rptbd DecodeLoop-1 ;
 ld *ar2bwd,#STOPBITSHFT,b ; shift 1/2 stop bit so upper 4 bits are in
 ; middle of BL
 ld #0,a ; init the decoded word to 0000h
 and @decodeMask,b ; only look at bits 6-9
 sub @mask1011b,b ; check if equal to 11-15, (i.e. will decode
 ; to a 1)

SPRA661A

44 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 bcd DecodeOne,bgeq ; if it is a 1 instead, branch to decode of 1
 add @mask0100b,b ; check if equal to -4 (i.e. if was
 ; originally a 7)
 sftl a,1 ; assume it is a 0 by shifting in 0 into the
 ; LSb of decoded word
 nop ; need 2 cycles latency for xc
 xc 1,beq ; if it is equal to 7, decode to 1
DecodeOne: ;
 or @one,a ; or the 1 into the LSb of decoded word
 ld *ar2bwd,b ; load the next coded bit
DecodeLoop: ; at end, A holds decoded character
 and #STOPBIT,a,b ; check the decoded stop bit
 xc 2,aeq ; if stop bit and all data/parity bits are 0,
 orm #BI,@_UARTLSR ; note a break detected
 xc 2,beq ; if stop bit is invalid (i.e. 0),
 orm #FE,@_UARTLSR ; note the framing error
 and #(~STOPBIT)&0xffff,a ; strip the stop bit
 .if PARITY!=NO
 call ParityCheck ; check if the parity is valid and strip
 ; parity bit (char output in AL)
 .endif ;
 stl a,@rxchar ; store the char
 bitf @_UARTLSR,#DR ; check if previous character read yet
 orm #DR,@_UARTLSR ; indicate character is ready in rxchar
 xc 2,tc ; if it was not read (DR=1 before we just set
it),
 orm #OE,@_UARTLSR ; note the overrun error
 .if INTERRUPT_BASED ; only do this if user wants to run ISRs for status changes
 call _UARTRBFint ; call ISR to process received data
 bitf @_UARTLSR,#(BI|FE|PE|OE) ; check for any line status interrupt events
 cc _UARTLSIint,tc ; if any events set, call the ISR
 .endif
 popm rea ; restore context
 popm rsa ;
 popm brc ;
 popm ar2 ;
 popm st1 ;
 popm st0 ;
 popm bg ;
 popm bh ;
 popm bl ;
 popm ag ;
 popm ah ;
 popm al ;
 rete ; return and enable global interrupts

**
* Function: _UARTDMATxISR *
* Purpose: ISR which runs whenever DMA has moved last *
* ”bit” of coded character to DXR. *
* This occurs when each half of the raw Tx *
* buffer is emptied by the DMA Tx channel. *
* Resets a flag to indicate transmit process *
* is over and disables DMA Tx ch if no more *
* pkts in Tx buffer. *
* Inputs: none *

SPRA661A

45 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

* Outputs: none *
* Modified: none *
**
_UARTDMATxISR:
 pshm st0
 addm #-1,*(numTxPkts) ; decrement # of Tx pkts in Tx buffer
 cmpm *(numTxPkts),#1 ; check if another pkt is ready for transmit still
 orm #THRE,*(_UARTLSR) ; signal that another pkt can be put in Tx buffer
 bc SkipDisableTx,tc ; if another pkt is in buffer for Tx, don’t
 ; disable DMA
 andm #~TxDMACh,*(DMPREC) ; disable DMA channel for Tx
SkipDisableTx:
 .if INTERRUPT_BASED
 call _UARTTBEint ; call routine to handle transmitter reg empty
 .endif
 popm st0
 rete ; return and enable global interrupts

**
* Function: _UARTTxChar *
* Purpose: Adds parity, start, and stop bits to *
* character to transmit. Puts coded character *
* into raw Tx buffer and resets the Transmit *
* Holding Register Empty flag. Only call when *
* THRE=1. *
* Inputs: al = character to transmit *
* Outputs: none *
* Modified: a,ar2,st0(tc,c),brc,rea,rsa *
**
_UARTTxChar:
 pshm imr ; save the IMR state to restore Tx DMA int at end
 andm #~TxDMAInt,*(imr) ; disable the DMA Tx interrupt (so DMA ISR doesn’t
 ; change state here)
 .if DMA_ABU_FIX ; 5402 workaround (can’t start DMA ABU in 2nd half of buffer)
 bitf *(txbufhalf),#1 ; check if in 2nd half of buffer (txbufhalf=1)
 bc NoAdjust,ntc ; if not, nothing to worry about, so skip out
 cmpm *(numTxPkts),#0 ; check if DMA is disabled (no packets to
 ; transmit)
 bc NoAdjust,ntc ; if DMA still on, nothing to worry about,
 ; so skip out
 xorm #1,*(txbufhalf) ; set txbufhalf to 0 to point to 1st half
 stm #TxDMAptr,DMSA ; set subaddress to Tx DMA Source register.
 stm #Tx1stStart,DMSDN ; Set Tx DMA pointer to start of 1st half
NoAdjust:
 .endif ; end 5402 workaround
 bitf *(txbufhalf),#1 ; check if in 2nd half of buffer
 xorm #1,*(txbufhalf) ; toggle the buffer half which is available
 stm #Tx2ndStart,ar2 ; assume in 2nd half of buffer (point to start of
 ; this half)
 xc 2,ntc ; if not,
 stm #Tx1stStart,ar2 ; point ar2 to the start of first half of buffer
 .if (PARITY==EVEN)|(PARITY==ODD)
 call ParityCalc ; returns parity in TC: (0=even, 1=odd) and char
 ; in AL
 .if PARITY==EVEN
 xc 2,tc ; if need to add one to make even parity

SPRA661A

46 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 or #1,DATABITS,a ; add in the parity bit
 .endif
 .if PARITY==ODD
 xc 2,ntc ; if need to add one to make odd parity
 or #1,DATABITS,a ; add in the parity bit
 .endif
 .elseif PARITY==MARK
 or #1,DATABITS,a ; MARK parity always adds in the parity bit
 .endif
 stm #DATABITS+PARITYBITS-1,brc ; now translate the data and parity bits in the
 ; character
 rptbd CodeLoop-1 ;
 st #00000h,*ar2fwd ; write the start bit first
 ror a ; rotate LSb out of A into C (carry bit)
 st #00000h,*ar2 ; assume it is a zero and write code for 0 into
 ; buffer
 xc 2,c ; if it was a 1 instead,
 st #0ffffh,*ar2 ; write code for 1 into buffer
 mar *ar2fwd ; increment buffer pointer
CodeLoop:
 rpt #TxHSTOPBITS-1 ;
 st #000ffh,*ar2fwd ; write the stop bits into the buffer
startTx:
 addm #1,*(numTxPkts) ; increment number of pkts in Tx buffer
 cmpm *(numTxPkts),#2 ; check if another pkt was already in buffer
 ; (now have 2)
 andm #~THRE,*(_UARTLSR) ; signal that no space is available in Tx
 ; buffer (assume it now has 2 words)
 bcd SkipDMARestart,tc ; if another pkt in buffer, skip the restart
 ; routine
 stm #SPSA,ar2 ; point to McBSP subaddress register
 st #SPCR2,*ar2+ ; write the SPCR2 subregister offset and point
 ; to access register
waitReady:
 bitf *ar2,#XRDY ; check if XRDY==1
 bc waitReady,ntc ; wait until serial port has clocked out any
 ; bits in XSR
 stm #TxDMAptr,DMSA ; set subaddress to Tx DMA Source register
 mvmd DMSDN,ar2 ; get source address w/o autoincrement and
 ; put in ar2
 mvdk *ar2fwd,DXR1reg ; write first ”bit” to DXR
 mvdm ar2,DMSDN ; write decremented address to DMA
 orm #TxDMACh,*(DMPREC) ; enable DMA channel for Tx data.
 orm #THRE,*(_UARTLSR) ; signal that one space is still available in
 ; Tx buffer
SkipDMARestart:
 popm imr ; restore state of IMR (turn Tx DMA int back on)
 ret

