
Application Report
SPRA675 - June 2000

1

Upgrading Applications to DSP/BIOS II
Stephen Lau Digital Signal Processing Solutions

ABSTRACT

DSP/BIOS II adds numerous functions to the DSP/BIOS kernel, while maintaining 100%
Application Programming Interface (API) compatibility with DSP/BIOS I. In addition, new
functionality has been added to Code Composer Studio. This application note describes
the transition from DSP/BIOS I to DSP/BIOS II and focuses on the enhancements and
changes to existing DSP/BIOS I functions.

Contents

1 Code Composer Studio and DSP/BIOS Versions 2.

2 DSP/BIOS I and DSP/BIOS II 3.
2.1 New Modules 3.
2.2 Increased Functionality in Existing Modules 3.
2.3 New Kernel/Object View Plug-in 4.
2.4 New Examples and Documentation 4.

3 Upgrading from DSP/BIOS I 4.
3.1 Converting Configuration Files 4.
3.2 Reviewing Existing Configuration Files 5.
3.3 Rebuilding Programs 5.

4 Changes to Existing Modules 5.
4.1 Global Settings (GBL Manager) 5.
4.2 Idle Function Manager (IDL Manager) 6.
4.3 Memory Manager (MEM Manager) 7.

4.3.1 Configuration Tool 7.
4.3.2 MEM API 12.

4.4 Pipe Module (PIP Module) 12.
4.5 RTDX Manager 12.
4.6 Software Interrupts Manager (SWI Manager) 13.

5 New Modules 13.
5.1 System Module (SYS Manager) 13.
5.2 Kernel Object View Plug-In 14.

6 Minimizing Code Size 15.

7 Acknowledgements 16.

8 References 17.

Code Composer Studio is a trademark of Texas Instruments.

SPRA675

2 Upgrading Applications to DSP/BIOS II

List of Figures

Figure 1. Configuration Tool Conversion Message 4.
Figure 2. Configuration Tool Message 5.
Figure 3. Global (GBL) Settings 6.
Figure 4. Idle (IDL) Object Properties 7.
Figure 5. Memory Manager Properties 8.
Figure 6. Example User Defined Linker CommandFfile 10.
Figure 7. Memory Properties 11.
Figure 8. RTDX Manager Properties 13.
Figure 9. Figure 1 System Settings (SYS Manager) 14.
Figure 10. Kernel Object View Plug-In 15.
Figure 11. Task Manager Properties 16.

List of Tables

Table 1. DSP/BIOS Versions 2.

1 Code Composer Studio and DSP/BIOS Versions

The version of Code Composer Studio can be found by going to the “Help” menu and selecting
“About Code Composer Studio”.

This application note focuses on the migration from BIOS I and BIOS II as implemented in the
products listed in Table 1. Migration from Alpha and Beta products is not covered in this
document.

Table 1. DSP/BIOS Versions

Code Composer Studio Version DSP/BIOS Version

Code Composer Studio C6000 v1.00 BIOS I

Code Composer Studio C6000 v1.05 (6211 DSK) BIOS I

Code Composer Studio C5000 v1.10 BIOS I

Code Composer Studio C5000 v1.11 (5402 DSK) BIOS I

Code Composer Studio C6000 v1.20 BIOS II

Code Composer Studio C5000 v1.20 BIOS II

When installing Code Composer Studio C6000 or C5000 v1.20 on a computer where a
previous version exists, it is recommended that the previous version be uninstalled first. If you
wish to have Code Composer Studio C6000 and C5000 v1.2, it is highly recommended that the
C6000 version be installed before the C5000 version.

If your code build environment utilizes the UNIX code generation tools, you will need to transfer
the new DSP/BIOS II libraries to your UNIX environment. Refer to SPRA660, Building
DSP/BIOS Programs in UNIX for additional details.

C6000 and C5000 are trademarks of Texas Instruments.

SPRA675

3 Upgrading Applications to DSP/BIOS II

2 DSP/BIOS I and DSP/BIOS II

DSP/BIOS II introduces several new modules and significantly increases the functionality of
several existing modules. DSP/BIOS services can be divided into three main categories:
Memory Management, Event Handling, and Stream I/O.

