
Application Report
SPRA698 - October 2000

1

The Residu Implementation Using the TMS320C6000
C6000 Applications Digital Signal Processing Solutions

ABSTRACT

This application report describes the implementation of the Residu function on the
TMS320C6000 (C6000). The Residu function is a basic function in the GSM EFR and
G.729 and other voice coding schemes. G.729 is an algorithm for the coding of speech
signals at 8 kbit/s using conjugate-structure algebraic-code-excited linear-prediction
(CS-ACELP) while GSM EFR uses the ACELP coding scheme. The work presented in this
report uses the Residu function as an example code to demonstrate that the C6000 compiler
tools can achieve competitive performance compared to the estimated hand coded
assembly.

Contents
1 Introduction 2.

1.1 G.729 2.
1.2 GSM EFR 2.
1.3 The Residu Function 2.
1.4 The TMS320C6000 DSP 3.

2 Optimization Methods 3.
2.1 Natural C 4.
2.2 Optimized C – Removing the Nested Loop 6.
2.3 Partitioned Linear Assembly 8.

3 Benchmark Comparison 10.
3.1 Performance Comparison of Different Optimization Methods 10.
3.2 Performance Comparison Within the TMS320 Family 10.

4 Conclusion 10.
5 References 11.
Appendix A The Residu Optimized C Code 12.
Appendix B The Residu Partitioned Linear Assembly Code 14.

List of Figures

Figure 1. The Residu Natural C Code 4.
Figure 2. The Math Function Used in the Residu Function 5.
Figure 3. Software Pipeline Information: Natural C 6.
Figure 4. The Combined Loop of Residu Optimized C Code 7.
Figure 5. Software Pipeline Information: Optimized C 8.
Figure 6. Software Pipeline Information: Partitioned Linear Assembly 9.

List of Tables

Table 1. Benchmarks for Residu 10.
Table 2. Comparison Within the TMS320 Family 10.

TMS320C6000 and C6000 are trademarks of Texas Instruments.

SPRA698

2 The Residu Implementation Using the TMS320C6000

1 Introduction

This application report describes the implementation of the Residu function on the
TMS320C6000 (C6000). The Residu function is a basic function in the GSM EFR and G.729
and other voice coding schemes. G.729 uses the conjugate-structure algebraic-code-excited
linear-prediction (CS-ACELP) while GSM EFR uses algebraic-code-excited linear-prediction
(ACELP). This report will briefly describe G.729, GSM EFR, and C6000 compiler tools. This is
followed by a discussion on the different optimization methods. Lastly, some benchmarks are
presented.

1.1 G.729

G.729 is defined by the Telecommunication Standardization Sector of the International
Telecommunication Union (ITU-T) [2].

G.729 uses the Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP)
algorithm, which is an analysis-by-synthesis algorithm and belongs to the class of speech coding
algorithms knows as Code Excited Linear Prediction (CELP).

For every 10 ms speech frame, the speech signal is analyzed to extract the parameters of CELP
model. Each speech frame is equally divided into 2 subframes. Most parameters are determined
per subframe of 5 ms (40 samples) each. The residual signal is used to find the target signal by
filtering the linear-prediction (LP) residual through a weighted synthesis filter. These parameters
are quantized into 80 bits, resulting in a transmission rate of 8 kbits/s. The G.729 decoder
converts the digitized signal back to an analog signal using a similar approach.

1.2 GSM EFR

The Global System for Mobile Communication enhanced full rate (GSM EFR) standard is
defined by the European Telecommunication Standards Institute (ETSI).

GSM EFR uses the Algebraic-Code-Excited Linear-Prediction (ACELP) coding scheme. The
GSM EFR encoder is based on Code Excited Linear Prediction (CELP) which is an
analysis-by-synthesis algorithm.

For every 20 ms speech frame, the speech signal is analyzed to extract the parameters of the
CELP model. Each speech frame is equally divided into 4 subframes of 5 ms each (40 samples)
at the sampling frequency of 8000 sample/s. In each subframe, the residual signal is used to find
the target signal by filtering the LP residual through the weighted synthesis filter. The GSM EFR
decoder decodes and synthesizes the speech through the same parameters as the CELP model
which does the encoding.

