
Application Report
SPRA662 - June 2000

1

DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP
Shawn Dirksen Digital Signal Processing Solutions

ABSTRACT

This document describes each of the DSP/BIOS II performance benchmarks and the
accompanying results, followed by a technique used for calculating overall system
performance or overhead. To help designers better analyze their system performance, we
have detailed the methodology used for obtaining each of the benchmarks along with the
number of CPU cycles to execute each of the DSP/BIOS II functions. The designers can then
compute the sum of these components and the frequency of occurrence to determine the
total system performance for their application.

Contents

1 DSP/BIOS II Timing Benchmarks 2.
1.1 LOG – Log Benchmarks 2.
1.2 STS — Statistics Benchmarks 2.
1.3 TSK — Task Yield Benchmarks 2.
1.4 SEM — Semaphore Benchmarks 2.
1.5 SWI — Software Interrupt Benchmarks 3.
1.6 PRD — Periodic Function Benchmarks 3.
1.7 HWI — Hardware Interrupt Benchmarks 4.
1.8 MBX — Mailbox Benchmarks 5.
1.9 PIP — Pipe Benchmarks 6.

2 DSP/BIOS II Timings 7.
2.1 Benchmark Results (C Language API) 7.

3 Calculating System Performance 9.

List of Figures

Figure 1. Task Yield Benchmarks 2.
Figure 2. Semaphore Benchmarks 2.
Figure 3. Post of Semaphore Task Switch 3.
Figure 4. Software Interrupt Benchmarks 3.
Figure 5. Post of Software Context Switch 3.
Figure 6. Hardware Interrupt to Blocked Task 4.
Figure 7. Hardware Interrupt to Software Interrupt 5.
Figure 8. Mailbox Benchmarks 5.
Figure 9. Post of a Mailbox with Context Switch 5.

List of Tables

Benchmark Results 7.

SPRA662

2 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

1 DSP/BIOS II Timing Benchmarks
DSP/BIOS II functions have been described along with the approach taken to measure each
performance benchmark.

1.1 LOG – Log Benchmarks

LOG_event. This is the execution time of a LOG_event function call, which is used to append
an unformatted message to an event log.

LOG_printf. This is the execution time of a LOG_printf function call, which is used to append a
formatted message to an event log. The execution time of the function is not dependent on the
number of arguments specified in the function call.

1.2 STS — Statistics Benchmarks

STS_add. This is the execution time of a STS_add function call, which is used to update the
total, count, and max fields of a statistics object.

STS_delta. This is the execution time of a STS_delta function call, which is used to update a
statistics object, using the difference between a provided value and a previous setpoint value.

STS_set. This is the execution time of a STS_set function call, which is used to set the previous
value for a statistics object.

1.3 TSK — Task Yield Benchmarks

TSK_yield. This is a measurement of the elapsed time between a function call to
TSK_yield(which causes preemption of the current thread yielding control of the processor), and
the execution of the first instruction in a task of equal priority, as shown below.

Task 1 executing TSK yield KNL Context switch KNL Task 2 executing

Task yield
Time

Figure 1. Task Yield Benchmarks

1.4 SEM — Semaphore Benchmarks

The semaphore benchmarks measure the time interval between the issuance of a post
(SEM_post) or pend(SEM_pend) function call and the resumption of task execution, both with
and without a context switch. The results are independent of task priority, an inherent
characteristic of DSP/BIOS that makes it ideal for signal processing applications that require
predictable, consistent real-time response.

Post of a Semaphore, no context switch. This is a measurement of a SEM_post function call,
when the posted task is not higher priority that the currently running TSK, and no preemption
occurs:

Task 1 executing SEM post Task 1 executing

Time
Post semaphore

Figure 2. Semaphore Benchmarks

SPRA662

3 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

Post of a Semaphore, with context switch. This is a measurement of the elapsed time between
a function call to SEM_post (which causes preemption of the current task), and the execution of
the first instruction in the higher priority task, as shown below:

Task 1 executing

Time

SEM post KNL Context switch KNL Task 2 executing

Post semaphore, task switch

Figure 3. Post of Semaphore Task Switch

Pend of a Semaphore, no context switch. This is a measurement of a SEM_pend function call
without a context switch.