Refer to SPRA646, DSP/BIOS II Technical Overview for additional details. The functionality of
Code Composer Studio has also been extended through the addition of a new plug-in. This
application note will focus on the changes to DSP/BIOS I modules.

2.1 New Modules

The following modules were added to DSP/BIOS II:

• ATM: Atomic functions
• C54 or C62: Target-specific functions
• SYS: System services manager
• QUE: Queue manager
• LCK: Resource lock manager
• SEM: Semaphore manager
• MBX: Mailbox manager
• DEV and Dxx: Device driver interface
• SIO: Streaming I/O manager
• TSK: Task manager

The new ATM module adds atomic functions for performing some basic operations on variables
without allowing interrupts during execution of the function. The new C54 or C62 module
(depending on your DSP family) provides functions for making dynamic changes to the
hardware interrupts. The new QUE module manipulates a queue data structure. The new SYS
module adds functions for handling formatted data output and program termination conditions.

DSP/BIOS’s scheduling capabilities have been increased through the addition of task threads.
Tasks have priority levels lower than those of software interrupts (SWIs) and higher than the idle
thread. In contrast to SWI’s, tasks are capable of blocking and feature independent stacks.
Tasks can be suspended and it will wait until some other thread readies the task. You can use
the LCK, MBX, and SEM modules to create objects used to manage task synchronization and
data sharing. The MBX manager utilizes queues and semaphores and independent from the
mailbox values used by SWIs.

DSP/BIOS now includes a streaming I/O model. This model provides a more structured
approach to device-driver creation. It provides blocking functions to access the stream and a set
of built-in device drivers. Refer to the DSP/BIOS User’s Guide for a comparison of the pipes and
stream I/O models.

2.2 Increased Functionality in Existing Modules

The MEM and SWI modules provide several new functions. The new MEM functions allow
dynamic allocation of memory into distinct memory segments. New SWI functions allow dynamic
creation, deletion, and modification of software interrupt objects. Many of the new modules in
DSP/BIOS allow for dynamic creation, deletion, and modification of objects during run-time.

SPRA675

4 Upgrading Applications to DSP/BIOS II

2.3 New Kernel/Object View Plug-in

A new plug-in, called the “Kernel/Object View” has been added to Code Composer Studio. This
plug-in has six tabbed pages that allow you to view system-wide information (KNL), tasks (TSK),
mailbox objects (MBX), semaphore objects (SEM), memory segments (MEM), and software
interrupts (SWI).

2.4 New Examples and Documentation

Several new examples have been added to the “c:\ti\cXXXX\examples\bios” folder. Many of
these examples are designed to utilize the new DSP/BIOS modules. The “DSP/BIOS User’s
Guide” and the DSP/BIOS online help have been updated to include documentation for the new
modules and other new features.

3 Upgrading from DSP/BIOS I
The new DSP/BIOS II is 100% compatible with the existing DSP/BIOS I Application
Programming Interface (henceforth API). Existing code that uses the DSP/BIOS I API is 100%
compatible with the new DSP/BIOS II API. The Configuration Tool will attempt to convert your
configuration file and will add support for the new modules.

NOTE: This is a one-way conversion and care should be taken to backup the existing application
project before the conversion. During the update process, the Configuration Tool will
automatically make a backup and append a unique character string to the existing file name.

3.1 Converting Configuration Files

Follow these steps to convert your configuration file. The conversion adds new modules and
objects to the configuration.

Step 1: Open your Configuration Database File (CDB) by going to the menu and choosing
“File−>Open” or by double clicking on the CDB file it in the project view.

Step 2: Code Composer Studio will give you a message that the configuration file is out of date as
seen in Figure 1.

Figure 1. Configuration Tool Conversion Message

Step 3: Click Yes to convert the configuration file. Code Composer will give a message indicating
that it has created a backup of the existing CDB file.

Step 4: Save the configuration file so that the header and linker command files are re-created.

NOTE: Because DSP/BIOS II more than doubles the amount of functionality available in DSP/BIOS I
the conversion process may not be perfect. If possible, it is suggested that the most reliable
method is to start a new DSP/BIOS II configuration file and manually configuring with the
existing parameters.