**
* Function: _UARTRxChar *
* Purpose: Returns last character read by UART and *
* resets the Data Ready (DR) flag. *
* Inputs: none *
* Outputs: al = received character *
* intm = 0 *

SPRA661A

47 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

* Modified: a *
**
_UARTRxChar:
 pshm imr ; save the IMR state to restore Rx DMA int at end
 andm #~RxDMAInt,*(imr) ; disable the DMA Rx interrupt
 andm #~DR,*(_UARTLSR) ; once read, reset the flag
 ld *(rxchar),a ; return the character in al
 popm imr ; restore state of IMR (turn Rx DMA int back on)
 ret

**
* Function: _UARTInit *
* Purpose: Initializes variables as well as the *
* McBSP and DMA registers. When this function *
* returns, the DMA and McBSP are initialized *
* but are not enabled. *
* Inputs: none *
* Outputs: none *
* Modified: ar2,a,brc,rea,rsa *
**
_UARTInit:
 st #MASK1011b,*(mask1011b) ; init mask values
 st #MASK0100b,*(mask0100b)
 st #DECODER_MASK,*(decodeMask)
 st #1,*(one) ; init 1
 st #0,*(_UARTLSR) ; clear the status register
 stm #SPCR1,SPSA ; write the SPCR1 sub-address
 andm #~RRST,*(McBSPDataReg) ; write the SPCR1 register value to put rx
 ; in reset
 stm #SPCR2,SPSA ; write the SPCR2 sub-address
 andm #~(FRST|GRST|XRST),*(McBSPDataReg) ; write the SPCR2 register value to
 ; put tx in reset
 stm #SPSA,ar2 ; point ar2 to McBSP subaddress register
 ldx #McBSPInitTable,16,a ; get the program address of the McBSP init table
 or #McBSPInitTable,a ; both high and low words
 stm #(EndMcBSPInitTable-McBSPInitTable)/2-1,brc
 rptb McBSPloop-1 ;
 reada *ar2+ ; set the subaddress
 add #1,a ; increment the table pointer
 reada *ar2- ; write the value
 add #1,a ; increment the table pointer
McBSPloop:
 rpt #RESET_LATENCY–1
 nop ; wait for McBSP to sync internally
 andm #~(TxDMACh|RxDMACh),*(DMPREC) ; disable DMA channels for Tx and Rx data.
 orm #(INTOSEL<<6),*(DMPREC) ; set multiplexed interrupt choices
 andm #~(TxDMACh<<8|RxDMACh<<8),*(DMPREC); set DMA channel Priorities low (=0)
 ldx #DMAInitTable,16,a ; get the program address of the DMA init table
 or #DMAInitTable,a ; both high and low words
 stm #DMSA,ar2 ; point ar2 to the DMA Rx channel subaddress
 ; register
 reada *ar2+ ; store the first subaddress
 add #1,a ; increment the table pointer
 rpt #(EndDMARxInitTable-DMARxInitTable)-1
 reada *ar2 ; write the values, autoincrementing
 add #5,a ; update the table address

SPRA661A

48 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 stm #DMSA,ar2 ; point ar2 to the DMA Tx channel subaddress
 ; register
 reada *ar2+ ; store the first subaddress
 add #1,a ; increment the table pointer
 rpt #(EndDMATxInitTable-DMATxInitTable)-1
 reada *ar2 ; write the values, autoincrementing
 ret

**
* Function: _UARTStart *
* Purpose: Enables UART for reception by enabling the *
* Rx and TX DMA channels and taking the *
* receiver of McBSP out of reset. The *
* DMA is reinitialized in this routine to *
* ensure correct alignment of DMA pointers *
* in case DMA halted in mid-word last time. *
* Note that this routine will globally enable *
* all unmasked interrupts. *
* Inputs: a: -1 = start Rx only *
* 0 = start Rx and Tx *
* 1 = start Tx only *
* Outputs: none *
* Modified: imr,ifr,intm(st1),SPCR1,SPCR2,DMPREC *
**
_UARTStart:
 stm #SPCR2,SPSA ; write the SPCR2 sub-address
 orm #GRST,*(McBSPDataReg) ; enable clk generator (if not already enabled)
 rpt #RESET_LATENCY-1
 nop ; wait for 2 bit clocks
 bc TxStartUp,agt ; if input denotes Tx only startup, branch
RxStartUp:
 andm #~(BI|FE|PE|OE|DR),*(_UARTLSR) ; init the status reg bits for Rx to 0
 st #0,*(rxbufhalf) ; initialize the half of Rx buffer to get
 ; bits from
 stm #(RxDMAptr+1),DMSA ; set subaddress to Rx DMA Destination register.
 stm #Rx1stStart,DMSDN ; DMDST: Destination is Receive raw data buffer
 stm #RxDMAInt,ifr ; clear all pending Rx interrupts
 orm #RxDMAInt,*(imr) ; enable the DMA Rx interrupt
 orm #RxDMACh,*(DMPREC) ; enable DMA channel for Rx data.
 stm #SPCR1,SPSA ; write the SPCR1 sub-address
 orm #RRST,*(McBSPDataReg) ; write the SPCR1 register value to enable rx
 bc SkipTxStartUp,alt ; if input denotes Rx only startup, branch
TxStartUp:
 st #0,*(txbufhalf) ; initialize the half of Tx buffer to put bits in
 orm #THRE,*(_UARTLSR) ; init the status reg bits for Tx
 ; (available for tx)
 st #0,*(numTxPkts) ; init number of pkts in tx buffer to 0
 stm #TxDMAptr,DMSA ; set subaddress to Tx DMA Source register.
 stm #Tx1stStart,DMSDN ; DMSRC: Source is Transmit raw data buffer
 stm #TxDMAInt,ifr ; clear all pending Tx interrupts
 orm #TxDMAInt,*(imr) ; enable the DMA Tx interrupt
 stm #SPCR2,SPSA ; write the SPCR2 sub-address
 orm #XRST,*(McBSPDataReg) ; write the SPCR2 register value to enable tx
SkipTxStartUp:
 rpt #RESET_LATENCY-1
 nop ; wait for McBSP to come out of reset

SPRA661A

49 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 rsbx intm ; enable maskable interrupts
 ret