Pend of a Semaphore, with context switch. This is a measurement of the elapsed time between
a function call to SEM_pend(which causes preemption of the current task), and the execution of
the higher priority task.

1.5 SWI — Software Interrupt Benchmarks

Post of Software Interrupt, no context switch. This is a measurement of a SWI_post function
call, when the posted software interrupt is not higher priority than the currently running SWI, and
no preemption occurs:

SWI 1 executing

Time

SWI_post SWI 1 executing

Figure 4. Software Interrupt Benchmarks

Post of Software Interrupt, with context switch. This is a measurement of the elapsed time
between a function call to SWI_post (which causes preemption of the current thread), and the
execution of the first instruction in the higher priority software interrupt, as shown below. The
context switch for SWI 2 is performed within the SWI executive, and this time is included within
the measurement.

SWI 1 executing SWI_post SWI executing SWI 2 executing

Time

Figure 5. Post of Software Context Switch

1.6 PRD — Periodic Function Benchmarks

Timer Interrupt calling PRD_tick. This is a measurement of the elapsed time from the start to
the completion of an ISR that calls PRD_tick to increase the system clock counter by one.

Timer Interrupt calling PRD_swi. This is a measurement of the elapsed time from the start of an
ISR that calls PRD_tick and posts a software interrupt to the PRD_swi.

SPRA662

4 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

Timer Interrupt to Periodic Function. This is a measurement of the elapsed time from the start of
an ISR that calls PRD_tick and posts a software interrupt, to the execution of the first instruction
in the posted periodic function.

1.7 HWI — Hardware Interrupt Benchmarks

These benchmarks exhibit the interrupt latency typical of most interrupt processing applications
independent a kernel being used. The interrupt latency provides a useful measure of worst-case
interrupt response, but does not reflect the scheduling capability of the DSP/BIOS kernel
(launching threads to perform background processing for the ISR). This is further demonstrated
in the Hardware Interrupt to Software Interrupt and the Hardware Interrupt to Blocked Task
benchmarks.

Interrupt prolog. This is a measurement of the execution time of an HWI_enter macro call.
HWI_enter must be called in an ISR prior to any DSP/BIOS API calls that can post or affect a
software interrupt (SWI). The execution time of the HWI_enter macro depends upon the list of
registers to be saved for the ISR, as defined in masks specified by the user. This benchmark
shows the minimum execution time for the prolog, with no registers saved.

Interrupt prolog for calling C function. This measurement is similar to the previous (interrupt
prolog), but in this case the time shown in the data sheet corresponds to all C caller-preserved
registers being saved, so that a C function can be called from the assembly stub.

Interrupt epilog. This is a measurement of the execution time of an HWI_exit macro call.
HWI_exit must be the last statement of any ISR that calls HWI_enter. The execution time of
HWI_exit depends upon the list of registers the user specifies to be restored. This benchmark
shows the minimum execution time for the epilog, with no registers restored, and no higher
priority SWIs posted in the ISR (i.e., following the ISR, execution resumes with the thread that
was preempted by the hardware interrupt).

Interrupt epilog following C function call. This measurement is similar to the previous (Interrupt
epilog), but in this case the time shown in the data sheet corresponds to all C caller-preserved
registers being restored, with no higher priority SWIs posted in the ISR.

Hardware Interrupt to Blocked Task. This is a measurement of the elapsed time from the start
of an ISR that posts a semaphore, to the execution of the blocked task:

Task 1 executing HWI_enter SEM_ipost KNL HWI_exit KNL Task 2 executing

Interrupt to block task

Interrupt
asserted

Time

Figure 6. Hardware Interrupt to Blocked Task

SPRA662

5 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

Hardware Interrupt to Software Interrupt. This is a measurement of the elapsed time from the
start of an ISR that posts a software interrupt, to the execution of the first instruction in the
posted software interrupt:

SWI 2 executing HWI_enter SWI_post HWI_exit SWI executive SWI 3 executing

ISR start
Interrupt
asserted

Figure 7. Hardware Interrupt to Software Interrupt

In the above example SWI 3 has a higher priority than SWI 2, so SWI 2 is preempted. The
context switch for SWI 3 is performed within the SWI executive, and this time is included within
the measurement. In this case, the registers saved/restored by HWI_enter/HWI_exit are only
those modified by the SWI_post assembly macro.