SPRA675

5 Upgrading Applications to DSP/BIOS II

3.2 Reviewing Existing Configuration Files

If you wish to review your existing CDB file as it was with DSP/BIOS I, you can choose to open it
up in “Read Only Mode”.

Step 1: Open the DSP/BIOS I CDB file.

Step 2: Code Composer will give you a message that the configuration file is out of date, as seen in
Figure 1.

Step 3: Choose “No” to open the CDB file as “read-only.”

Step 4: Code Composer Studio will inform you that the file is out of date as can be seen in Figure 2.

Figure 2. Configuration Tool Message

Step 5: The Configuration Tool will now show your CDB file as it existed under DSP/BIOS I.

3.3 Rebuilding Programs

After the conversion process, rebuild the program using “Rebuild All” rather than “Incremental Build”.
This will ensure that the new changes have been compiled.

NOTE: Numerous linking errors will occur if the Configuration Database File (CDB) is not upgraded
since it will contain references to DSP/BIOS constructs that may have changed. It is also
necessary to ensure that the Configuration Tool generates new versions of the associated
header and assembly files.

4 Changes to Existing Modules

4.1 Global Settings (GBL Manager)

During a typical boot procedure the C environment is initialized, followed by a routine that
configures DSP/BIOS and initializes the DSP/BIOS objects. Afterwards, “main()” executes and
exits to the DSP/BIOS scheduler. DSP/BIOS II allows the user to specify a initialization function,
as can be seen in Figure 3, which will run before the “main()” routine and at the beginning of the
DSP/BIOS module initialization phase. This function can perform special hardware setup or any
other function. Since this function executes before DSP/BIOS initializes, the code in this function
should not use any DSP/BIOS API calls.

SPRA675

6 Upgrading Applications to DSP/BIOS II

Figure 3. Global (GBL) Settings

4.2 Idle Function Manager (IDL Manager)

One idle (henceforth IDL) function has been added, “RTDX_DataPump.” This function calls
“RTDX_Poll” which performs the DSP side polling of the RTDX channel and is only required on
the 54x. If Real Time Analysis is disabled, then this IDL function is not automatically removed
from the IDL loop, but IDL objects “LNK_dataPump”, “IDL_cpuLoad”, and “RTA_dispatcher” will
be removed. This allows RTDX to be used without the DSP/BIOS real time analysis features. If
desired, “RTDX_DataPump” can be removed afterwards by changing the Host (HST) Link Type
to “None” and disabling RTDX in the RTDX module.

If “Auto calculate idle loop instruction count” is selected then DSP/BIOS runs one pass through
the IDL functions at system startup to get an approximate value for the idle loop instruction count.

NOTE: If “Auto calculate idle loop instruction count” is checked, it is important to make sure that
the IDL functions do not block on this first pass, otherwise the program will never get to
main. User defined IDL functions can be excluded from the IDL loop count by un-checking
the “Include in CPU Load calibration” property as seen in Figure 4.

SPRA675

7 Upgrading Applications to DSP/BIOS II

Figure 4. Idle (IDL) Object Properties

4.3 Memory Manager (MEM Manager)

The MEM module has been significantly enhanced. Fine grained control over memory sections
have been added to the Configuration tool. On the DSP, new MEM API calls allow for DSP
specific dynamic allocation.

NOTE: Note for TMS320C54x users: DSP/BIOS for the ’C54x was originally developed for the
16-bit addressing model of the early ’C54x devices. Program accesses in this ‘near’ model
were limited to a single 64K word program page. Newer ’C54x devices incorporate ‘far’
extended addressing modes, and DSP/BIOS and DSP/BIOS II have been modified to work
properly in this environment. Refer to SPRA599, DSP/BIOS and TMS320C54x
Extended Addressing which describes how to configure DSP/BIOS for use in extended
addressing applications. DSP/BIOS II extends the functionality in DSP/BIOS I and the
procedures described in SPRA599 must be utilized, especially for DSP/BIOS I modules.
The new DSP/BIOS II modules are not subject to same limitations.