1.3 The Residu Function

The Residu function is used to find the residual signal r(n) which is needed for finding the target
vector for adaptive codebook search in both G.729 and GSM EFR speech coders. The LP
residual signal is filtered through the combination of synthesis filter 1/ Â(z) and the weighting
filter A(z/γ1) / A(z/γ2). After determining the excitation for the subframe, the initial states of these
filters are updated by filtering the difference between the LP residual and excitation. The LP
residual signal is also used in the adaptive codebook search to extend the past excitation buffer.
The LP residual is given by

SPRA698

3 The Residu Implementation Using the TMS320C6000

r(n) � s(n) ��
10

i�1

a^ i * s(n � i), n � 0, ��� , 39.

where s(n) is the pre-processed speech signal, âi, i = 1,...,10, are the (quantized) Linear
Prediction (LP) coefficients. In both G.729 and GSM EFR applications, the Residu function is
represented in Q12 notation; that is, the decimal point is placed between bits 11 and 12. This
notation allows handling the accuracy of speech information for fixed-point digital signal
processors. For example, “0x1000” represents the number 1.0. Therefore equation 1 is modified
as follows

r(n) � s(n) * a0 ��
10

i�1

a^ i * * s(n � 1)

where a0 is equal to 0x1000, âi = âi × a0.

1.4 The TMS320C6000 DSP

The TMS320C6000 (C6000) generation of digital signal processors which is part of the TMS320
family of digital signal processors (DSPs) has the VelociTI architecture [5]. The VelociTI
architecture is a high-performance, advanced, very-long-instruction-word (VLIW) architecture
that is capable of many applications such as multi-channel, multi-function, and
performance-driven applications. VelociTI, together with the development tool set and evaluation
tools, provides faster development time and higher performance for embedded DSP applications
through increased instruction-level parallelism. The TMS320C6000 include TMS320C62x,
TMS320C64x and TMS320C67x devices. The TMS320C62x (C62x) and TMS320C64x (C64x)
devices are fixed-point DSPs and the TMS320C67x (C67x) devices are floating-point DSPs.

The C6000 is supported by an optimized C compiler tool [4]. The C compiler accepts C source
code and produces C6000 assembly language source code. The C compiler includes a shell
program, an optimizer, and other utilities. The optimizer takes advantage of the features specific
to the C6000 architecture. General optimizations can be applied to any C code [4]. This
application note will demonstrate that the C6000 compiler tools can achieve a competitive
performance compared to the estimated hand coded assembly.

The Residu function is well suited for DSPs such as the C6000. This application note presents
the competitive performance that can be achieved from the C6000 compiler tools as against
using hand coded assembly.

2 Optimization Methods

The key to implementing applications on the C6000 is to take advantage of the processor’s full
speed. There are many methods of code development flow to increase performance. This report
will discuss 3 methods using the C6000 software development flow, namely, natural C,
optimized C and partitioned linear assembly.

(1)

(2)

SPRA698

4 The Residu Implementation Using the TMS320C6000

2.1 Natural C

The natural C optimization method is the 1st step in the code development flow. The key to
develop the natural C code of the Residu function is using the out of the box Residu C code
without any modification i.e. no modification is required. Then, substitute the math functions with
intrinsics [6]. The C6000 compiler provides intrinsics that are not easily expressed in C code.
These intrinsics are mapped directly to inline C6000 instructions to optimize the C code quickly.
For example, L_add math function can be expressed in C code by writing a multi-cycle function.
This complicated code can be replaced by the _sadd() intrinsic, which results in a single C6000
instruction.

The Residu natural C code is given in Figure 1.

#define m 10 /* m = LPC order == 10 */
typedef short Word16;
typedef int Word32;
void Residu (
 Word16 a[], /* (i) : prediction coefficients */
 Word16 x[], /* (i) : speech signal */
 Word16 y[], /* (o) : residual signal */
 Word16 lg /* (i) : size of filtering */
)
{
 Word16i, j;
 Word32 s;

for (i = 0; i < lg; i++)
 {

s = L_mult (x[i], a[0]);
for (j = 1; j <= m; j++)

 {
s = L_mac (s, a[j], x[i – j]);

 }
s = L_shl (s, 3);
y[i] = round (s);

 }
return;

}

Figure 1. The Residu Natural C Code

All ETSI standard code performs data arithmetic with clearly defined math functions. These
provide a standard way of completely describing the functionality for bit exact behavior. As such,
these are ultimately intended to be replaced by inline versions of specific machines instructions
as most involve saturation which is not easily represented in ANSI C. For this reason, all of the
math functions used in the Residu function have been replaced with the supporting C6000
intrinsics, shown in Figure 2.

SPRA698

5 The Residu Implementation Using the TMS320C6000

#define L_add(a,b) (_sadd((a),(b)))
#define L_mult(a,b) (_smpy((a),(b)))
#define extract_h(a) (_extu(a,0,16))//((unsigned)(a)>>16)
#define L_shl(a,b) ((b) < 0 ? (a) >> (– b) : _ sshl((a),(b)))
#define round(a) ((unsigned)(_sadd((a),0x8000))>>16)

Figure 2. The Math Function Used in the Residu Function

A complete list of all ETSI math functions are available in one of the TSM320 DSP Designer’s
Notebooks: ETSI Math Operations in C for the C62xx [6].