Interrupt Latency. This is the maximum latency time during which DSP/BIOS disables
maskable interrupts.

1.8 MBX — Mailbox Benchmarks

Post of a Mailbox, no context switch. This is a measurement of a MBX_post function call, when
the posted mailbox copies a message into the unfilled mailbox, and no higher priority task is
pending on the mailbox.

Task 1 executing MBX post Task 1 executing

Time

Figure 8. Mailbox Benchmarks

Post of a Mailbox, with context switch. This is a measurement of the elapsed time between a
function call to MBX_post(which causes preemption of the current task), and a context switch to
a higher priority task pending on the mailbox, as shown below:

Task 1 executing

Time

MBX post KNL Context switch KNL Task 2 executing

Pend mailbox, task switch

Figure 9. Post of a Mailbox with Context Switch

Pend of a Mailbox, no context switch. This is a measurement of a MBX_pend function call,
when the unfilled pending mailbox copies a message, and no higher priority task is pending on
the mailbox.

Pend of a Mailbox, with context switch. This is a measurement of the elapsed time between a
function call to MBX_pend(which causes preemption of the current task) if the mailbox is empty
or a higher priority task is blocked on a MBX_post.

SPRA662

6 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

1.9 PIP — Pipe Benchmarks

NOTE: Each of the following pipe benchmarks includes the execution time of a minimal notifyWriter
(or notifyReader) C function call, i.e., a function that just does a return, but is considered to have
modified all C caller–preserved registers.

PIP_alloc. This is the execution time of a PIP_alloc function call, which is used to allocate an
empty frame from a pipe. PIP_free. This is the execution time of a PIP_free function call, which
is used to recycle a frame back into a pipe.

PIP_get. This is the execution time of a PIP_get function call, which is used to get a full frame
from a pipe.

PIP_put. This is the execution time of a PIP_put function call, which is used to put a full frame
into a pipe.

SPRA662

7 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

2 DSP/BIOS II Timings

This data contains timing information for version 1.2 of DSP/BIOS II for the TMS320C6000
digital signal processors. These timings apply for the floating-point processor as well.

Environment Testing Platform: TMS320C6000 EVM, using TMS320C6201 internal memory for
both code and data.

Software: DSP/BIOS version 4.00, built with TI Code Generation Tools, version 4.00.

2.1 Benchmark Results (C Language API)

Table 1. Benchmark Results

Non-instrumented i

CPU Cycles

Non-instrumented i

Time (usec)
@200Mhzii

Instrumented
CPU Cycles

Instrumented
Time (usec)
@200Mhzii

Log Operations

LOG_event 33 0.165 33 0.165

LOG_printf 36 0.18 36 0.18

Statistics Operations

STS_set 14 0.07 14 0.07

STS_add 15 0.075 15 0.075

STS_delta 21 0.105 21 0.105

Task Yield

TSK_yield 263 1.315 375 1.875

Semaphores

Post semaphore, no task switch 182 0.91 269 1.345

Post semaphore, task switch 288 1.44 434 2.17

Pend semaphore, no task switch 152 0.76 205 1.025

Pend semaphore, task switch 278 1.39 389 1.945

Software Interrupts (SWIs)