**
* Function: _UARTStop *
* Purpose: Disables UART for reception by disabling the *
* Rx and TX DMA channels and putting the *
* receiver and transmitter on McBSP in reset. *
* Waits until all data from Tx buffer *
* has been transmitted before it halts Tx UART. *
* Inputs: a: -1 = stop Rx only *
* 0 = stop Rx and Tx *
* 1 = stop Tx only *
* Outputs: none *
* Modified: ar2,imr,st0(tc),SPCR1,SPCR2,DMPREC *
**
_UARTStop:
 bcd ShutDownTx,agt ; if input denotes Tx only shutdown, branch
 stm #SPSA,ar2 ; point to McBSP subaddress register
ShutDownRx:
 andm #~RxDMAInt,*(imr) ; disable the DMA Rx interrupt
 andm #~RxDMACh,*(DMPREC) ; disable DMA channel for Rx data.
 st #SPCR1,*ar2+ ; write the SPCR1 sub-address and point to access
 ; register
 andm #~RRST,*ar2- ; write the SPCR1 register value to disable rx and
 ; move pointer back
 andm #~DR,*(_UARTLSR) ; clear data ready flag so no more data received
 bc SkipShutDownTx,alt ; if input denotes Rx only shutdown, branch
 st #SPCR2,*ar2+ ; write the SPCR2 sub-address and point to access
 ; register
 andm #~GRST,*ar2- ; disable clk generator when both rx and tx
 ; shutdown
ShutDownTx:
 cmpm *(numTxPkts),#0 ;
 bc ShutDownTx,ntc ; wait until all pkts have been sent
 st #SPCR2,*ar2+ ; write the SPCR2 subregister offset and point to
 ; access register
waitDone:
 bitf *ar2,#XRDY ; check if XRDY==1
 bc waitDone,ntc ; wait until serial port has clocked out any bits
 ; in XSR
 mar *ar2- ; point to subaddress register
 andm #~TxDMAInt,*(imr) ; disable the DMA Tx interrupt
 andm #~TxDMACh,*(DMPREC) ; disable DMA channel for Tx data.
 st #SPCR2,*ar2+ ; write the SPCR2 sub-address and point to access
 ; register
 andm #~XRST,*ar2- ; write the SPCR2 register value to disable tx and
 ; move pointer back
 andm #~THRE,*(_UARTLSR) ; clear THRE flag so no more data sent
SkipShutDownTx:
 rpt #RESET_LATENCY-1
 nop ; wait for McBSP to go into reset
 ret

**
* Function: _UARTSetBaudRate *

SPRA661A

50 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

* Purpose: Sets new baud rate for UART. The UART MUST *
* be stopped before calling this routine. Use *
* _UARTStop to halt the UART (both tx and rx). *
* Inputs: a = new baud divisor *
* Outputs: none *
* Modified: a, SRGR1 *
**
_UARTSetBaudRate:
 sub #1,a ; reduce divisor by 1 for correct storage to McBSP
 ; register
 stm #SRGR1,SPSA ; write the SRGR1 sub-address to address register
 stlm a,McBSPDataReg ; write the register value to data register
 ret

**
* Function: _UARTSetBreak *
* Purpose: Sends a packet of all 0, including what *
* would normally be the stop & parity bits. *
* Must call with input of 0 to end the *
* break before can transmit another char. *
* Only call when THRE=1. *
* Inputs: a != 0 - send break *
* a = 0 - end break *
* Outputs: none *
* Modified: a,ar2,st0(tc) *
**
_UARTSetBreak:
 pshm imr ; save the IMR state to restore Tx DMA int at end
 andm #~TxDMAInt,*(imr) ; disable the DMA Tx interrupt (so DMA ISR doesn’t
 ; change state here)
 .if DMA_ABU_FIX ; 5402 workaround (can’t start DMA ABU in 2nd half of buffer)
 bitf *(txbufhalf),#1 ; check if in 2nd half of buffer (txbufhalf=1)
 bc NoAdjust2,ntc ; if not, nothing to worry about, so skip out
 cmpm *(numTxPkts),#0 ; check if DMA is disabled (no packets to
 ; transmit)
 bc NoAdjust2,ntc ; if DMA still on, nothing to worry about, so
 ; skip out
 xorm #1,*(txbufhalf) ; set txbufhalf to 0 to point to 1st half
 stm #TxDMAptr,DMSA ; set subaddress to Tx DMA Source register.
 stm #Tx1stStart,DMSDN ; Set Tx DMA pointer to start of 1st half
NoAdjust2:
 .endif ; end 5402 workaround
 bitf *(txbufhalf),#1 ; check if in 2nd half of buffer
 xorm #1,*(txbufhalf) ; toggle the buffer half which is available
 stm #Tx2ndStart,ar2 ; assume in 2nd half of buffer (point to start of
 ; this half)
 xc 2,ntc ; if not,
 stm #Tx1stStart,ar2 ; point ar2 to the start of first half of buffer
 xc 2,aneq ; if sending break (a!=0)
 ld #0xffff,a ; init a to all 1’s
 cmpl a ; a=a_ (if input is 0, send all 1’s, else
 ; send all 0’s)
 rpt #TxPKTBITS-1 ; create packet of all 0 or all 1
 stl a,*ar2fwd
 b startTx ; branch into TxChar routine to start the
 ; transmission

SPRA661A

51 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

********* PRIVATE ROUTINES ***********
 .if (PARITY==EVEN)|(PARITY==ODD)
**
* Function: ParityCalc *
* Purpose: Determines the parity of an input word *
* using a successive approximation scheme. *
* The number of iterations is determined *
* at assembly time by the number of bits *
* in each character. *
* Inputs: al = character to determine parity of. *
* Outputs: tc = 0 - parity is even *
* tc = 1 - parity is odd *
* Modified: ag,ah,st0(tc) *
**
ParityCalc:
 pshm al ; save character
 .if DATABITS+PARITYBITS>16 ;
 xor a,16,a ;
 .endif ;
 .if DATABITS+PARITYBITS>8 ;
 xor a,8,a ;
 .endif ;
 .if DATABITS+PARITYBITS>4 ;
 xor a,4,a ;
 .endif ;
 .if DATABITS+PARITYBITS>2 ;
 xor a,2,a ;
 .endif ;
 .if DATABITS+PARITYBITS>1 ;
 xor a,1,a ;
 .endif ;
 bitf *(al),#PARITYCHECK ; test the calculated parity and return it in TC
 popm al ; restore character
 ret
 .endif
 .if PARITY!=NO
**
* Function: ParityCheck *
* Purpose: Computes parity of input word and determines *
* if it is valid, according to settings. *
* The parity setting is made at assembly time. *
* The input is assumed to only contain data and *
* parity bits. No start or stop bits should *
* be in the word. *
* Inputs: al = character to check parity of. Must *
* only contain data and parity bits. *
* DP = UARTvars (uses data-page direct addressing) *
* Outputs: al = character with parity bit stripped. *
* _UARTLSR - if parity is invalid, Parity *
* Error bit is set in _UARTLSR. *
* Modified: ah,ag,_UARTLSR,st0(tc) *
**
ParityCheck:
 .if (PARITY==EVEN)|(PARITY==ODD)
 call ParityCalc ; find parity of received word (output tc==0-even,
 ; tc==1-odd)

SPRA661A

52 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 .else ; (PARITY==MARK)|(PARITY==SPACE)
 bitf *(al),#(1<<DATABITS) ; test the parity bit (tc==0-space, tc==1-mark)
 .endif
 and #(1<<DATABITS)-1,a ; mask out the parity bit (char was
 ; returned in AL)
 .if (PARITY==EVEN)|(PARITY==SPACE)
 xc 2,tc ; if parity is even/space skip error report
 .else ; (PARITY==ODD)|(PARITY==MARK)
 xc 2,ntc ; if parity is odd/mark skip error report
 .endif
 orm #PE,@_UARTLSR ; set Parity Error flag in status register
 ret ;
 .endif ; if PARITY!=NO
**
* Table: McBSPInitTable *
* Purpose: Contains all values to initialize the McBSP *
* used by the UART. Note that the McBSP which *
* will be used is defined at assembly time. *
* Specifically, the following major settings *
* will be made: *
* *
* Receiver: *
* - Dual phase frames *
* (1st phase = RxPKTBITS-RxHSTOPBITS words of *
* 16 bits each) *
* (2nd phase = RxHSTOPBITS words of *
* 8 bits each) *
* - Enable frame ignore *
* - 1 bit delay between FSR and data *
* *
* Transmitter: *
* - Dual phase frames *
* (1st phase = TxPKTBITS-TxHSTOPBITS words of *
* 16 bits each) *
* (2nd phase = TxHSTOPBITS words of *
* 8 bits each) *
* - Enable frame ignore *
* - 0 bit delay between FSX and data *
* - Generate CLKG and FSX using baud rate *
* divisor given in assembly-time conditions *
**
McBSPInitTable:
 .word SRGR1 ; SRGR1 settings:
 .word 0000000000000000b | BAUDRATEDIV
; 00000000~~~~~~~~b FWID: unused because FSGM=0
; ~~~~~~~~xxxxxxxxb CLKGDV: Sample rate generator clock
; divider=(BAUDRATEDIV+1)
 .word SRGR2 ; SRGR2 settings:
 .word 0010000000000000b
; 0~~~~~~~~~~~~~~~b GSYNC: sample rate gen clock (CLKG) is free running
; ~0~~~~~~~~~~~~~~b CLKSP: unused
; ~~1~~~~~~~~~~~~~b CLKSM: Sample rate gen clock derived from CPU clock
; ~~~0~~~~~~~~~~~~b FSGM: Tx frame sync (FSX) due to DXR-to-XSR copy
; ~~~~000000000000b FPER: unused because FSGM=0
 .word PCR ; PCR settings:
 .word 0000101100001100b

