
Application Report
SPRA668 - May 2000

1

Interfacing TLC320AC01 to the TMS320C54x Serial Port
C5000 Applications Team Digital Signal Processing Solutions

ABSTRACT

Most DSP systems transfer data through peripherals. These peripherals include parallel and
serial ports. This application report describes how the serial ports are initialized and how the
TLC320AC01 (’AC01) analog interface circuit (AIC) interfaces to the TMS320C54x serial
port. This application report also describes the various issues involved such as stack, context
switching, interrupt priorities, and different addressing modes for collecting the samples
during the interrupt processing.

Contents
1 Context Switching 1.
2 Interrupt Handling 3.
3 Interrupt Priority 5.
4 Circular Addressing 6.

List of Examples

Example 1. Context Save and Restore for TMS320C54x 2.
Example 2. Receive Interrupt Service Routine 4.
Example 3. Interrupt Service Routine (ISR) 5.
Example 4. Circular Addressing Mode 6.

1 Context Switching
Before you execute a routine, you must save its context and restore the context after the routine
has finished. This procedure is called context switching, and involves pushing the PC onto the
stack. Context switching is useful for subroutine calls, especially when making extensive use of
the auxiliary registers, accumulators, and other memory-mapped registers.

Due to system and CPU requirements, the order of saving and restoring can vary. Some repeat
instructions, such as RPTB, are interruptible. To nest repeat block instructions, you must ensure
that the block-repeat counter (BRC), block-repeat start address (RSA), and block-repeat end
address (REA) registers are saved and restored.

You must also ensure that the block-repeat active flag (BRAF) is properly set. Since the
block-repeat flag can be deactivated by clearing the BRAF bit of the ST1 register, the order in
which you push the block-repeat counter and ST1 is important. If the BRC register is pushed
onto the stack prior to ST1, any PC discontinuity in RPTB can give a wrong result, since BRAF
is cleared in ST1. Thus, you must restore BRC before restoring the ST1 register.

A context save complements the restored contents. To ensure the integrity of the code,
determine what contents must be restored so that no sequencing is lost.

TMS320C54x is a trademark of Texas Instruments.

SPRA668

2 Interfacing TLC320AC01 to the TMS320C54x Serial Port

Example 1. Context Save and Restore for TMS320C54x

.title “CONTEXT SAVE/RESTORE on SUBROUTINE or INTERRUPT
CONTEXT_RESTORE .macro

POPM PMST ;Restore PMST register
POPM RSA ;Restore block repeat start address
POPM REA ;Restore block repeat end address
POPM BRC ;Restore block repeat counter
POPM IMR ;Restore interrupt mask register
POPM BK ;Restore circular size register
POPM ST1 ;Restore ST1
POPM ST0 ;Restore ST0
POPM AR0 ;Restore AR0
POPM AR1 ;Restore AR1
POPM AR2 ;Restore AR2
POPM AR3 ;Restore AR3
POPM AR4 ;Restore AR4
POPM AR5 ;Restore AR5
POPM AR6 ;Restore AR6
POPM AR7 ;Restore AR7
POPM T ;Restore temporary register
POPM TRN ;Restore transition register
POPM BL ;Restore lower 16 bits of accB
POPM BH ;Restore upper 16 bits of accB
POPM BG ;Restore 8 guard bits of accB
POPM AL ;Restore lower 16 bits of accA
POPM AH ;Restore upper 16 bits of accA
POPM AG ;Restore 8 guard bits of accA
.endm

CONTEXT_SAVE .macro
PSHM AG ;Save 8 guard bits of accA
PSHM AH ;Save upper 16 bits of accA
PSHM AL ;Save lower 16 bits of accA
PSHM BG ;Save 8 guard bits of accB
PSHM BH ;Save upper 16 bits of accB
PSHM BL ;Save lower 16 bits of accB
PSHM TRN ;Save transition register
PSHM T ;Save temporary register
PSHM AR7 ;Save AR7
PSHM AR6 ;Save AR6
PSHM AR5 ;Save AR5
PSHM AR4 ;Save AR4
PSHM AR3 ;Save AR3
PSHM AR2 ;Save AR2
PSHM AR1 ;Save AR1
PSHM AR0 ;Save AR0
PSHM ST0 ;Save ST0
PSHM ST1 ;Save ST1
PSHM BK ;Save circular size register
PSHM IMR ;Save interrupt mask register
PSHM BRC ;Save block repeat counter
PSHM REA ;Save block repeat end address
PSHM RSA ;Save block repeat start address
PSHM PMST ;Save PMST register
.endm