The natural C code is compiled using the cl6x shell program using -pm -op2 -o3 -oi0 -mh -mi -k
-q -mw options. The program level optimization options -pm -op2 has the ability to automatically
extract the information from the calling program i.e. the compiler can automatically extract all of
the information regarding potential pointer aliasing, loop count, min/max trip count, alignment
and cycle per iteration with program level optimization. Furthermore, it can perform program-
level optimization by adding the -o3 option. The combination of -pm and -o3 options enable the
compiler to see the entire program that performs several optimizations beyond the file-level
optimization. With -oi option, the optimizer automatically inlines small functions when it is invoked
with the -o3 option. The -oi0 option disables all size-controlled inlines. The -mh option indicates
that load instructions can read an unlimited number of bytes past the beginning or end of a buffer.
The -mi option ensures the Residu code is never interrupted. The -q option suppresses banners
and progress messages from all the tools. The -mw option embeds software pipelined loop
information (feedback) in the .asm file, as shown in Figure 3. In order to review the feedback, the
k option is required to keep the natural C assembly language (.asm) file.

The software pipeline information in Figure 3 shows the inner loop of the Residu function. The
compiler tries to identify what the loop counter value is, and whether it is a multiple of some
number (has a known maximum trip count factor). The feedback shows the same number (40)
for the known min/max trip counts and the max trip count factor. This indicates a constant value
for the trip count argument, i.e. the compiler can be more aggressive to achieve a better
performance. Although the feedback shows a value of 1 in loop carried dependency bound, the
compiler can still maximize the loop pipeline ability. The feedback also shows the inner loop
completely unrolled into the outer loop. The combined loop requires 12 load/store (assuming the
coefficients were preloaded before the kernel started), 11 multiply and 11 saturated add
operations. The resource bounds indicate a value of 6. The result of the software pipeline
schedule shows a 6-cycle loop with a trip count of 40. This indicates that the compiler has
successfully software pipelined the loop. The result shown above were obtained by running the
Residu natural C on C6000 version 4.0 of code generation tools (most recent version of the
C6000 software development tools.)

The TMS320C6000 optimizing C compiler user’s guide [4] has documented all of the compiler
options. The C6000 compiler optimization tutorial shows detailed information as shown in the
following web page: http://www.ti.com/sc/c6000compiler. Also, the TMS320C6000 optimizing
C compiler user’s guide [4] has documented all of the compiler options.

SPRA698

6 The Residu Implementation Using the TMS320C6000

;* SOFTWARE PIPELINE INFORMATION
;*
;* Known Minimum Trip Count : 40
;* Known Maximum Trip Count : 40
;* Known Max Trip Count Factor : 40
;* Loop Carried Dependency Bound(^) : 1
;* Unpartitioned Resource Bound : 6
;* Partitioned Resource Bound(*) : 6
;* Resource Partition:
;* A–side B–side
;* .L units 5 6*
;* .S units 1 2
;* .D units 6* 6*
;* .M units 6* 5
;* .X cross paths 4 3
;* .T address paths 6* 6*
;* Long read paths 1 0
;* Long write paths 0 0
;* Logical ops (.LS) 1 0 (.L or .S unit)
;* Addition ops (.LSD) 1 0 (.L or .S or .D unit)
;* Bound(.L .S .LS) 4 4
;* Bound(.L .S .D .LS .LSD) 5 5
;*
;* Searching for software pipeline schedule at ...
;* ii = 6 Schedule found with 5 iterations in parallel
;* done
;*
;* Epilog not entirely removed
;* Collapsed epilog stages : 3
;*
;* Prolog not entirely removed
;* Collapsed prolog stages : 2
;*
;* Minimum required memory pad : 6 bytes
;*
;* Minimum safe trip count : 1

Figure 3. Software Pipeline Information: Natural C

2.2 Optimized C – Removing the Nested Loop

Two basic optimized C techniques include optimizing data flow bandwidth (uses word access
instead of two short data accesses) to ease the bottleneck of data accesses and unrolling the
loop to increase the number of instructions available in order to execute as many instructions in
parallel as possible to improve performance.

SPRA698

7 The Residu Implementation Using the TMS320C6000

To utilize the above techniques (optimizing data flow and unrolling the inner loop), the optimized
C code has combined two loops into one loop, i.e. it totally unrolled the inner loop. To overcome
the uneven partition of .L and .M units in A-side and B-side (shown on the software pipeline
information of natural C code), the optimized C processes two output samples at a time. In this
way, the inner loop has a loop count of 20. Figure 4 shows the combined modified loop of the
optimized C code. This loop includes the totally unrolled inner loop and the outer loop. This loop
requires 8 loads/stores, 22 multiplies and 22 saturated adds with a trip count of 20. The Residu
optimized C code is shown in Appendix A.