SPRA661A

53 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

; 00~~~~~~~~~~~~~~b reserved
; ~~0~~~~~~~~~~~~~b XIOEN: DR,CLKS,DX,FSX,CLKX not GPIO
; ~~~0~~~~~~~~~~~~b RIOEN: DR,CLKS,DX,FSR,CLKR not GPIO
; ~~~~1~~~~~~~~~~~b FSXM: FSX determined by FSGM (in SRGR2)
; ~~~~~0~~~~~~~~~~b FSRM: FSR generated by external device (is input)
; ~~~~~~1~~~~~~~~~b CLKXM: CLKX is output driven by internal sample
; rate generator
; ~~~~~~~1~~~~~~~~b CLKRM: CLKR is output driven by internal sample
; rate generator
; ~~~~~~~~0~~~~~~~b reserved
; ~~~~~~~~~0~~~~~~b CLKS_STAT: Read Only
; ~~~~~~~~~~0~~~~~b DX_STAT:Read Only
; ~~~~~~~~~~~0~~~~b DR_STAT:Read Only
; ~~~~~~~~~~~~1~~~b FSXP: FSX is active low
; ~~~~~~~~~~~~~1~~b FSRP: FSR is active low
; ~~~~~~~~~~~~~~0~b CLKXP: Transmit data sampled on rising edge of CLKX
; ~~~~~~~~~~~~~~~0b CLKRP: Receive data sampled on falling edge of CLKR
 .word SPCR1 ; SPCR1 settings:
 .word 0000000000000000b
; 0~~~~~~~~~~~~~~~b DLB: Digital loopback mode is disabled
; ~00~~~~~~~~~~~~~b RJUST: Right-justify and zero-fill MSbs in DRR(1/2)
; ~~~00~~~~~~~~~~~b CLKSTP: Clock Stop Mode disabled
; ~~~~~000~~~~~~~~b reserved
; ~~~~~~~~0~~~~~~~b DXENA: DX enabler is off
; ~~~~~~~~~0~~~~~~b ABIS: A-bis mode is disabled
; ~~~~~~~~~~00~~~~b RINTM: RINT driven by RRDY
; ~~~~~~~~~~~~0~~~b RSYNCERR: Read Only
; ~~~~~~~~~~~~~0~~b RFULL: Read Only
; ~~~~~~~~~~~~~~0~b RRDY: Read Only
; ~~~~~~~~~~~~~~~0b RRST_: Receiver is disabled and in reset state
 .word SPCR2 ; SPCR2 settings:
 .word 0000000100000000b
; 000000~~~~~~~~~~b reserved
; ~~~~~~0~~~~~~~~~b FREE: Free running mode is disabled
; ~~~~~~~1~~~~~~~~b SOFT: Soft mode enabled
; ~~~~~~~~0~~~~~~~b FRST_: Frame sync generator is reset
; ~~~~~~~~~0~~~~~~b GRST_: Sample rate generator is pulled out of reset
; ~~~~~~~~~~00~~~~b XINTM: XINT driven by XRDY
; ~~~~~~~~~~~~0~~~b XSYNCERR: Read Only
; ~~~~~~~~~~~~~0~~b XEMPTY: Read Only
; ~~~~~~~~~~~~~~0~b XRDY: Read Only
; ~~~~~~~~~~~~~~~0b XRST_: Transmitter is disabled and in reset state
 .word RCR1 ; RCR1 settings:
 .word 0000000001000000b|(((RxPKTBITS-RxHSTOPBITS) -1) <<8)
; 0~~~~~~~~~~~~~~~b reserved
; ~xxxxxxx~~~~~~~~b RFRLEN1:Receive frame length for phase 1 is
; RxPKTBITS-RxHSTOPBITS words
; ~~~~~~~~010~~~~~b RWDLEN1:Receive word length for phase 1 is 16 bits
; ~~~~~~~~~~~00000b reserved
 .word RCR2 ; RCR2 settings:
 .word 1000000000000101b|((RxHSTOPBITS -1) <<8)
; 1~~~~~~~~~~~~~~~b RPHASE: dual phase receive frame
; ~xxxxxxx~~~~~~~~b RFRLEN2:Receive frame length for phase 2 is
; RxHSTOPBITS
; ~~~~~~~~000~~~~~b RWDLEN2:Receive word length for phase 2 is 8 bits
; ~~~~~~~~~~~00~~~b RCOMPAND:no companding, data transfer starts with

SPRA661A

54 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

; MSb first
; ~~~~~~~~~~~~~1~~b RFIG: ignore receive frame syncs after first onez
; ~~~~~~~~~~~~~~01b RDATDLY: 1-bit delay between FSR and data
 .word XCR1 ; XCR1 settings:
 .word 0000000001000000b|((TxPKTBITS - TxHSTOPBITS-1) <<8)
; 0~~~~~~~~~~~~~~~b reserved
; ~xxxxxxx~~~~~~~~b XFRLEN1: Transmit frame length for phase 1 is
; TxPKTBITS - TxHSTOPBITS words
; ~~~~~~~~010~~~~~b XWDLEN1: Transmit word length for phase 1 is 16
; bits
; ~~~~~~~~~~~00000b reserved
 .word XCR2 ; XCR2 settings:
 .word 1000000000000100b|((TxHSTOPBITS - 1) <<8)
; 1~~~~~~~~~~~~~~~b XPHASE: dual phase transmit frame
; ~xxxxxxx~~~~~~~~b XFRLEN2: Transmit frame length for phase 2 is
; TxHSTOPBITS words
; ~~~~~~~~000~~~~~b XWDLEN2: Transmit word length for phase 2 is 8 bits
; ~~~~~~~~~~~00~~~b XCOMPAND: no companding, data transfer starts with
; MSb first
; ~~~~~~~~~~~~~1~~b XFIG: ignore transmit frame syncs after first one
; ~~~~~~~~~~~~~~00b XDATDLY: 0-bit delay between FSX and data
EndMcBSPInitTable:

**
* Table: DMAInitTable *
* Purpose: Contains all values to initialize the DMA *
* channels used by the UART. Note that the *
* DMA channels which are used are defined at *
* assembly-time, as is the McBSP. Specifically, *
* the following major settings will be made: *
* *
* Rx Channel: *
* - ABU mode (buffer size is RxPKTBITS*2) *
* - Interrupts are at each 1/2 buffer point *
* - Source is McBSP DRR1 register *
* - Destination is Rx raw data buffer *
* - Synchronized to McBSP Receive Event (REVT) *
* *
* Tx Channel: *
* - ABU mode (buffer size is TxPKTBITS*2) *
* - Interrupts are at each 1/2 buffer point *
* - Source is Tx raw data buffer *
* - Destination is McBSP DXR1 register *
* - Synchronized to McBSP Transmit Event (XEVT) *
* *
**
DMAInitTable:
 .word RxDMAptr ;;;;;;;;;;;;;;;;;;;;;;;; DMA Rx Channel settings. Use
 ;autoincrement of subaddress after 1st
 ;word
DMARxInitTable:
 .word DRR1reg ; DMSRC: Source is McBSP DRR1 register
 .word Rx1stStart ; DMDST: Destination is Receive raw data buffer
 .word 2*RxPKTBITS ; DMCTR: Element count (words to transfer) is
; 2*total bits per character
 .word 0000000000000000b|(REVT<<12); DMSFC4:

SPRA661A

55 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

; xxxx~~~~~~~~~~~~b DSYN: DMA sync event is one of the McBSP

; Receive Events

; ~~~~0~~~~~~~~~~~b DBLW: Single-word mode (each element is 16

; bits)

; ~~~~~000~~~~~~~~b reserved

; ~~~~~~~~00000000b Frame Count: not relevant in ABU mode

 .word 0111000001000001b|(DMAptrMod<<2); DMMCR:

; 0~~~~~~~~~~~~~~~b AUTOINIT: Auto-initialization is disabled

; ~1~~~~~~~~~~~~~~b DINM: Interrupts generated based on IMOD

; bit

; ~~1~~~~~~~~~~~~~b IMOD: Interrupt at half buffer full and

; buffer full

; ~~~1~~~~~~~~~~~~b CTMOD: ABU Mode

; ~~~~0~~~~~~~~~~~b reserved

; ~~~~~000~~~~~~~~b SIND: Source Address not modified

; ~~~~~~~~01~~~~~~b DMS: Source Address in data space

; ~~~~~~~~~~0~~~~~b reserved

; ~~~~~~~~~~~xxx~~b DIND: Destination Address post

; (dec/inc)remented

; ~~~~~~~~~~~~~~01b DMD: Destination Address in data space

EndDMARxInitTable:

DMATxInitTable

 .word TxDMAptr ;;;;;;;;;;;;;;;;;;;;;;;; DMA Tx channel settings. Use autoincrement

 ;of subaddress after 1st word

 .word Tx1stStart ; DMSRC: Source is Transmit raw data buffer

 .word DXR1reg ; DMDST: Destination is McBSP DXR1 register

 .word 2*TxPKTBITS ; DMCTR: Element count (words to transfer)

; is 2*total bits per character

 .word 0000000000000000b|(XEVT<<12); DMSFC5:

; xxxx~~~~~~~~~~~~b DSYN: DMA sync event is one of the McBSP

; Transmit Events

; ~~~~0~~~~~~~~~~~b DBLW: Single-word mode (each element is 16

; bits)

; ~~~~~000~~~~~~~~b reserved

; ~~~~~~~~00000000b Frame Count: not relevant in ABU mode

 .word 0111000001000001b|(DMAptrMod<<8); DMMCR:

; 0~~~~~~~~~~~~~~~b AUTOINIT: Auto-initialization is disabled

; ~1~~~~~~~~~~~~~~b DINM: Interrupts generated based on IMOD

; bit

; ~~1~~~~~~~~~~~~~b IMOD: Interrupt at half buffer full and

; buffer full

; ~~~1~~~~~~~~~~~~b CTMOD: ABU Mode

; ~~~~0~~~~~~~~~~~b reserved

; ~~~~~xxx~~~~~~~~b SIND: Source Address post
 (dec/inc)remented

; ~~~~~~~~01~~~~~~b DMS: Source Address in data space

; ~~~~~~~~~~0~~~~~b reserved

; ~~~~~~~~~~~000~~b DIND: Destination Address not modified

; ~~~~~~~~~~~~~~01b DMD: Destination Address in data space

EndDMATxInitTable:

SPRA661A

56 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix C Include File (UARTSetup.inc)
**
* Filename: UARTsetup.inc *
* Function: Software UART parameter selection *
* Author: Robert J. DeNardo *
* Texas Instruments, Inc *
* Revision History: *
* 11/12/99 Original Code Robert DeNardo *
* 12/21/99 Increased data bits to 1-15. Robert DeNardo *
* 01/07/00 Added DMA_PTR_MOD & DMA_ABU_FIX. Robert DeNardo *
**
****** Conditional Choices ********
MCBSP_CHOICE .set 0 ; # of McBSP to use for UART (0-2, depending on 54xx choice)
DMA_RX_CHOICE .set 4 ; # of DMA channel to use for Rx (0-5)
DMA_TX_CHOICE .set 5 ; # of DMA channel to use for Tx (0-5), different than above
INTOSEL .set 0 ; Selection of DMA/McBSP multiplexed interrupts (0-3).
 ; The choices are device dependent and specified in DMA
 ; User’s Guide.
PARITY .set 1 ; parity checked and generated (0=NO, 1=EVEN, 2=ODD, 3=MARK,
4=SPACE)
HSTOPBITS .set 2 ; number of 1/2 stop bits (2,3 or 4) for Tx
DATABITS .set 8 ; number of data bits (1-14 with parity, or 1-15 w/o parity)
BAUDRATEDIV .set 244 ; Enter baud rate divisor (approx DSPCLK/(16*baudrate)
 ; See app note for calculation.
INTERRUPT_BASED .set 0 ; 0=only use polling to check status of UART
 ; 1=run ISR’s for the interrupt events on UART
DMA_PTR_MOD .set 0 ; Direction for DMA ptr modification
 ; (0=post-decrement, 1=post-increment)
 ; 5410 can only use 0=post-decrement
DMA_ABU_FIX .set 1 ; Adds workaround for ABU difference in 5402
 ; (0=no fix, 1=add fix)
 ; Difference occurs when DMA ABU started with DMA ptr in 2nd
 ; half of buffer

**
* This is the available public variable *
* which can be used in your code *
**
* _UARTLSR - Line Status Register bit definitions
* This register is used to monitor status of the line, including
* status for available receive data or status for transmit, as well
* as error bits.
DR .set 1<<0 ; Data Ready: character is ready
OE .set 1<<1 ; Overrun Error: before last char read, it was overwritten
PE .set 1<<2 ; Parity Error: parity of received char doesn’t match setting of
 ; UART
FE .set 1<<3 ; Framing Error: received character has invalid stop bit
BI .set 1<<4 ; Break Indicator: received data input was 0 longer than packet
 ; length
THRE .set 1<<5 ; Transmit Holding Register Empty: another char can be
 ; transmitted

SPRA661A

57 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix D Command File (uart.cmd)
/***
* Filename: uart.cmd *
* Function: Software UART example command file using 5410 EVM *
* Author: Robert J. DeNardo *
* Texas Instruments, Inc *
* Revision History: *
* 11/12/99 Original Code Robert DeNardo *
***/
MEMORY
{
 PAGE 0: DARAM1: origin = 00080h length = 00780h /* Overlay memory */
 DARAM2: origin = 00800h length = 00800h /* Overlay memory */
 DARAM3: origin = 01000h length = 00800h /* Overlay memory */
 DARAM4: origin = 01800h length = 00800h /* Overlay memory */
 SARAM1: origin = 02000h length = 02000h /* Overlay memory */
 SARAM2: origin = 04000h length = 02000h /* Overlay memory */
 SARAM3: origin = 06000h length = 02000h /* Overlay memory */
 PAGE 1: SPRAM: origin = 00060h length = 00020h /* Scratch Pad */
 DARAM1: origin = 00080h length = 00780h
 DARAM2: origin = 00800h length = 00800h
 DARAM3: origin = 01000h length = 00800h
 DARAM4: origin = 01800h length = 00800h
 SARAM1: origin = 02000h length = 02000h
 SARAM2: origin = 04000h length = 02000h
 SARAM3: origin = 06000h length = 02000h
}
SECTIONS
{
 .text :> SARAM1 PAGE 0
 .cinit :> SARAM1 PAGE 0
 .switch :> SARAM1 PAGE 0
 vecs :> SARAM2 PAGE 0 /* Vector table */
 .stack :> DARAM1 PAGE 1
 .data :> DARAM2 PAGE 1
 .bss :> DARAM2 PAGE 1
 uart :> SARAM1 PAGE 0
 UARTTxBuffer :> DARAM3 align(32) PAGE 1
 UARTRxBuffer :> DARAM3 align(32) PAGE 1
 UART_vars :> DARAM3 PAGE 1
 ExampleRxBuf :> DARAM2 align(128) PAGE 1
 ExampleTxBuf :> DARAM2 align(128) PAGE 1
}