SPRA668

3 Interfacing TLC320AC01 to the TMS320C54x Serial Port

2 Interrupt Handling

The ’54x CPU supports 16 user-maskable interrupts. The vectors for interrupts not used by a
’54x device can function as software interrupts, using the INTR and TRAP instructions. TRAP
and INTR allow you to execute any of the 32 available ISRs. You can define other locations in
the interrupt vector table. The INTR instruction sets the INTM bit to 1, clears the corresponding
interrupt flag to 0, and makes the IACK signal active, but the TRAP instruction does not. INTR
and TRAP are nonmaskable interrupts.

When a maskable interrupt occurs, the corresponding flag is set to 1 in the interrupt flag register
(IFR). Interrupt processing begins if the corresponding bit in IMR register is set to 1 and the
INTM bit in the ST1 register is cleared. The IFR register can be read and action taken if an
interrupt occurs. This is true even when the interrupt is disabled. This is useful when not using
an interrupt-driven interface, such as in a subroutine call when INT1 has not occurred.

When interrupt processing begins, the PC is pushed onto the stack and the interrupt vector is
loaded into the PC. Interrupts are then disabled by setting INTM = 1. The program continues
from the address loaded in the PC. Since all interrupts are disabled, the program can be
processed without any interruptions, unless the ISR reenables them. Except for very simple
ISRs, it is important to save the processor context during execution of the routine.

During the time the ’AC01 is reset, the DSP initializes the serial port and sets up the interrupt. To
set up the interrupts, it performs the following operations:

• Enables unmasked interrupts by clearing the interrupt mode bit (INTM)

• Clears prior receive interrupts by writing the current contents of the appropriate receive
interrupt flag in the IFR back to the IFR

• Enables receive interrupts by setting the appropriate receive interrupt flag in the interrupt
mask register (IMR)

The initialization of the IMR and IFR registers and the INTM bit is included in the serial port and
the ’AC01 initialization.

Example 2 processes the receive interrupt 1 service routine. The routine collects 256 samples in
the first buffer and changes the address to the second buffer for the next 256 samples while
processing the first buffer.

SPRA668

4 Interfacing TLC320AC01 to the TMS320C54x Serial Port

Example 2. Receive Interrupt Service Routine

; TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include ”INTERRPT.INC”
.include ”main.inc”

RCV_INT1_DP .usect ”rcv_vars”,0
d_index_count .usect ”rcv_vars”,1
d_rcv_in_ptr .usect ”rcv_vars”,1 ; save/restore input bffr ptr
d_xmt_out_ptr .usect ”rcv_vars”,1 ; save/restore output bffr
ptr
d_frame_flag .usect ”rcv_vars”,1
input_data .usect ”inpt_buf”,K_FRAME_SIZE*2 ; input data array
output_data .usect ”outdata”,K_FRAME_SIZE*2 ; output data array

.def receive_int1

.def d_frame_flag

.def RCV_INT1_DP

.def input_data,output_data

.def d_xmt_out_ptr

.def d_rcv_in_ptr
;––
; Functional Description
; This routine services receive interrupt1. Accumulator A, AR2 and AR3
; are pushed onto the stack since AR2 and AR3 are used in other applications.
; A 512 buffer size for both input and output.
; After every 256 collection of input samples a flag is set to process the
; data. No circular buffering scheme is used here.
; After collecting 256 samples in the 1st bffr, then the second buffer
; address is loaded and collect data in the second buffer while processing
; the first buffer and vice versa.
;–––

.asg AR2,GETFRM_IN_P ; get frame input data pointer

.asg AR3,GETFRM_OUT_P ; get frame output data pointer

.asg AR2,SAVE_RSTORE_AR2

.asg AR3,SAVE_RSTORE_AR3

.sect ”main_prg”
receive_int1:

PSHM AL
PSHM AH
PSHM AG
PSHM BL
PSHM BH
PSHM BG

; AR2, AR3 are used in other routines, they need to be saved and restored
; since receive interrupt uses AR2 and AR3 as pointers