Figure 5 shows software pipeline information of the optimized C. This information reveals the
expected numbers that shows even distribution of the .L and .M units so that the .L’s occur the
same number of times in both A-side and B-side, and the same for the .M units (a total of 11
times on both A and B sides). However, the cross path becomes a bottleneck resource problem
on the B-side. This causes the compiler to schedule an iteration interval of 13 cycles. Even
though this loop throughput is actually lower (6.5 cycles per iteration) than the Natural C, there is
no outer loop overhead and thus the overall cycle count is actually lower.

for (i = 0, j = 0; j < lg; j+=2, i++)
 {

s1 = L_mult((x[i]>>16), a0); /* a0 * x[i+1] */
s0 = L_mult((x[i]), a0); /* a0 * x[i] */
s1 = L_mac(s1, a0>>16, x[i]); /* a1 * x[i] */
s0 = L_mac(s0, a0>>16, x[i–1]>>16); /* a1 * x[i–1] */
s1 = L_mac(s1, a1, x[i–1]>>16); /* a2 * x[i–1] */
s0 = L_mac(s0, a1, x[i–1]); /* a2 * x[i–2] */
s1 = L_mac(s1, a1>>16, x[i–1]); /* a3 * x[i–2] */
s0 = L_mac(s0, a1>>16, x[i–2]>>16); /* a3 * x[i–3] */
s1 = L_mac(s1, a2, x[i–2]>>16); /* a4 * x[i–3] */
s0 = L_mac(s0, a2, x[i–2]); /* a4 * x[i–4] */
s1 = L_mac(s1, a2>>16, x[i–2]); /* a5 * x[i–4] */
s0 = L_mac(s0, a2>>16, x[i–3]>>16); /* a5 * x[i–5] */
s1 = L_mac(s1, a3, x[i–3]>>16); /* a6 * x[i–5] */
s0 = L_mac(s0, a3, x[i–3]); /* a6 * x[i–6] */
s1 = L_mac(s1, a3>>16, x[i–3]); /* a7 * x[i–6] */
s0 = L_mac(s0, a3>>16, x[i–4]>>16); /* a7 * x[i–7] */
s1 = L_mac(s1, a4, x[i–4]>>16); /* a8 * x[i–7] */
s0 = L_mac(s0, a4, x[i–4]); /* a8 * x[i–8] */
s1 = L_mac(s1, a4>>16, x[i–4]); /* a9 * x[i–8] */
s0 = L_mac(s0, a4>>16, x[i–5]>>16); /* a9 * x[i–9] */
s1 = L_mac(s1, a5, x[i–5]>>16); /* a10 * x[i–9] */
s0 = L_mac(s0, a5, x[i–5]); /* a10 * x[i–10]*/
s1 = L_add(s1, 4096);
s0 = L_add(s0, 4096);
s1 = L_shl(s1, 3);
s0 = L_shl(s0, 3);
y[j] = (short)(s0 >>16);
y[j+1] = (short)(s1 >>16);

 }

Figure 4. The Combined Loop of Residu Optimized C Code

SPRA698

8 The Residu Implementation Using the TMS320C6000

;*––*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Known Minimum Trip Count : 20
;* Known Maximum Trip Count : 20
;* Known Max Trip Count Factor : 20
;* Loop Carried Dependency Bound(^) : 2
;* Unpartitioned Resource Bound : 11
;* Partitioned Resource Bound(*) : 13
;* Resource Partition:
;* A–side B–side
;* .L units 11 11
;* .S units 2 3
;* .D units 8 0
;* .M units 11 11
;* .X cross paths 11 13*
;* .T address paths 4 4
;* Long read paths 1 1
;* Long write paths 0 0
;* Logical ops (.LS) 0 2 (.L or .S unit)
;* Addition ops (.LSD) 0 1 (.L or .S or .D unit)
;* Bound(.L .S .LS) 7 8
;* Bound(.L .S .D .LS .LSD) 7 6
;*
;* Searching for software pipeline schedule at ...
;* ii = 13 Schedule found with 3 iterations in parallel
;* done
;*
;* Epilog not entirely removed
;* Collapsed epilog stages : 1
;*
;* Prolog not entirely removed
;* Collapsed prolog stages : 1
;*
;* Minimum required memory pad : 4 bytes
;*
;* Minimum safe trip count : 1
;*––*

Figure 5. Software Pipeline Information: Optimized C

2.3 Partitioned Linear Assembly

Writing a linear assembly code is just like writing a C code but in assembly language. Linear
assembly is quite similar to the regular C6000 assembly code. Linear assembly doesn’t need to
specify the parallel instructions, pipeline latency, or register usage. It also does not need to
indicate which functional unit is being used. Partitioned linear assembly adds partitioning
information to the linear assembly.