Post of Software Interrupt, no
context switch

118 0.59 118 0.59

Post of Software Interrupt, with
context switch

238 1.19 238 1.19

Periodic Functions

Timer interrupt calling PRD_tick 113 0.565 113 0.565

Timer interrupt calling PRD_swi 360 1.80 360 1.80

Timer interrupt to Periodic
functionv

471 2.355 471 2.355

Hardware Interrupts iii

Interrupt prolog (minimum) 32 0.16 32 0.16

Interrupt prolog for calling C
function

41 0.205 41 0.205

Interrupt epilog (minimum) 52 0.26 52 0.26

SPRA662

8 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

Table 1. Benchmark Results (Continued)
Instrumented
Time (usec)
@200Mhzii

Instrumented
CPU Cycles

Non-instrumented i

Time (usec)
@200Mhzii

Non-instrumented i

CPU Cycles

Interrupt epilog following C
function call

65 0.325 65 0.325

Hardware Interrupt to Blocked
Task

798 39.9 929 4.645

Hardware Interrupt to Software
Interrupt

336 1.68 336 1.68

Interrupt Latencyiv 72 0.36 72 0.36

Mailboxes

Post mailbox, no task switch 431 2.155 571 2.855

Post mailbox, task switch 800 4.00 1086 5.43

Pend mailbox, no task switch 433 2.165 573 2.865

Pend mailbox, task switch 300 1.5 411 2.055

Pipe Operations

PIP_alloc 98 0.49 98 0.49

PIP_free 93 0.465 93 0.465

PIP_get 96 0.48 96 0.48

PIP_put 95 0.475 95 0.475

i These timings where performed using the non–instrumented kernel. Refer to DSP/BIOS II Sizing Guidelines for the
TMS320C62x DSP, literature number SPRA667, for details regarding scaling and code size of DSP/BIOS.
ii For a 200MHz C6201 processor the CPU cycle period is 5 nanoseconds.
iii These measurements relate to the DSP/BIOS assembly language API, not the C language API.
iv Longest Interrupt latency occurs during SWI scheduling.
v Event is a SWI_post to beginning of periodic SWI execution.

SPRA662

9 DSP/BIOS II Timing Benchmarks on the TMS320C6000 DSP

3 Calculating System Performance

We can estimate the amount of DSP/BIOS overhead in terms of CPU load in any application.
This is possible since all DSP/BIOS operations are visible to the developer. That is, the
developer specifies which DSP/BIOS components and function calls to include into the
application, either in the Configuration Tool, or explicitly in the code. The developer needs only
to compute the sum of the components and frequency of occurrence to determine the overhead
analytically. By using the RTA tools in CCS, developers may also directly measure the overhead
on their specific hardware platform.

To estimate the overhead in DSP/BIOS applications, the developer must first identify all the
DSP/BIOS components and API calls within the application. In our sample application audio I/O
example, the DSP/BIOS components are:

• one HWI object mapped to the Audio

• one SWI object to do the processing (copy) operation and,

• two Data Pipes; one for input, one for output.

The component overhead in instruction cycles may be taken from the DSP/BIOS II Timings as
listed in Table 1. To process a single buffer of audio data requires the total overhead of 1106
cycles on a C6000. The processing period is 4 ms, so the frequency of occurrence is 250 times
per second. Therefore, the total number of cycles in one second, attributed to DSP/BIOS
overhead running the audio thread on a C6000 DSP is 276,500 or 0.276500 MIPS. On a 200
MHz C6000 DSP, this equates to a 0.14% CPU load. Further explanation of this calculation is
demonstrted in the DSP/BIOS II Technical Overview, SPRA646.

To calculate the amount of memory consumed by DSP/BIOS, the developer again needs to
identify the DSP/BIOS components and API calls in the program. By summing the components,
the developer can estimate the memory usage, both data and program. By using the memory
map from the application, the exact amount can be determined.

In a similar fashion, developers can analytically determine the overhead attributed to DSP/BIOS.
However, since it is the nature of software to change over time, analytical calculation can be
tedious. The real-time analysis tool provided by DSP/BIOS allow developers to measure the
overhead directly. Finally, since developers can chose the amount of DSP/BIOS to use and
include in their applications, they have full control over the overhead.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	DSP/BIOS II Timing Benchmarks
	LOG – Log Benchmarks
	STS — Statistics Benchmarks
	TSK Task Yield Benchmarks
	SEM — Semaphore Benchmarks
	SWI — Software Interrupt Benchmarks
	PRD — Periodic Function Benchmarks
	HWI — Hardware Interrupt Benchmarks
	MBX — Mailbox Benchmarks
	PIP — Pipe Benchmarks

	DSP/BIOS II Timings
	Benchmark Results (C Language API)

	Calculating System Performance