SPRA661A

58 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix E Example Use C Code (ExampleC.c)
/***
* Filename: ExampleC.c *
* Function: Software UART Access code in C *
* Author: Robert J. DeNardo *
* Texas Instruments, Inc *
* Revision History: *
* 11/12/99 Original Code Robert DeNardo *
* 12/21/99 Modified example loop structure. Robert DeNardo *
* 09/05/00 Fixed address of PMST register. Robert DeNardo *
* Setup for 5402DSK. Robert DeNardo *
* *
* This code performs basic accesses to the software UART *
* using C code. *
* *
* Defining the INTERRUPTBASED keyword below will setup the *
* UART to receive a block of 10 chars and then transmit that *
* block of 10 chars using the UART interrupts routines. *
* If this is used, make sure the INTERRUPT_BASED definition *
* in UARTsetup.inc is set to 1. *
* *
* Not defining the INTERRUPTBASED keyword will setup the *
* UART to use a polling method to receive and transmit *
* one char at a time. If this is used, make sure the *
* INTERRUPT_BASED definition in UARTsetup.inc is set to 0. *
* This code is set to run on 5402DSK. Make sure to set CPLD *
* to use McBSP0 from daughterboard (0x4@io = 0xFF03). *
***/
#if 0
#define INTERRUPTBASED
#endif
extern volatile struct StatusStruct{ /* structure to model the UARTLSR status bits */
 unsigned int reserved:10;
 unsigned int THRE:1; /* Transmit Holding Register Empty */
 unsigned int BI:1; /* Break Indicator */
 unsigned int FE:1; /* Frame Error */
 unsigned int PE:1; /* Parity Error */
 unsigned int OE:1; /* Overrun Error */
 unsigned int DR:1; /* Data Ready */
}UARTLSR;

#define TXNUM 10
#define BUFSIZE 20
volatile int RxCharCnt;
int *RxHeadPtr;
int *RxTailPtr;
int *TxHeadPtr;
int *TxTailPtr;
int RxCharBuf[50]={0}; /* create a received character buffer */
int TxCharBuf[50]={0}; /* create a transmit character buffer */
void InitPLL() /* sets up PLL for a 3.75 multiplier */
{
 volatile unsigned int *CLKMD=(volatile unsigned int*)0x58; /*set addr of CLKMD
reg*/
 CLKMD=0; / set to DIV mode */

SPRA661A

59 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 while((*CLKMD&1)==1); /* wait until PLLstatus reflects DIV mode */
 CLKMD=0xfffb; / set to mult of 3.75 and max cnt cycles, turn on PLL */
 while((*CLKMD&1)==0); /* wait until PLLstatus reflects in PLL mode */
}
#ifdef INTERRUPTBASED
interrupt void UARTRBFint() /* called from the UART code when */
{ /* a character is received */
 RxHeadPtr++=UARTRxChar(); / call UART routine to receive char */
 /* & move character to receive buffer */
 if(RxHeadPtr>=(RxCharBuf+BUFSIZE))
 RxHeadPtr=RxCharBuf; /* keep pointer in circular buffer */
 RxCharCnt++; /* increment the character count */
}

interrupt void UARTTBEint() /* called from the UART code when */
{ /* another character can be transmitted */
 if(TxTailPtr!=TxHeadPtr) /* if a character to transmit is in buffer, */
 {
 if((*TxTailPtr==0)||(*TxTailPtr==1)) /* send break if char=1 or 0 */
 {
 UARTSetBreak(*TxTailPtr++); /* 1 sends break, 0 sends end of break */
 if(TxTailPtr>=(TxCharBuf+BUFSIZE))
 TxTailPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
 else /* send character */
 {
 UARTTxChar(*TxTailPtr++);/* call UART routine to transmit the character */
 if(TxTailPtr>=(TxCharBuf+BUFSIZE))
 TxTailPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
 }
}
interrupt void UARTLSIint() /* called from UART code when a char */
{ /* is received and an error is detected */
 UARTLSR.OE=0; /* clear error flags */
 UARTLSR.PE=0;
 UARTLSR.BI=0;
 UARTLSR.FE=0;
 *TxHeadPtr++=1; /*put break into tx buffer */
 if(TxHeadPtr>=(TxCharBuf+BUFSIZE))
 TxHeadPtr=TxCharBuf; /* keep pointer in circular buffer */
 *TxHeadPtr++=0; /*put end of break into buffer */
 if(TxHeadPtr>=(TxCharBuf+BUFSIZE))
 TxHeadPtr=TxCharBuf; /* keep pointer in circular buffer */
}
main()
{
 int i;
 volatile unsigned int *PMST=(volatile unsigned int*)0x1D; /* define the PMST reg */

 PMST=0x4020; / IPTR=0x4000, OVLY=1, DROM=0, MP/MC=0 */
 InitPLL(); /* initialize the DSP Clock to 75MHz (with a 20MHz crystal) */
 UARTInit(); /* initialize the McBSP and DMA for UART */
 RxCharCnt=0; /* init received char count to 0 */
 RxHeadPtr=RxCharBuf; /* init rx head pointer to start of buffer */
 RxTailPtr=RxCharBuf; /* init rx tail pointer to start of buffer */

SPRA661A

60 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 TxHeadPtr=TxCharBuf; /* init tx head pointer to start of buffer */
 TxTailPtr=TxCharBuf; /* init tx tail pointer to start of buffer */

 UARTStart(0); /* start UART Rx and Tx(begins receiving) */
 for(;;) /* infinite loop */
 {
 while(RxCharCnt<TXNUM); /* wait until TXNUM chars received */
 for(i=0;i<TXNUM;i++)
 {
 *TxHeadPtr++=*RxTailPtr++; /* copy the TXNUM chars to transmit buffer */
 if(RxTailPtr>=(RxCharBuf+BUFSIZE))
 RxTailPtr=RxCharBuf; /* keep pointer in circular buffer */
 if(TxHeadPtr>=(TxCharBuf+BUFSIZE))
 TxHeadPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
 RxCharCnt-=TXNUM; /* reduce number of received chars */
 UARTTxChar(*TxTailPtr++); /* kickstart: call UART routine to tx the char */
 if(TxTailPtr>=(TxCharBuf+BUFSIZE))
 TxTailPtr=TxCharBuf; /* keep pointer in circular buffer */
 UARTTxChar(*TxTailPtr++); /* (put 2 chars in buf to get consecutive xmits) */
 /* It will xmit these TXNUM chars and then stop */
 if(TxTailPtr>=(TxCharBuf+BUFSIZE))
 TxTailPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
}
#else /*polling method*/
main()
{
 volatile unsigned int *PMST=(volatile unsigned int*)0x1D; /* define the PMST reg */
 int RxCharBuf[BUFSIZE]={0}; /* create a received character buffer */
 int TxCharBuf[BUFSIZE]={0}; /* create a transmit character buffer */