4.3.1 Configuration Tool

4.3.1.1 Added Features

The Configuration Tool for DSP/BIOS II allows for much more control over the placement of
defined sections. In addition, the Configuration tool can be programmed to only define sections
for DSP/BIOS, simplifying integration with existing linker command files.

TMS320C54x is a trademark of Texas Instruments.

SPRA675

8 Upgrading Applications to DSP/BIOS II

Figure 5. Memory Manager Properties

NOTE: “Reuse startup space” is only selectable if the “.sysinit” section is not a code section and
has a heap defined.

SPRA675

9 Upgrading Applications to DSP/BIOS II

Argument Buffer Size

The size of the “.args” section. The “.args” section contains the “argc”, “argv”, and “envp”
arguments to the program’s main function. Code Composer loads arguments for the main
function into the “.args” section. The “.args” section is parsed by the boot file. Refer to Figure 5,
Part A.

Argument Buffer Section (.args)

The memory section containing the “.args” section. Refer to Figure 5, Part A.

DSP/BIOS Init Tables (.gblinit, .trcinit)

The memory section containing the DSP/BIOS global and instrumentation initialization tables.
Refer to Figure 5, Part B.

DSP/BIOS Kernel State (.sysdata)

The memory section containing system data about the DSP/BIOS kernel state. Refer to
Figure 5, Part B.

DSP/BIOS Conf Sections (.obj)

The memory section containing configuration properties that can be read by the target program.
Refer to Figure 5, Part B.

No Dynamic Memory Heaps

Put a checkmark in this box to completely disable the ability to dynamically allocate memory and
the ability to dynamically create and delete objects. If this box is checked, your program may not
call the MEM_alloc, MEM_valloc, and MEM_calloc functions or the XXX_create function for any
DSP/BIOS module. If this box is checked and the program calls one of these functions, an error
occurs when the program is linked. Refer to Figure 5, Part C.

Segment for DSP/BIOS objects

The default memory section that will contain objects created at run-time with an XXX_create
function. Refer to Figure 5, Part C.

Segment for malloc / free

The memory section from which space is allocated when a program calls malloc and from which
space is freed when a program calls free. Refer to Figure 5, Part C.

User .cmd file for non-DSP/BIOS sections

Put a checkmark in this box (Figure 5, Part D) if you want to have full control over the memory
used for the sections that follow. You will need to create your own linker command file that
begins by including the linker command file created by the Configuration Tool. Your linker
command file should then assign memory for the items normally handled by the following
properties. See the “Optimizing C Compiler User’s Guide” for more details.

For example, if the name of my Configuration Database File (CDB) was “myprog.cdb”, then the
Configuration Tool would generate three files, “myprogcfg.cmd”, “myprogcfg.sxx”, and
“myprogcfg.hxx”. If “User .cmd file for non-DSP/BIOS sections” was checked (selected), then
“myprogcfg.cmd” will not include any definitions for “.text”, “.switch”, “.bss”, “.cinit”, “.pinit”,
“.const”, “.data”, “.cio”, and “.sysmem”. These sections, any any other user defined ones would
have to be specified in the user’s linker command file. As seen in Figure 6, the user’s linker
command file would include a link to the Configuration Tool’s linker command file,
“myprogcfg.cmd” so that the DSP/BIOS objects can be properly resolved.

SPRA675

10 Upgrading Applications to DSP/BIOS II

−l myprogcfg.cmd
SECTIONS
{
 my_code :> IPRAM
 .text :> IPRAM
 .bss :> IDRAM
}

Figure 6. Example User Defined Linker CommandFfile

Switch jump tables (.switch)

The memory section containing the switch statement tables. This section may be located in
ROM or RAM. Refer to Figure 5, Part E.

4.3.1.2 Changed Features

C variables (.bss)

The memory section containing global and static C variables. At boot or load time, the data in
the “.cinit” section is copied to this section. This section should be located in RAM. Refer to
Figure 5, Part F. The Configuration Tool in DSP/BIOS II only defines the “.far” section when the
configuring DSP/BIOS II for the c6000.

Data Initialization Section (.cinit, .pinit).

The memory section containing tables for explicitly initialized global and static variables and
constants. This section may be located in ROM or RAM. Refer to Figure 5, Part G. The “.pinit”
section is no longer being defined by the Configuration Tool in DSP/BIOS II.