SPRA698

9 The Residu Implementation Using the TMS320C6000

Like the natural C and optimized C, the linear assembly is coded with a totally unrolled inner
loop. Based on the software pipeline information of optimized C code, the goal for the partitioned
linear assembly is essentially to solve the cross path problem. To overcome the cross path
problem, the linear assembly adds partitioning information for each input and coefficient. The
Residu partitioned linear assembly code is shown in Appendix B. Figure 6 shows the software
pipeline information of partitioned linear assembly. This information shows all of the resources
bounded with a maximum number of 11 cycles.

Furthermore, the assembly optimizer schedules 11 cycles for the iteration interval. This shows
the partitioned linear assembly has achieved the goal, i.e. 11 cycle loop with loop count of 20.

;*––*
;* SOFTWARE PIPELINE INFORMATION
;*
;* Loop label : LOOP
;* Known Minimum Trip Count : 1
;* Known Max Trip Count Factor : 1
;* Loop Carried Dependency Bound(^) : 0
;* Unpartitioned Resource Bound : 11
;* Partitioned Resource Bound(*) : 11
;* Resource Partition:
;* A–side B–side
;* .L units 11* 11*
;* .S units 3 2
;* .D units 2 6
;* .M units 11* 11*
;* .X cross paths 10 11*
;* .T address paths 7 1
;* Long read paths 1 1
;* Long write paths 0 0
;* Logical ops (.LS) 0 0 (.L or .S unit)
;* Addition ops (.LSD) 0 1 (.L or .S or .D unit)
;* Bound(.L .S .LS) 7 7
;* Bound(.L .S .D .LS .LSD) 6 7
;*
;* Searching for software pipeline schedule at ...
;* ii = 11 Schedule found with 3 iterations in parallel
;* done
;*
;* Collapsed epilog stages : 2
;* Collapsed prolog stages : 2
;* Minimum required memory pad : 8 bytes
;*
;* Minimum safe trip count : 1
;*––*

Figure 6. Software Pipeline Information: Partitioned Linear Assembly

SPRA698

10 The Residu Implementation Using the TMS320C6000

3 Benchmark Comparison

3.1 Performance Comparison of Different Optimization Methods

The benchmark comparison for the above implementations, namely: natural C, optimized C and
partitioned linear assembly codes described in Chapter 2 are summarized in Table 1. The estimated
hand assembly cycle count is based on the ideal case with minimum overhead cycle count. The
completed optimized C code and partitioned linear assembly are shown in Appendices A and B. All
of the benchmarks were obtained using C6000 code generation tools version 4.00. The options
used for the compiler were: -pm -q -op2 -o3 -oi0 -mh -mi -mw -k. See the TMS320C6000 Optimizing
C Compiler User’s Guide for more information about the compiler tools.

Table 1. Benchmarks for Residu

Residu Nat. C Opt. C par. Lin. asm

cycle counts (cycles) 367 312 285

3.2 Performance Comparison Within the TMS320 Family

The performance comparison with TMS320C54x is summarized in Table 2.

Table 2. Comparison Within the TMS320 Family

C54x
C6000

Residu
C54x

(hand asm) Nat. C Opt. C par. Lin. asm

cycle counts (cycles) 541 367 312 285

4 Conclusion

In this report we have presented 3 software development flow methods (natural C, optimized C,
partitioned linear assembly) for the Residu function on the TMS320C6000. The natural C,
optimized C, and partitioned linear assembly code were modified and validated.

Natural C has several advantages over hand coded assembly:

• It is easier to write (since it is the out of the box C code) and debug than hand assembly.

• The TMS320C6000 compiler is able to generate very efficient code that is good enough to
be equivalent to one version of the assembly code, i.e. the high performance assembly
code.

Optimized C has the following advantage over hand coded assembly:

• It removes the outer loop overhead by completely unrolling the inner loop.

Partitioned linear assembly has several advantages over hand coded assembly:

• It provides flexibility of hand-coded assembly without worring about pipelining parallelism, or
register allocation.

• It can improve partitioning of loops when necessary.

SPRA698

11 The Residu Implementation Using the TMS320C6000

Speech applications exhibit a high degree of parallelism that can be exploited by VLIW
architectures such as the C6000. This report has demonstrated that C6000 tools (the partitioned
linear assembly) is able to achieve competitive performance w.r.t. estimated hand scheduled
assembly. Furthmore, the partitioned linear assembly requires minimum development time
compared to hand-coded assembly, and the performance approaches the best that can be
achieved by hand.

5 References
1. [ITU-T Recommendation G.729 – CS-ACELPD, March 1996.

2. [ETSI SMG2 ITU-T Recommendation GSM 06.60 (Enhanced full rate speech transcoding),
January 1996.

3. Texas Instruments, TMS320C62x/C67x Programmer’s Guide, Texas Instruments, Inc.,
Literature number SPRU198, Dallas, Texas, April 1998.

4. Texas Instruments, TMS320C6000 Optimizing C Compiler User’s Guide, Texas Instruments,
Inc., Literature number SPRU187, Dallas, Texas, April 1998.