PSHM SAVE_RSTORE_AR2 ; Since AR2 and AR3 are used
PSHM SAVE_RSTORE_AR3 ; in other routines, they need
PSHM BRC
LD #RCV_INT1_DP,DP ; init. DP
MVDK d_rcv_in_ptr,GETFRM_IN_P ; restore input bffr ptr
MVDK d_xmt_out_ptr,GETFRM_OUT_P ; restore output bffr ptr
ADDM #1,d_index_count ; increment the index count
LD #K_FRAME_SIZE,A
SUB d_index_count, A
BC get_samples,AGT ;check for a frame of samples

frame_flag_set
ADDM #1,d_int_count
ST #K_FRAME_FLAG,d_frame_flag ; set frame flag
ST #0,d_index_count ; reset the counter
LD #input_data+K_FRAME_SIZE,A ; second input bffr starting addr
LD #output_data+K_FRAME_SIZE,B ; second output bffr starting addr
BITF d_int_count,2 ; check for 1st/2nd bffr
BC reset_buffer,NTC

SPRA668

5 Interfacing TLC320AC01 to the TMS320C54x Serial Port

Example 2. Receive Interrupt Service Routine (Continued)

SUB #K_FRAME_SIZE,A ; 1st input address
SUB #K_FRAME_SIZE,B ; 1st output address
ST #K_0,d_int_count

reset_buffer
STLM A,GETFRM_IN_P ; input buffer address
STLM B,GETFRM_OUT_P ; output buffer address

get_samples
LDM DRR1,A ; load the input sample
STL A,*GETFRM_IN_P+ ; write to buffer
LD *GETFRM_OUT_P+,A ; if not true, then the filtered
AND #0fffch,A ; signal is send as output
STLM A,DXR1 ; write to DXR1
MVKD GETFRM_IN_P,d_rcv_in_ptr ; save input buffer ptr
MVKD GETFRM_OUT_P,d_xmt_out_ptr ; save out bffr ptr
POPM BRC
POPM SAVE_RSTORE_AR3 ; restore AR3
POPM SAVE_RSTORE_AR2 ; restore AR2
POPM BG
POPM BH
POPM BL
POPM AG
POPM AH
POPM AL
POPM ST1
POPM ST0
RETE ; return and enable interrupts
.end

3 Interrupt Priority

Interrupt prioritization allows interrupts that occur simultaneously to be serviced in a predefined
order. For instance, infrequent but lengthy ISRs can be interrupted frequently. In Example 3, the
ISR for the INT1 bit includes context save and restore macros. When the routine has finished
processing, the IMR is restored to its original state. Notice that the RETE instruction not only pops
the next program counter address from the stack, but also clears the INTM bit to 0. This enables
all interrupts that have their IMR bit set.

Example 3. Interrupt Service Routine (ISR)

.title “Interrupt Service Routine”

.mmregs
int1:

CONTEXT_STORE ; push the c ontents of accumulators and registers on stack
STM #K_INT0,IMR ; Unmask only INT0~
RSBX INTM ; Enable all Interrupts

;
; Main Processing for Receive Interrupt 1
.
.
.

SSBX INTM ; Disable all interrupts
CONTEXT_RESTORE ; pop accumulators and registers
RETE ; return and enable interrupts
.end

SPRA668

6 Interfacing TLC320AC01 to the TMS320C54x Serial Port

There is a potential conflict between the INTM bit disable and context restore. If an interrupt 0
(INT0) occurs during context restore, the macro CONTEXT_RESTORE is executed before
servicing INT0. This can trigger an INT0. If INTM is cleared during the context restore, it branches
to the INT0 service routine. If you reenable the interrupts when INTM returns from INT0, a conflict
occurs, because INTM is set to 0 and its original contents are lost. To preserve the contents of the
INTM bit, do not enable the interrupts when INTM returns from the INT0 service routine. During
interrupt priorities, preserve the INTM and IMR bits for the system requirements.

4 Circular Addressing
Circular addressing is an important feature of the ’54x instruction set. Algorithms for convolution,
correlation, and FIR filters can use circular buffers in memory. In these algorithms, the circular
buffers implement a sliding window that contains the most recent data. As new data comes in, it
overwrites the oldest data. The size, the bottom address, and the top address of the circular
buffer are specified by the block size register (BK) and a user-selected auxiliary register (ARn).
A circular buffer size of R must start on a K-bit boundary (that is, the K LSBs of the starting
address of the circular buffer must be 0), where K is the smallest integer that satisfies 2K > R.