Memory Section Properties

Each memory section can now host a heap from which the MEM functions utilize. Refer to
Figure 7.

SPRA675

11 Upgrading Applications to DSP/BIOS II

Figure 7. Memory Properties

NOTE: Migration of user defined sections that are originally assigned as “Code Section” may be
incorrectly converted to “Data Section” and vice versa. Make sure you manually check that
each memory section is defined in the correct space.

Create a heap in this memory

If checked, a heap is created in this memory section. If dynamic memory allocation is disabled in
the Memory Manager, then this option is not available.

NOTE: The Configuration Tool may automatically enable the ”Dynamic Heaps” in pre-existing and
newly created memory sections. To ensure that they are disabled, uncheck “No Dynamic
Memory Heaps” as seen in Figure 5, Part C, and uncheck “Create a heap in this memory”

 as seen in Figure 7. Then, if no heaps are desired, check “No Dynamic Memory Heaps”
as seen in Figure 5, Part C.

Heap size

The size of the heap to be created in this memory section.

User defined name

A user defined identifier label can be specified to make the use of the heap easier. For example,
this label would typically be passed to DSP/BIOS as the segId during a call to MEM_alloc.

SPRA675

12 Upgrading Applications to DSP/BIOS II

4.3.2 MEM API

The MEM module API provides functions that can allocate from one or more sections of memory
as defined in the Configuration Tool.

New MEM API functions:

• MEM_alloc: Allocate from a memory section
• MEM_define: Define a new memory section
• MEM_calloc: Allocate and initialize to 0
• MEM_free: Free a block of memory
• MEM_redefine: Redefine an existing memory section
• MEM_stat: Return the status of a memory section
• MEM_valloc: Allocate and initialize to a value

MEM always allocates an even number of words and always aligns buffers on an even
boundary. Code size can be reduced by disabling dynamic memory allocation and by statically
defining the system. Disabling dynamic memory is accomplished by selecting “No Dynamic
Memory Heaps” box in the Properties dialog for the MEM manager as shown in Figure 5, Part C.
The standard C “malloc,” “free,” and “calloc” functions actually use the MEM functions to allocate
and free memory. Refer to the DSP/BIOS User’s Guide or online help for additional information.

4.4 Pipe Module (PIP Module)

No changes were made to the Configuration Tool that configures pipes. Two new PIP API calls
were added:

• PIP_peek. Get the pipe frame size and address without actually claiming the pipe frame.
• PIP_reset: Reset all fields of a pipe object to their original values.

4.5 RTDX Manager

One additional field has been added to the RTDX Manager properties, the “RTDX Interrupt
Mask” as seen in Figure 8. This mask identifies RTDX clients and protects critical RTDX
sections. The mask specifies the interrupts to be temporarily disabled inside RTDX critical
sections. This also temporarily disables other RTDX clients and prevents another RTDX function
call. Refer to the “RTDX online help” and the DSP/BIOS User’s Guide for more details.

SPRA675

13 Upgrading Applications to DSP/BIOS II

Figure 8. RTDX Manager Properties

4.6 Software Interrupts Manager (SWI Manager)

DSP/BIOS II extends the scheduling model of DSP/BIOS I by adding tasks. All tasks in
DSP/BIOS II are scheduled out of one SWI which has a priority level of zero. Thus in DSP/BIOS
II, there are only fourteen SWI priority levels if tasks are enabled. If tasks are disabled, fifteen
priority levels will be available. If tasks capability is required, it is necessary to clear up SWI
priority level zero by promoting the priority on all SWI’s to a higher priority level.

The SWI API has also been extended to allow for dynamic SWI creation, deletion and
modification. Refer to DSP/BIOS User’s Guide or online help for additional information. New
SWI API functions:

• SWI_create: Create a software interrupt
• SWI_delete: Delete a software interrupt
• SWI_getattrs: Get attributes of a software interrupt
• SWI_setattrs: Set attributes of a software interrupt

5 New Modules

5.1 System Module (SYS Manager)

The SYS module is a set of functions that provide basic system services, such as halting
program execution and printing formatted text. Each SYS function is similar to functions normally
found in the standard C library.