5. Texas Instruments, TMS320C62x/C67x CPU and Instruction Set Reference Guide, Texas
Instruments, Inc., Literature number SPRU189, Dallas, Texas, April 1998.

6. Texas Instruments, TMS320 DSP Designer’s Notebook: ETSI Math Operations in C for the
C62xx, Texas Instruments, Inc., Literature number dnp87, Dallas, Texas, April 1998.

SPRA698

12 The Residu Implementation Using the TMS320C6000

Appendix A The Residu Optimized C Code

#define DWORD_ALIGNED(x) (_nassert(((int)(x) & 0x7) == 0))

typedef short Word16;
typedef int Word32;
#define lg 40
#define L_mult(a,b) (_smpy((a),(b)))
#define L_mac(a,b,c) (_sadd((a),_smpy((b),(c))))
#define L_add(a,b) (_sadd(a,b))
#define L_shl(a,b) ((b<0) ? (a) >> (–b) : _sshl(a,b))
#define round(a) ((unsigned)(_sadd(a,0x8000L))>>16)

void Residu_co(
 const Word32 a[], /* (i) Q12: prediction coefficients */
 const Word32 x[], /* (i) : speech (values x[–m..–1] are needed */
 Word16 y[], /* (o) : residual signal */
 Word16 lg /* (i) : size of filtering */
)
{
 Word16 i, j;
 Word32 s0, s1;
 Word32 a0, a1, a2, a3, a4, a5;

 DWORD_ALIGNED(a);
 DWORD_ALIGNED(x);

 a0 = a[0];
 a1 = a[1];
 a2 = a[2];
 a3 = a[3];
 a4 = a[4];
 a5 = a[5];

 for (i = 0, j = 0; j < lg; j+=2, i++)
 {
 s1 = L_mult((x[i]>>16), a0) ; /* a0 * x[i+1] */
 s0 = L_mult((x[i]), a0) ; /* a0 * x[i] */
 s1 = L_mac(s1, a0>>16, x[i]) ; /* a1 * x[i] */
 s0 = L_mac(s0, a0>>16, x[i–1]>>16); /* a1 * x[i–1] */
 s1 = L_mac(s1, a1, x[i–1]>>16); /* a2 * x[i–1] */
 s0 = L_mac(s0, a1, x[i–1]); /* a2 * x[i–2] */
 s1 = L_mac(s1, a1>>16, x[i–1]); /* a3 * x[i–2] */
 s0 = L_mac(s0, a1>>16, x[i–2]>>16); /* a3 * x[i–3] */
 s1 = L_mac(s1, a2, x[i–2]>>16); /* a4 * x[i–3] */
 s0 = L_mac(s0, a2, x[i–2]); /* a4 * x[i–4] */
 s1 = L_mac(s1, a2>>16, x[i–2]); /* a5 * x[i–4] */
 s0 = L_mac(s0, a2>>16, x[i–3]>>16); /* a5 * x[i–5] */
 s1 = L_mac(s1, a3, x[i–3]>>16); /* a6 * x[i–5] */
 s0 = L_mac(s0, a3, x[i–3]); /* a6 * x[i–6] */
 s1 = L_mac(s1, a3>>16, x[i–3]); /* a7 * x[i–6] */
 s0 = L_mac(s0, a3>>16, x[i–4]>>16); /* a7 * x[i–7] */
 s1 = L_mac(s1, a4, x[i–4]>>16); /* a8 * x[i–7] */

SPRA698

13 The Residu Implementation Using the TMS320C6000

 s0 = L_mac(s0, a4, x[i–4]); /* a8 * x[i–8] */
 s1 = L_mac(s1, a4>>16, x[i–4]); /* a9 * x[i–8] */
 s0 = L_mac(s0, a4>>16, x[i–5]>>16); /* a9 * x[i–9] */
 s1 = L_mac(s1, a5, x[i–5]>>16); /* a10 * x[i–9] */
 s0 = L_mac(s0, a5, x[i–5]); /* a10 * x[i–10] */
 s1 = L_add(s1, 4096);
 s0 = L_add(s0, 4096);
 s1 = L_shl(s1, 3);
 s0 = L_shl(s0, 3);
 y[j] = (short)(s0 >>16);
 y[j+1] = (short)(s1 >>16);
 }
 return;
}