 PMST=0x4020; / IPTR=0x4000, OVLY=1, DROM=0, MP/MC=0 */
 InitPLL(); /* initialize the DSP Clock to 75MHz (with a 12MHz crystal) */
 UARTInit(); /* initialize the McBSP and DMA for UART */
 RxCharCnt=0; /* init received char count to 0 */
 RxHeadPtr=RxCharBuf; /* init rx head pointer to start of buffer */
 RxTailPtr=RxCharBuf; /* init rx tail pointer to start of buffer */
 TxHeadPtr=TxCharBuf; /* init tx head pointer to start of buffer */
 TxTailPtr=TxCharBuf; /* init tx tail pointer to start of buffer */

 UARTStart(0); /* start UART Rx and Tx(begins receiving) */
 for(;;) /* infinite loop */
 {
 if(UARTLSR.DR==1) /* if new char is available */
 {
 RxHeadPtr++=UARTRxChar(); / get the new char */
 if(RxHeadPtr>=(RxCharBuf+BUFSIZE))
 RxHeadPtr=RxCharBuf; /* keep pointer in circular buffer */
 }
 if(UARTLSR.THRE==1) /* if able to transmit a char */
 {
 if(TxTailPtr!=TxHeadPtr) /* if a character to transmit is in buffer, */
 {
 UARTTxChar(*TxTailPtr++); /* call UART routine to xmit the character */
 if(TxTailPtr>=(TxCharBuf+BUFSIZE))

SPRA661A

61 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 TxTailPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
 }
 if((UARTLSR.BI|UARTLSR.FE|UARTLSR.PE|UARTLSR.OE)==1) /* if any errors */
 {
 UARTLSR.OE=0; /* clear error flags.*/
 UARTLSR.PE=0;
 UARTLSR.BI=0;
 UARTLSR.FE=0;
 *TxHeadPtr++=1; /*put break into tx buffer */
 if(TxHeadPtr>=(TxCharBuf+BUFSIZE))
 TxHeadPtr=TxCharBuf; /* keep pointer in circular buffer */
 *TxHeadPtr++=0; /*put end of break into buffer */
 if(TxHeadPtr>=(TxCharBuf+BUFSIZE))
 TxHeadPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
 if(RxTailPtr!=RxHeadPtr) /* if new character is in rx buffer, */
 {
 *TxHeadPtr++=*RxTailPtr++; /* put the char in the tx buffer */
 if(RxTailPtr>=(RxCharBuf+BUFSIZE))
 RxTailPtr=RxCharBuf; /* keep pointer in circular buffer */
 if(TxHeadPtr>=(TxCharBuf+BUFSIZE))
 TxHeadPtr=TxCharBuf; /* keep pointer in circular buffer */
 }
 }
}
#endif

SPRA661A

62 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix F Example Use ASM Code (ExampleASM.asm)
**
* Filename: ExampleASM.asm *
* Function: Demonstrates usage of the SW UART *
* Author: Robert J. DeNardo *
* Texas Instruments, Inc. *
* Revision History: *
* 11/12/99 Original Code Robert DeNardo *
* 12/21/99 Changed example loop structure. Robert DeNardo *
* 09/05/00 Setup to run on 5402DSK. Robert DeNardo *
* *
* This code is set to run on 5402DSK. Make sure to set CPLD *
* to use McBSP0 from daughterboard (0x4@io = 0xFF03). *
**
 .mmregs
 .include ”UARTsetup.inc”
********** routines called by this file ***********
 .ref _UARTTxChar
 .ref _UARTRxChar
 .ref _UARTStart
 .ref _UARTStop
 .ref _UARTInit
 .ref _UARTSetBaudRate
 .ref _UARTSetBreak
 .ref _UARTDMATxISR
 .ref _UARTDMARxISR
********** routines defined in this file ***********
 .def _main
 .def _c_int00 ; use this label so we can share vectors.asm with C example
 .if INTERRUPT_BASED
 .def _UARTLSIint
 .def _UARTRBFint
 .def _UARTTBEint
 .endif
*********** public variables referenced ************
 .ref _UARTLSR

*************** variable definitions ***************
 .bss RxHeadPtr,1
 .bss RxTailPtr,1
 .bss RxCharCnt,1
 .bss TxHeadPtr,1
 .bss TxTailPtr,1
******************* equates ************************
DMPREC .set 54h ; DMA channel PRiority and Enable Control register
TXNUM .set 10
STACKSIZE .set 100
RxCharBuf .usect ”ExampleRxBuf”,TXNUM*2 ; address of the circular character
 ; receive buffer
TxCharBuf .usect ”ExampleTxBuf”,TXNUM*2 ; address of the circular character
 ; transmit buffer
stack .usect ”.stack”,STACKSIZE

 .text
 .if INTERRUPT_BASED

SPRA661A

63 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

**
* Function: _UARTLSIint *
* Called By: _UARTDMARxISR *
* Purpose: Run when a Line Status Interrupt event occurs. *
* This is when a Parity Error, Overrun Error, *
* Break Interrupt Error, or Framing Error occurs *
* The registers, ar2, a, b, st0, st1, brc, rsa, *
* rea are saved and restored by _UARTDMARXISR. *
* Any other registers used MUST be saved and *
* restored by this routine. *
* Inputs: none *
* Outputs: none *
* Modified: none *
**
_UARTLSIint:
 pshm bk
 stm #TXNUM*2,BK ; set for circular addressing
 call ErrRoutine
 popm bk
 ret
**
* Function: _UARTRBFint *
* Called By: _UARTDMARxISR *
* Purpose: Run when a new char is received into rxchar. *
* The registers, ar2, a, b, st0, st1, brc, rsa, *
* rea are saved and restored by _UARTDMARXISR. *
* Any other registers used MUST be saved and *
* restored during this routine. *
* Inputs: CPL=0 (data page rel. direct addressing) *
* Outputs: none *
* Modified: none *
**
_UARTRBFint:
 pshm bk
 stm #TXNUM*2,BK ; set for circular addressing
 call RxRoutine
 popm bk
 ret

**
* Function: _UARTTBEint *
* Called By: _UARTDMATxISR *
* Purpose: Run when a char has just been transmitted *
* and the UART is ready to transmit another. *
* The st0 register is saved and restored by *
* _UARTDMATxISR. Any other registers used MUST *
* be saved and restored during this routine. *
* Inputs: none *
* Outputs: none *
* Modified: none *
**
_UARTTBEint:
 pshm al
 pshm ah
 pshm ag
 pshm st1

SPRA661A

64 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 pshm ar2
 pshm bk
 pshm brc
 pshm rea
 pshm rsa
 stm #TXNUM*2,BK ; set for circular addressing
 call TxRoutine
 popm rsa
 popm rea
 popm brc
 popm bk
 popm ar2
 popm st1
 popm ag
 popm ah
 popm al
 ret
 .endif
**
* Function: _InitPLL *
* Purpose: Sets the PLL for a 3.75 multiplier. *
* Inputs: none *
* Outputs: none *
* Modified: clkmd,tc *
**
_InitPLL:
 stm #0,CLKMD
waitDiv:
 bitf *(CLKMD),#1 ; check the status bit to see if in DIV mode
 bc waitDiv,tc ; if not, keep looping
 stm #0fffbh,CLKMD ; set multiplier to 15/4=3.75 and set count to 0xff
waitPLL:
 bitf *(CLKMD),#1 ; check the status bit to see if in PLL mode
 bc waitPLL,ntc ; if not, keep looping
 ret