SPRA675

14 Upgrading Applications to DSP/BIOS II

Figure 9. Figure 1 System Settings (SYS Manager)

As seen in Figure 9:

• Abort function: The function to run if the application aborts by calling “SYS_abort.” The
default function is “UTL_doAbort,” which logs an error message and calls _halt.

• Error function: The function to run if an error flagged by “SYS_error” occurs. The default
function is “UTL_doError,” which logs an error message.

• Exit function: The function to run when the application exits by calling SYS_exit. The default
function is “UTL_halt,” which loops forever with interrupts disabled, preventing other
processing.

• Putc function: The function to run if the application calls “SYS_putchar,” “SYS_printf,” or
“SYS_vprintf.” The default function is “UTL_doPutc,” which writes a character to the trace
buffer.

NOTE: During the conversion from DSP/BIOS I to DSP/BIOS II, the Configuration Tool may
convert some System function default values to “FXN_F_nop.” Though harmless,
“FXN_F_nop” may not yield the intended result.

5.2 Kernel Object View Plug-In

The Kernel/Object View plug-in, as seen in Figure 10 allows a view into the current
configuration, state, and status of the DSP/BIOS objects currently running on the target. This
tool shows both the dynamic and statically configured objects that exist on the target. To display
the Kernel/Object View, choose the “Tools−>DSP/BIOS Kernel/Object View” menu item in Code
Composer Studio.

SPRA675

15 Upgrading Applications to DSP/BIOS II

Figure 10. Kernel Object View Plug-In

This plug-in has following selection tabs:

• KNL: System-wide information.
• TSK: Task threads and state.
• MBX: Mailbox objects.
• SEM: Semaphore objects.
• MEM: Memory segments.
• SWI: Software interrupt threads.

NOTE: The Kernel Object view differs from the execution graph because it can show dynamically
created objects. The Kernel/Object View may display names that are labels for other items
on the target because some labels share memory locations. In this case you may see a
name that does not match the configuration. If a label is not available for a memory location,
a name is automatically generated and is indicated with angle brackets (e.g., <task1>).

6 Minimizing Code Size

If you do not plan to use task threads or dynamic memory allocation, you can disable support for
these features in the TSK and MEM manager property windows. This helps to minimize the size
of your program since DSP/BIOS II does not need to include the task module or the memory
module. Functions that dynamically create (XXX_create) objects affect code size only if a
program calls these functions. For example, if you are concerned about code size, create your
SWI or TSK objects using the Configuration Tool, rather than calling SWI_create or TSK_create.

To disable the task manager, right-click on the TSK − Task Manager and choose Properties from
the pop-up menu. In the Properties window, remove the checkmark from the “Enable TSK
Manager” box as seen in Figure 11.

SPRA675

16 Upgrading Applications to DSP/BIOS II

Figure 11. Task Manager Properties

To disable dynamic memory allocation, right-click on the MEM − Memory Section Manager and
choose Properties from the pop-up menu. In the Properties window, put a checkmark in the No
Dynamic Memory Heaps box and click OK. This is shown in , Part C.

For additional information, refer to the application note, Guidelines for Optimizing DSP/BIOS
Applications in Target Memory and DSP/BIOS II Sizing Guidelines for the TMS320C54x/62x.

7 Acknowledgements

Special thanks to Yvonne DeGraw, Jack Greenbaum, Liz Keate, Robert Tivy, and Karl Wechsler.

SPRA675

17 Upgrading Applications to DSP/BIOS II

8 References

1. TMS320C5400 DSP/BIOS User’s Guide, SPRU326

2. TMS320C6000 DSP/BIOS User’s Guide, SPRU303

3. DSP/BIOS online help

4. Building DSP/BIOS Programs in UNIX, SPRA660

5. DSP/BIOS and TMS320C54x Extended Addressing, SPRA599

6. Guidelines for OptimizingDSP/BIOS Applications in Target Memory

7. DSP/BIOS II Sizing Guidelines for the TMS320C62x, SPRA667

8. DSP/BIOS II Sizing Guidelines for the TMS320C54x, SPRA663

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