SPRA698

14 App Report Title

Appendix B The Residu Partitioned Linear Assembly Code

_Residu_psa: .cproc A_a_ptr, B_x_ptr, A_y_ptr, B_lg ;arg_list

 .no_mdep

 .reg A_a_0 ; coef: a[0]
 .reg A_x_ba ; input: x[i+1,i]
 .reg A_x_98 ; input: x[i–1,i–2]
 .reg A_x_76 ; input: x[i–3,i–4]
 .reg A_x_54 ; input: x[i–5,i–6]
 .reg A_x_32 ; input: x[i–7,i–8]
 .reg A_x_10 ; input: x[i–9,i–10]
 .reg A_p00 ; prod: x[i]*a[0]
 .reg A_p01 ; prod: x[i–1]*a[1]
 .reg A_p02 ; prod: x[i–2]*a[2]
 .reg A_p03 ; prod: x[i–3]*a[3]
 .reg A_p04 ; prod: x[i–4]*a[4]
 .reg A_p05 ; prod: x[i–5]*a[5]
 .reg A_p06 ; prod: x[i–6]*a[6]
 .reg A_p07 ; prod: x[i–7]*a[7]
 .reg A_p08 ; prod: x[i–8]*a[8]
 .reg A_p09 ; prod: x[i–9]*a[9]
 .reg A_p0a ; prod: x[i–10]*a[10]
 .reg A_s0 ; sum0
 .reg A_y0 ; y0
 .reg B_i ; outloop counter
 .reg B_a_0 ; coef: a[0]
 .reg B_a_10 ; coef: a[1,0]
 .reg B_a_32 ; coef: a[3,2]
 .reg B_a_54 ; coef: a[5,4]
 .reg B_a_76 ; coef: a[7,6]
 .reg B_a_98 ; coef: a[9,8]
 .reg B_a_ba ; coef: a[11,10]
 .reg B_p10 ; prod: x[i+1]*a[0]
 .reg B_p11 ; prod: x[i]*a[1]
 .reg B_p12 ; prod: x[i–1]*a[2]
 .reg B_p13 ; prod: x[i–2]*a[3]
 .reg B_p14 ; prod: x[i–3]*a[4]
 .reg B_p15 ; prod: x[i–4]*a[5]
 .reg B_p16 ; prod: x[i–5]*a[6]
 .reg B_p17 ; prod: x[i–6]*a[7]
 .reg B_p18 ; prod: x[i–7]*a[8]
 .reg B_p19 ; prod: x[i–8]*a[9]
 .reg B_p1a ; prod: x[i–9]*a[10]
 .reg B_s1 ; sum1
 .reg B_y1 ; y1

 LDW .D1T2 *A_a_ptr++,B_a_10 ; load a[1] & a[0], a[0] = 4096
 LDW .D1T2 *A_a_ptr++,B_a_32 ; load a[3] & a[2]
 LDW .D1T2 *A_a_ptr++,B_a_54 ; load a[5] & a[4]
 LDW .D1T2 *A_a_ptr++,B_a_76 ; load a[7] & a[6]
 LDW .D1T2 *A_a_ptr++,B_a_98 ; load a[9] & a[8]

SPRA698

15 App Report Title

 LDH .D1T2 *A_a_ptr,B_a_ba ; load a[11] & a[10]
 SHR .2 B_lg,1,B_i ; outloop loop counter, lg/2
 MVK .1 4096,A_a_0 ; a[0] = 4096
 MVK .2 4096,B_a_0 ; a[0] = 4096

LOOP:
 LDW .D2T1 *B_x_ptr––,A_x_ba ; load x[1] & x[0]
 LDW .D2T1 *B_x_ptr––,A_x_98 ; load x[–1] & x[–2]
 LDW .D2T1 *B_x_ptr––,A_x_76 ; load x[–3] & x[–4]
 LDW .D2T1 *B_x_ptr––,A_x_54 ; load x[–5] & x[–6]
 LDW .D2T1 *B_x_ptr––,A_x_32 ; load x[–7] & x[–8]
 LDW .D2T1 *B_x_ptr++[6],A_x_10; load x[–9] & x[–10]

 SMPY .1 A_x_ba,A_a_0,A_p00 ; smpy(x[i],a[0])
 SMPYH .1X A_x_98,B_a_10,A_p01 ; smpy(x[i–1],a[1])
 SMPY .1X A_x_98,B_a_32,A_p02 ; smpy(x[i–2],a[2])
 SMPYH .1X A_x_76,B_a_32,A_p03 ; smpy(x[i–3],a[3])
 SMPY .1X A_x_76,B_a_54,A_p04 ; smpy(x[i–4],a[4])
 SMPYH .1X A_x_54,B_a_54,A_p05 ; smpy(x[i–5],a[5])
 SMPY .1X A_x_54,B_a_76,A_p06 ; smpy(x[i–6],a[6])
 SMPYH .1X A_x_32,B_a_76,A_p07 ; smpy(x[i–7],a[7])
 SMPY .1X A_x_32,B_a_98,A_p08 ; smpy(x[i–8],a[8])
 SMPYH .1X A_x_10,B_a_98,A_p09 ; smpy(x[i–9],a[9])
 SMPY .1X A_x_10,B_a_ba,A_p0a ; smpy(x[i–10],a[10])