**
* Function: _main *
* Purpose: Example routine to use the UART. *
* This demonstrates the calls to the *
* initialization routines and how to read and *
* write characters with the UART. *
* Inputs: none *
* Outputs: none *
* Modified: NA *
**
_c_int00:
_main:
 stm #0100000000100000b,PMST
 ;010000000~~~~~~~b IPTR: Vector table resides at 04000h
 ;~~~~~~~~~0~~~~~~b MP/MC_: On-chip ROM is enabled
 ;~~~~~~~~~~1~~~~~b OVLY: On-chip RAM mapped to prog & data space
 ;~~~~~~~~~~~0~~~~b AVIS: Address visibility mode off
 ;~~~~~~~~~~~~0~~~b DROM: On-chip ROM not mapped into data space
 ;~~~~~~~~~~~~~0~~b CLKOFF: CLOCKOUT not disabled
 ;~~~~~~~~~~~~~~0~b SMUL: Saturate on Multiply is disabled

SPRA661A

65 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 ;~~~~~~~~~~~~~~~0b SST: Saturate on Store is disabled
 stm #stack + STACKSIZE,sp ; init the stack pointer to top of stack
 stm #0,imr ; disable all interrupts
 stm #0ffffh,ifr ; clear all pending interrupts
 st #0,*(DMPREC) ; disable all DMA channels.
 call _InitPLL ; init the PLL
 call _UARTInit ; init the UART
 st #0,*(RxCharCnt) ; init received character count to 0
 st #RxCharBuf,*(RxHeadPtr) ; init the head ptr into received character buffer
 st #RxCharBuf,*(RxTailPtr) ; init the tail ptr into received character buffer
 st #TxCharBuf,*(TxHeadPtr) ; init the head ptr into transmit character buffer
 st #TxCharBuf,*(TxTailPtr) ; init the tail ptr into transmit character buffer
 stm #TXNUM*2,BK ; set for circular addressing
 ld #0,a ; start the Rx and Tx UART channels
 call _UARTStart ;
 stm #1,ar0 ; use for copy below
 .if INTERRUPT_BASED ; example for interrupt based servicing of UART
echoLoop:
 ld *(RxCharCnt),a
 sub #TXNUM,a ; see if TXNUM or greater characters received
 bc echoLoop,alt ; if not, loop
 mvdk *(RxTailPtr),ar2 ; load the receive tail pointer
 ; (oldest rx char) to ar2
 mvdk *(TxHeadPtr),ar3 ; load the transmit head pointer to ar3
 rpt #TXNUM-1
 mvdd *ar2+0%,*ar3+0% ; copy TXNUM received chars to transmit buffer
 mvkd ar2,*(RxTailPtr) ; update the receive tail pointer
 mvkd ar3,*(TxHeadPtr) ; update the transmit head pointer
 addm #-TXNUM,*(RxCharCnt) ; decrement the received character count by TXNUM
 call TxRoutine ; need to ”kickstart” UART for transmit.
 call TxRoutine ; need to ”kickstart” UART for transmit
 ; (put 2 chars in buf to get consecutive
 ; transmits).
 ; It will transmit these TXNUM chars and then
 ; stop.
 b echoLoop
 .else ; example for polling based servicing of UART
echoLoop:
 bitf *(_UARTLSR),#DR ; Check if new character received
 cc RxRoutine,tc ; if so, call routine to process it
 bitf *(_UARTLSR),#THRE ; Check if new character can be sent
 cc TxRoutine,tc ; if so, call routine to process it
 bitf *(_UARTLSR),#(BI|FE|PE|OE) ; Check if any errors
 cc ErrRoutine,tc ; if so, process the errors
 ld *(RxTailPtr),a ; check if any received data is available
 sub *(RxHeadPtr),a
 bc echoLoop,aeq ; if head=tail ptr for rx, skip copy
 mvdk *(RxTailPtr),ar2
 mvdk *(TxHeadPtr),ar3
 mvdd *ar2+0%,*ar3+0% ; move rx char to tx buffer
 mvkd ar2,*(RxTailPtr) ; update pointers
 mvkd ar3,*(TxHeadPtr)
 b echoLoop
 .endif
RxRoutine:
 call _UARTRxChar ; returns char in al

SPRA661A

66 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 mvdk *(RxHeadPtr),ar2 ; load the receive head pointer into ar2
 stl a,*ar2+% ; store the newly decoded character into the
 ; received character buffer
 mvkd ar2,*(RxHeadPtr) ; update the head ptr
 addm #1,*(RxCharCnt) ; increment received character count
 ret
TxRoutine:
 ld *(TxTailPtr),a ; check if any transmit data is available to be
 ; sent
 sub *(TxHeadPtr),a
 rc aeq ; if transmit head=tail pointer, no data, so exit
 mvdk *(TxTailPtr),ar2 ; otherwise load the transmit tail pointer
 ld *ar2+%,a ; get the next character to transmit
 mvkd ar2,*(TxTailPtr) ; update the tail pointer
 sub #2,a
 bcd sendBreak,alt ; if buffer has 0 or 1, send break
 add #2,a
 call _UARTTxChar ; format the character for transmit.
 ret
sendBreak:
 call _UARTSetBreak ; sending a 1 sends break, 0 sends end of break
 ret

ErrRoutine: ; this error routine puts break in tx buffer
 ; and clears flags
 andm #~(BI|FE|PE|OE),*(_UARTLSR); clear error flags
 mvdk *(TxHeadPtr),ar2 ; get current tx head ptr to write new data
 st #1,*ar2+% ; add a break to transmit buffer
 st #0,*ar2+% ; add end of break to transmit buffer
 mvkd ar2,*(TxHeadPtr) ; update transmit head ptr
 ret

SPRA661A

67 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

Appendix G Example Interrupt Vectors Table (vectors.asm)
**
* Filename: vectors.asm *
* Function: Software UART example vector table *
* Author: Robert J. DeNardo *
* Texas Instruments, Inc *
* Revision History: *
* 11/12/99 Original Code Robert DeNardo *
**
 .mmregs
 .sect ”vecs”
 .ref _c_int00
 .ref _UARTDMARxISR
 .ref _UARTDMATxISR
ResetVector: ; Reset Vector
 b _c_int00
 nop
 nop

 b $; NMI Vector
 nop
 nop

 b $; SWI 17
 nop
 nop

 b $; SWI 18
 nop
 nop

 b $; SWI 19
 nop
 nop

 b $; SWI 20
 nop
 nop

 b $; SWI 21
 nop
 nop

 b $; SWI 22
 nop
 nop

 b $; SWI 23
 nop
 nop

 b $; SWI 24
 nop
 nop

 b $; SWI 25
 nop
 nop

SPRA661A

68 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 b $; SWI 26
 nop
 nop

 b $; SWI 27
 nop
 nop

 b $; SWI 28
 nop
 nop

 b $; SWI 29
 nop
 nop

 b $; SWI 30
 nop
 nop

 b $; Ext Int 0
 nop
 nop

 b $; Ext Int 1
 nop
 nop

 b $; Ext Int 2
 nop
 nop

 b $; Timer Int
 nop
 nop

 b $; McBSP0 Rx Int
 nop
 nop

 b $; McBSP0 Tx Int
 nop
 nop

 b $; McBSP2 Rx Int
 nop
 nop
 b $; McBSP2 Tx Int
 nop
 nop
 b $; Ext Int 3
 nop
 nop

 b $; HPI Int
 nop
 nop

SPRA661A

69 Implementing a Software UART on the TMS320C54xx with the McBSP and DMA

 b $; McBSP1 Rx Int
 nop
 nop

 b $; McBSP1 Tx Int
 nop
 nop

DMAC4Vector: ; DMA Ch 4 Int
 b _UARTDMARxISR
 nop
 nop

DMAC5Vector: ; DMA Ch 5 Int
 b _UARTDMATxISR
 nop
 nop

 b $; Reserved
 nop
 nop

 b $; Reserved
 nop
 nop

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