Circular addressing can be used for different functions of an application. For example, it can be
used for collecting the input samples in a block. It can also be used in processing samples in
blocks and data in the output buffer. In Example 4, a frame of 256 samples is collected from the
serial port to process the data using the circular addressing mode. The output from the
processed block is sent to the D/A converter through the serial port register using circular
buffers. A ping-pong buffering scheme is used. While processing the first buffer, samples are
collected in the second buffer, and vice versa. The real-time operation of the system is not
disturbed and no data samples are lost.

Example 4. Circular Addressing Mode

; TEXAS INSTRUMENTS INCORPORATED
.mmregs
.include ”INTERRPT.INC”
.include ”main.inc”

RCV_INT1_DP .usect ”rcv_vars”,0
d_index_count .usect ”rcv_vars”,1
d_rcv_in_ptr .usect ”rcv_vars”,1 ; s ave/restore input bffr ptr
d_xmt_out_ptr .usect ”rcv_vars”,1 ; s ave/restore output bffr ptr
d_frame_flag .usect ”rcv_vars”,1
input_data .usect ”inpt_buf”,K_FRAME_SIZE*2 ; input data array
output_data .usect ”outdata”,K_FRAME_SIZE*2 ; o utput data array

.def receive_int1

.def d_frame_flag

.def RCV_INT1_DP

.def input_data,output_data

.def d_xmt_out_ptr

.def d_rcv_in_ptr
;–––
; Functional Description
; This routine services receive interrupt1. Accumulator A, AR2 and AR3
; are pushed onto the stack since AR2 and AR3 are used in other applications.
; A 512 buffer size of both input and output uses circular addressing.
; After every 256 collection of input samples a flag is set to process the
; data. A PING/PONG buffering scheme is used such that upon processing

; PING buffer, samples are collected in the PONG buffer and vice versa.
;–––

SPRA668

7 Interfacing TLC320AC01 to the TMS320C54x Serial Port

Example 4. Circular Addressing Mode (Continued)

.asg AR2,GETFRM_IN_P ; get frame input data pointer

.asg AR3,GETFRM_OUT_P ; get frame output data pointer

.asg AR2,SAVE_RSTORE_AR2

.asg AR3,SAVE_RSTORE_AR3

.sect ”main_prg”
receive_int1:

PSHM AL
PSHM AH
PSHM AG
PSHM BL
PSHM BH
PSHM BG

; AR2, AR3 are used in other routines, they need to be saved and restored
; since receive interrupt uses AR2 and AR3 as pointers

PSHM SAVE_RSTORE_AR2 ; Since AR2 and AR3 are used
PSHM SAVE_RSTORE_AR3 ; in other routines, they need
PSHM BRC
STM #2*K_FRAME_SIZE,BK ; circular buffer size of in,out

; arrays
LD #RCV_INT1_DP,DP ; init. DP
MVDK d_rcv_in_ptr,GETFRM_IN_P ; restore input circular bffr ptr
MVDK d_xmt_out_ptr,GETFRM_OUT_P ; restore output circular bffr ptr
ADDM #1,d_index_count ; increment the index count
LD #K_FRAME_SIZE,A
SUB d_index_count, A
BC get_samples,AGT ;check for a frame of samples

frame_flag_set
ST #K_FRAME_FLAG,d_frame_flag ; set frame flag
ST #0,d_index_count ; reset the counter

get_samples
LDM DRR1,A ; load the input sample
STL A,*GETFRM_IN_P+% ; write to buffer
LD *GETFRM_OUT_P+%,A ; if not true, then the filtered
AND #0fffch,A ; signal is send as output
STLM A,DXR1 ; write to DXR1
MVKD GETFRM_IN_P,d_rcv_in_ptr ; save input circular buffer ptr
MVKD GETFRM_OUT_P,d_xmt_out_ptr ; save out circular bffr ptr
POPM BRC
POPM SAVE_RSTORE_AR3 ; restore AR3
POPM SAVE_RSTORE_AR2 ; restore AR2
POPM BG
POPM BH
POPM BL
POPM AG
POPM AH
POPM AL
POPM ST1
POPM ST0
RETE ; return and enable interrupts
.end

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