 SMPYLH .2X B_a_10,A_x_ba,B_p10 ; smpy(x[i+1],a[0])
 SMPYHL .2X B_a_10,A_x_ba,B_p11 ; smpy(x[i],a[1])
 SMPYLH .2X B_a_32,A_x_98,B_p12 ; smpy(x[i–1],a[2])
 SMPYHL .2X B_a_32,A_x_98,B_p13 ; smpy(x[i–2],a[3])
 SMPYLH .2X B_a_54,A_x_76,B_p14 ; smpy(x[i–3],a[4])
 SMPYHL .2X B_a_54,A_x_76,B_p15 ; smpy(x[i–4],a[5])
 SMPYLH .2X B_a_76,A_x_54,B_p16 ; smpy(x[i–5],a[6])
 SMPYHL .2X B_a_76,A_x_54,B_p17 ; smpy(x[i–6],a[7])
 SMPYLH .2X B_a_98,A_x_32,B_p18 ; smpy(x[i–7],a[8])
 SMPYHL .2X B_a_98,A_x_32,B_p19 ; smpy(x[i–8],a[9])
 SMPYLH .2X B_a_ba,A_x_10,B_p1a ; smpy(x[i–9],a[10])

 SADD .1 A_p00,A_p01,A_s0 ; s0 = sadd(smpy(x[–1], a[0]),
 ; smpy(x[–1], a[1]))
 SADD .1 A_s0,A_p02,A_s0 ; s0 = sadd(s0,smpy(x[–2],a[2]))

 SADD .1 A_s0,A_p03,A_s0 ; s0 = sadd(s0,smpy(x[–3],a[3]))
 SADD .1 A_s0,A_p04,A_s0 ; s0 = sadd(s0,smpy(x[–4],a[4]))
 SADD .1 A_s0,A_p05,A_s0 ; s0 = sadd(s0,smpy(x[–5],a[5]))
 SADD .1 A_s0,A_p06,A_s0 ; s0 = sadd(s0,smpy(x[–6],a[6]))
 SADD .1 A_s0,A_p07,A_s0 ; s0 = sadd(s0,smpy(x[–7],a[7]))
 SADD .1 A_s0,A_p08,A_s0 ; s0 = sadd(s0,smpy(x[–8],a[8]))
 SADD .1 A_s0,A_p09,A_s0 ; s0 = sadd(s0,smpy(x[–9],a[9]))
 SADD .1 A_s0,A_p0a,A_s0 ; s0 = sadd(s0,smpy(x[–10],a[10]))

SPRA698

16 App Report Title

 SADD .2 B_p10,B_p11,B_s1 ; s1 = sadd(smpy(x[1],a[0]),
 ; smpy(x[0],a[1]))
 SADD .2 B_s1,B_p12,B_s1 ; s1 = sadd(s1,smpy(x[–1],a[2]))
 SADD .2 B_s1,B_p13,B_s1 ; s1 = sadd(s1,smpy(x[–2],a[3]))
 SADD .2 B_s1,B_p14,B_s1 ; s1 = sadd(s1,smpy(x[–3],a[4]))
 SADD .2 B_s1,B_p15,B_s1 ; s1 = sadd(s1,smpy(x[–4],a[5]))
 SADD .2 B_s1,B_p16,B_s1 ; s1 = sadd(s1,smpy(x[–5],a[6]))
 SADD .2 B_s1,B_p17,B_s1 ; s1 = sadd(s1,smpy(x[–6],a[7]))
 SADD .2 B_s1,B_p18,B_s1 ; s1 = sadd(s1,smpy(x[–7],a[8]))
 SADD .2 B_s1,B_p19,B_s1 ; s1 = sadd(s1,smpy(x[–8],a[9]))
 SADD .2 B_s1,B_p1a,B_s1 ; s1 = sadd(s1,smpy(x[–9],a[10]))

 MVk .1 4096,A_a_0 ; a[0] = 4096

 SADD .1 A_s0,A_a_0,A_y0 ; s0 = sadd(s0,4096)
 SADD .2 B_s1,B_a_0,B_y1 ; s1 = sadd(s1,4096)
 SSHL .1 A_y0,3,A_y0 ; s0 = L_shl(s0,3)
 SSHL .2 B_y1,3,B_y1 ; s1 = L_shl(s1,3)

 SHR .1 A_y0,16,A_y0 ; y[0] = shr(s0,16)
 SHR .2 B_y1,16,B_y1 ; y[1] = shr(s1,16)
 STH .1 A_y0,*A_y_ptr++ ; store y[0]
 STH .D1T2 B_y1,*A_y_ptr++ ; store y[1]

 [B_i]SUB .2 B_i,1,B_i ; decrement loop counter
 [B_i]B LOOP ; branch to the loop

 .endproc

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

